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Abstract—Endpoint monitoring solutions are widely deployed
in today’s enterprise environments to support advanced attack
detection and investigation. These monitors continuously record
system-level activities as audit logs and provide deep visibility
into security incidents. Unfortunately, to recognize behaviors
of interest and detect potential threats, cyber analysts face a
semantic gap between low-level audit events and high-level system
behaviors. To bridge this gap, existing work largely matches
streams of audit logs against a knowledge base of rules that
describe behaviors. However, specifying such rules heavily relies
on expert knowledge. In this paper, we present WATSON, an
automated approach to abstracting behaviors by inferring and
aggregating the semantics of audit events. WATSON uncovers the
semantics of events through their usage context in audit logs. By
extracting behaviors as connected system operations, WATSON
then combines event semantics as the representation of behaviors.
To reduce analysis workload, WATSON further clusters semanti-
cally similar behaviors and distinguishes the representatives for
analyst investigation. In our evaluation against both benign and
malicious behaviors, WATSON exhibits high accuracy for behavior
abstraction. Moreover, WATSON can reduce analysis workload by
two orders of magnitude for attack investigation.

I. INTRODUCTION

Security incidents in large enterprise systems have been
on the rise globally. We have been witnessing attacks with
increasing scale and sophistication. Capital One reported that
106 million customers’ credit card information was exposed
due to unauthorized database access [6]. A recent Twitter
attack has left dozens of high-profile accounts displaying fraud
messages to tens of millions of followers [14]. To better
prevent and respond to such attacks, endpoint monitoring
solutions (e.g., Security Information and Event Management
(SIEM) tools [5]) are widely deployed for enterprise security.
These monitors continuously record system-level activities as
audit logs, capturing many aspects of system’s execution states.

When reacting to a security incident, cyber analysts per-
form a causality analysis on audit logs to discover the root
cause of the attack and the scope of its damages [45], [46].
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However, the amount of audit logs generated by a normal
system is non-trivial. Even one desktop machine can easily
produce over one million audit events per day [27], [50],
let alone busy servers in cloud infrastructures. To overcome
this challenge, recent research solutions scale up causality
analysis by eliminating irrelevant system operations in audit
logs [21], [34], [40], [50], [55], [61], [75], [82]. An alternative
research direction aims to increase the efficiency of log query
systems [27], [28], [32], [70]. Unfortunately, neither data
reduction nor searching improvement leads to a substantial
decrease in analysis workload. These solutions do not capture
the semantics behind audit data and leave behavior recogniza-
tion to analysts [53]. As a result, intensive manual effort is
still involved in evaluating relevant yet benign and compli-
cated events that dominate audit logs. Especially, a significant
problem faced by analysts is a semantic gap between low-level
audit events and high-level system behaviors.

Existing work strives to bridge this gap by matching
audit events against a knowledge store of expert-defined rules
that describe behaviors, such as tag-based policies [38], [39],
query graphs [62], [84], and TTP (tactic, technique, and
procedure) specifications [35], [63]. Essentially, these solutions
identify high-level behaviors through tag propagation or graph
matching. However, an expected bottleneck is the manual
involvement of domain experts to specify such rules. For
example, MORSE [39] needs experts to traverse system entities
(e.g., files) and initialize their confidentiality and integrity tags
for tag propagation. TGMiner [84] requires manual behavior
labeling in training log sets before mining discriminative
behavioral patterns and searching for their existence in test
sets. Despite crucial role in audit log analysis, mapping events
to behaviors heavily relies on expert knowledge, which may
hinder its applications in practice.

Extracting representative behaviors from audit events for
analyst investigation provides an efficient strategy to mitigate
this problem. More concretely, we can use procedural analy-
sis to automatically abstract high-level behaviors and cluster
semantically similar ones, albeit without the labels explaining
what they are. However, because repetitive/comparable behav-
iors have already been clustered, analysts only need to label the
representatives from clusters, resulting in far fewer events to
be investigated. Besides reducing manual workload in behavior
analysis, automatic behavior abstraction also enables proactive
analysis to detect unusual behavioral patterns in insider threats
or external exploits. Particularly, any deviation of normal
behaviors can be flagged efficiently for attack response.
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While behavior abstraction sounds promising, there are two
main challenges to extract behaviors and infer their semantics:
event semantics differentiation and behavior identification.
Audit events record general-purpose system activities and thus
lack knowledge of high-level semantics. A single event, such
as process creation or file deletion, can represent different
semantics in different scenarios. Furthermore, due to the large-
scale and highly interleaving nature of audit events, partition-
ing events and identifying boundaries of behaviors are like
finding needles in a haystack.

To address the above challenges, our first key insight is
that the semantics of audit events can be revealed from the
contexts in which they are used. Intuitively, we can represent
behaviors by aggregating the semantics of their constituent
events. With such representations, similar behaviors can be
clustered together. In addition, we observe that the information
flow of system entities provides a natural boundary of high-
level behaviors. It can serve as guidance to correlate audit
events belonging to individual behaviors.

In this paper, we present WATSON 1, an automated behavior
abstraction approach that aggregates the semantics of audit
events to model behavioral patterns. It does not assume expert
knowledge of event semantics to perform behavior abstraction.
The semantics is obtained automatically from the context
of event usage in audit logs. We call this the contextual
semantics of events. More specifically, WATSON first leverages
a translation-based embedding model to infer the semantics of
audit events based on contextual information in logs. Then,
WATSON identifies events connected to related data objects
(i.e., files and network sockets) and aggregates their semantics
as the representation of high-level behaviors. Finally, WATSON
clusters similar behaviors recorded in audit logs and distin-
guishes the representatives for analyst investigation.

To the best of our knowledge, WATSON is the first approach
that automatically abstracts high-level behaviors from low-
level log information. WATSON provides a quantitative repre-
sentation of the semantics for both events and behaviors found
in audit logs and a way to derive them automatically. Having a
quantitative method to reason about behaviors and events gives
analysts the ability to compare, sort, and cluster behaviors. It
also enables the composition of multiple behaviors and even
the synthesis or prediction of what a particular behavior should
be. These capabilities can form the basis for designing new
security solutions, such as abnormal behavior detection, or
supporting existing solutions to select appropriate behaviors
for deep inspection.

We prototype WATSON and evaluate its correctness and
explicability using 17 daily routines and eight real-life attacks
simulated in an enterprise environment. In addition, we use the
public DARPA TRACE dataset [13] released by the DARPA
Transparent Computing program to evaluate WATSON’s effi-
cacy in attack investigation. We note that WATSON is the first
to abstract both benign and malicious behaviors for evaluation.
Previous techniques [33], [35], [36], [39], [63] do not take
benign behaviors into consideration because they mainly focus
on attack detection. However, WATSON extracts high-level
behaviors regardless of their security concerns. Experimental

1Our approach name comes from Dr. Watson, who always provides trustful
assistance for the detector, Sherlock Holmes.
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Fig. 1: The provenance graph for the motivation example.
Nodes in the graph are system entities (rectangles are pro-
cesses, ovals are files, and diamonds are sockets), and edges
among nodes represent system calls. For readability, we
present only a fragment of the graph and highlight high-level
behaviors with colored boxes.

results show that WATSON accurately correlates system entities
with similar usage contexts and achieves an average F1 score
of 92.8% in behavior abstraction. Moreover, WATSON is able
to reduce the amount of audit logs for analyst investigation by
two orders of magnitude.

In summary, we make the following contributions:

• We present WATSON, the first approach to abstracting
high-level behaviors from low-level logs without analyst
involvement. Our approach summarizes behaviors using
information flow as guidance and derives behavior semantics
by aggregating contextual semantics of audit events.
• We propose the novel idea of inferring log semantics

through contextual information. We provide a quantitative
representation of behavior semantics and use it to cluster
semantically similar behaviors and extract representatives.
• We prototype WATSON and conduct a systematic evaluation

with both commonly-used benign behaviors and real-world
malicious behaviors. The results show that WATSON is
effective in abstracting high-level behaviors and reducing
human workload in the analysis of logs.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce audit log analysis and
its challenges with a motivating example. We then analyze the
problem of behavior abstraction with our insights, as well as
describing the threat model.

A. Motivating Example

Scenario. Consider the following attack scenario, where an
employee wants to exfiltrate sensitive data that he can access.
As a software tester, his regular tasks include using git to
synchronize code from the Github repository, using gcc to
compile programs from source code, and using apt to install
tested software dependencies. One day, he locates a sensitive
document (secret.txt) and wants to exfiltrate it. To evade
detection, he tries to mimic normal behaviors in his daily jobs.
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He first copies the sensitive file to his working directory as
Pro2.c. Then, he compiles the “program” using gcc and
uploads it to a Github repository under his control. Note that
the compilation of the file is unsuccessful because Pro2.c is
not a legitimate source file. This strategy attempts to disguise
the Data Exfiltration behavior as part of an ordinary program
development activity and thus misguide analysts to flag it as
a daily behavior.

Audit log analysis. System audit logs enable analysts to gain
insight into cyber attacks with data provenance. Each audit
event records an OS-level operation (i.e., system call) such
as process execution, file creation, and network connection.
Specifically, an event can be defined as a triple (Subject,
Relation, Object), where Subject is a process entity, Object
is a system entity (i.e., process, file, or network socket), and
Relation is a system call function. In our motivating exam-
ple, copying secret.txt events are represented as (cp,
read, secret.txt) and (cp, write, Pro2.c). Note
that system entities are associated with a set of attributes for
identification, such as labels (e.g., PID and inode) and names
(e.g., file path, process path, and IP address). Moreover, every
individual event (e.g., a process writing a file) stands for an
information flow between Subject and Object.

To facilitate attack causality analysis, the research commu-
nity employs a provenance graph [17], [65] to allow tracking
information flows efficiently in audit logs. In essence, the
provenance graph is a common representation of historic
causalities in the system at the OS level. Figure 1 shows an
example of a provenance graph building upon the motivating
example. The direction of an edge indicates how data transfer
between system entities. In an investigation of a given security
incident, analysts search through a provenance graph for pieces
of information related to cyber-attacks. In Figure 1, analysts
first perform backward tracking from an incident (i.e., file
upload to an unknown Git repository) to identify its root cause.
Then, analysts perform forward tracking on the found initial
compromise point (i.e., insider login with ssh) to explore the
ramifications of the same attack. When inspecting ancestries
and progenies of a security incident through backward and
forward tracking, analysts can reason about how the incident
is caused and the high-level behaviors responsible for it.

B. Challenges

While capturing attack sequences and provenances, ana-
lysts would have to recognize not only malicious (e.g., Data
Exfiltration) but benign behaviors (e.g., Program Compila-
tion and Upload). Although a provenance graph provides an
intuitive representation to visualize causal dependencies and
remove irrelevant events, analysts still spend excessive time in
investigating relevant but benign events due to the ubiquitous
presence of normal activities on a daily basis.

Abstracting behaviors from audit events is an efficient
strategy for analysts to navigate through a large number of
events and focus on specific information. Essentially, behaviors
represent an abstraction of audit data. Working on the level of
behaviors can effectively reduce the analysis workload from
the whole event space to behaviors of interests that draw
attention in a specific scenario. Examples of such behaviors
include Data Exfiltration, Backdoor Installation, and Program
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Fig. 2: Subgraphs starting from Pro1.c, Eva.doc and
secret.txt correspond to the Program Compilation and
Upload, Github Submission and Data Exfiltration behaviors.
We color-code the source data object in behaviors and omit
some edges (e.g., vim writes Pro1.c) for clarity.

Compilation. However, to automatically abstract high-level
behaviors from low-level audit events, analysts face two major
challenges:

• Inferring semantics of OS-level audit events. Audit
events record detailed system execution states but lack
knowledge of high-level semantics critical for behavioral
pattern recognition. Specifically, two system entities with
similar semantics may be named differently. For example,
temporary files for IPC between C compiler (cc1) and
assembler (as) can be named /tmp/ccw4T8Hh.s and
/tmp/cc0JjLYr.s. On the other hand, system entities
sharing the same names could indicate different intentions.
In our motivating example, the Data Exfiltration behavior
leverages cc1 to mimic normal user activities, while the
Program Compilation and Upload behavior uses cc1 to
compile the source code into assembly code. In order to
uncover event semantics, existing work largely parses audit
events with a knowledge store of expert-defined rules or
models. However, the manual specifications could easily
undermine the scalability of behavior abstraction due to the
large scale of audit events, even in modestly sized systems.

• Identifying behavior boundaries in large-scale audit events.
The volume of audit data is typically overwhelming, and
audit events are highly interleaving. In our motivating ex-
ample, even a single Package Installation behavior with apt
generates over 50,000 events. In addition, all individual
behaviors are causally connected, as shown in Figure 1.
This makes it challenging for analysts to partition events
and distinguish behavior boundaries. More notably, most of
the events do not necessarily reflect behaviors but system
routines. When compiling programs with gcc, the child
process, cc1, reads a massive number of files such as C
header files, but only operations accessing Pro2.c are
particularly correlated with the Data Exfiltration behavior.

C. Problem Analysis

Given a large set of audit logs in a user login session, we
aim to identify high-level (benign and malicious) behaviors and
provide a quantitative representation of their semantics without
analyst involvement. Furthermore, we also aim to cluster se-
mantically similar behaviors and distinguish the representatives
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Fig. 3: WATSON Overview.

for human inspection. In contrast to traditional approaches,
where behavior abstraction relies heavily on domain knowl-
edge, our goal is to achieve automated behavior abstraction
using simple yet effective insights.

Our first insight comes from the observation that the
semantics of system entities and relations in audit events can
be revealed from the context in which they are used. For
example, while compiling programs using gcc, C compiler
(cc1) writes assembly code to a local temporary file (e.g.,
/tmp/ccw4T8Hh.s) which is later read by the assembler
(as). We note that such temporary files are named randomly
in different Program Compilation instances. From the context
of how data is manipulated, they, however, go through identical
system operations, i.e., created by gcc, written by cc1, read
by as, and deleted by gcc. Thus, we can reason that these files
may share similar semantics despite different identifiers. This
matches our intuitive way of labeling them as IPC medium
between cc1 and as. Our core idea is to uncover the semantics
of system entities and relations from their contextual infor-
mation in audit events, such as by analyzing the correlation
of their presence in events. A general approach to extracting
such contextual semantics is to employ embedding models.
The objective is to map system entities and relations into
an embedding space (i.e., numeric vector space), where the
distances between vectors capture the semantic relationships.

Now that we can interpret the semantic information of audit
events. The next step would be to identify audit events belong-
ing to individual behaviors. Our second insight is based on
our observation that high-level behaviors, which are primarily
centered around an intended goal of a user, can be reflected
as a series of system operations applied on data objects.
For example, compiling program a.c with gcc intends to
translate source code into executable machine code. We can
decompose the translation procedure into three operations: (1)
Compiling: compile a.c into an assembly language file, a.s,
(2) Assembling: convert a.s into a relocatable object file,
a.o, and (3) Linking: combine a.o with multiple object files
into an executable file, a.out. Specifically, WATSON defines
the behavior as an intended goal of the user, while the means
to achieve it as a behavior instance. Each behavior instance is
a sequence of operations that the user performs to achieve the
goal. These operations can be further modeled as data transfers
and the behavior instance as a sequence of such data transfers.
For example, we can summarize the Program Compilation

behavior above by following how data transfer from a.c to
a.s, a.o, and finally a.out. Based on this observation, we
clearly abstract behaviors as sequences of data transfers that
operate on related data. Particularly in audit logs, WATSON
identifies behavior instances by leveraging information flows
among audit events as guidance for tracking data transfers.
When such flows exist, we group events as a subgraph and
form an individual behavior instance. For example, during
program compilation, the compiling, assembling, and linking
operations are recorded as cc1, as, and ld events in audit
logs. We can identify this behavior by following information
flows from the source file in the cc1 event to the executable
file in the ld event. Figure 2 presents subgraphs used by
WATSON to summarize behaviors in the motivating example.

With the knowledge of events and identification of behav-
iors, the semantic representation of behaviors can be naturally
thought of as the aggregated semantics of their constituent
events as they are defined as sequences of events.

D. Threat Model

We assume the underlying OS, the auditing engine, and
monitoring data to be part of the trusted computing base
(TCB). Ensuring the integrity of the OS kernel, endpoint
monitors, or audit logs themselves is beyond the scope of
this work. This threat model is shared among related work
on system auditing [29], [36], [38], [39], [53], [63].

We also assume that behaviors go through kernel-layer
auditing, and their operations are captured as system-call audit
logs. Although attackers may attempt to perform malicious
behaviors without executing any system call to hide their
footprints, such behaviors appear to be rare, and the harm
they can bring to the rest of the system is limited [76]. We
focus on behaviors in single user sessions in this paper. Our
insights are generally applicable to cross-session or cross-
machine behaviors.

III. WATSON DESIGN

A. Approach Overview

The overall approach of WATSON is shown in Figure 3.
It consists of three primary phases: Knowledge Graph Con-
struction, Behavior Abstraction, and Representative Behavior
Identification. WATSON takes as inputs system audit data,
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e.g., Linux Audit logs [9]. It summarizes behavior instances,
uncovers their semantics, and finally outputs representative
high-level behaviors.

Specifically, given audit logs in a user session as the input,
the Knowledge Graph Construction module first parses logs
into triples and constructs the log-based knowledge graph
(KG). Then, the Event Semantics Inference module employs
a translation-based embedding model to infer the contextual
semantics of nodes in the KG. At the same time, the Behavior
Summarization module enumerates subgraphs from the KG to
summarize behavior instances. Combined with node semantics,
the Behavior Semantics Aggregation module next enhances
subgraphs to encode the semantics of behavior instances.
Finally, the Behavior Clustering module groups semantically
similar subgraphs into clusters, each specifying a high-level
behavior. These cluster-based behavior abstractions can further
be used to reduce the efforts of downstream tasks. We present
the design details of WATSON in the following sections.

B. Knowledge Graph Construction

In order to analyze the contextual semantics of events,
a unified representation is required to present heterogeneous
events in a homogeneous manner. Instead of using a prove-
nance graph based on the provenance data model (PROV-
DM [12]), we propose a new representation based on knowl-
edge graph (KG) to integrate heterogeneous information. This
allows for the future capacity to capture relationships beyond
just provenance [79], [80] (e.g., file meta-information such as
permissions and owners).

Following the formal description of a KG [26] by Färber et
al., we define log-based KG as a resource description frame-
work (RDF) graph [64]. More concretely, the log-based KG is
a set of numerous semantic triples. Each triple, corresponding
to an audit event, consists of three elements that codify the
semantic Relation between the Head and Tail in the form
of (Head, Relation, Tail). Both Head and Tail can be any
type of system entities, and Relation can take any system
operation that is performed on Tail. However, note that types
of system entities in triples are consistent with that in audit
events, e.g., Head and Tail cannot be files or network sockets
simultaneously. Figure 4 shows a knowledge sub-graph of the
motivating example. Similar to a provenance graph, a KG
encodes information flow that exists from Head to Tail in a
triple. For example, the dependency chains (colored by blue) in
Figure 4 illustrate the data transfers from Pro1.c to a.out.

C. Event Semantics Inference

Understanding the semantics of audit events is the first step
in abstracting high-level behaviors. In particular, an accurate

understanding is predicated on a suitable representation and
granularity whereby semantic meanings can be effectively
compared. A common practice in prior work [25], [71], [72]
is to formulate each log event as a basic unit for analysis.
However, a single audit event includes three elements (Head,
Relation, and Tail), where each element separately contributes
to event semantics. Therefore, performing semantic analysis
on the level of elements compared to events provides a more
detailed view as the context of individual elements is made
explicit. Working on the level of elements, we can obtain the
semantics of an audit event through the consolidation of three
constituent elements and the semantics of a behavior instance
through the consolidation of the events that define it. Although
there exists a trade-off between scalability and accuracy due
to different granularity of semantic analysis, the choice of
a computationally efficient embedding model allows us to
preserve precision while handling the large number of events
found in logs. As such, we select individual elements rather
than audit events as the base unit in our semantic reasoning.

Since embedding models can learn the semantics of audit
events from their contextual information with elements as the
basis, the next question is how to map elements into an embed-
ding space (i.e., vector space). In Natural Language Processing,
word embedding has been used with much success to extract
and represent the semantics of words [16], [74]. Inspired by the
success of word embeddings in NLP, EKLAVYA [23] showed
how it could also be applied to infer the semantics of binary
instructions based on their usage context. This prompted us
to ask a similar question. Does the contextual occurrence of
elements in an audit event relate to their semantics? Take for
example the triples (cc1, read, a.c) and (cc1, read,
b.c). While a.c and b.c belong to different events, the
usage context of both elements in the presence of (cc1 read)
provides the hint that they might share similar semantics
as program source files. Intuitively, we aim to convert each
element into a vector where a small distance (e.g., L1/L2-norm
distance) between elements signifies similar semantics while
a large distance the opposite. For instance, we expect the dis-
tance between embeddings (i.e., numeric vectors) of a.c and
b.c to be small. To achieve this goal, we propose employing
the translation-based embedding model, TransE [20], to learn
the mapping from elements to the embedding space.

In TransE, the translation in the embedding space describes
the semantic relationship between Head plus Relation and Tail.
Specifically, the embedding space has the property that given
a triple (Head, Relation, Tail), the position of Tail is that of
Head with a translation by Relation (i.e., Head + Relation
≈ Tail). Our guiding principle in selecting TransE is its
translation-based model perfectly matching our understanding
of contextual semantics in audit events. For example, consider
the case of (cc1, read, a.c) and (cc1, read, b.c).
Since TransE updates the embeddings of both a.c and b.c
using cc1 + read, they will be nearby in the embedding
space, indicating similar semantics. In theory, the embedding
model in TransE mirrors our expectation of element semantics
and their similarities, and Section V-B experimentally demon-
strates that TransE indeed learns the contextual semantics of
elements that matches our domain knowledge.

In the embedding process, each element is first initialized
as a symbol without regard to its numeric label or textual name.
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To do so, we encode elements as one-hot vectors and use
them as training inputs to the embedding model. Each one-
hot vector is an n-dimensional vector where n is the number
of unique elements in the universal set. For example, if the
entire log set contains two triples involving six elements, five
of which are unique, then the elements would be encoded
into a 5-dimensional vector with the first being [1, 0, 0, 0, 0],
and the last being [0, 0, 0, 0, 1]. In terms of identifiers for
elements, we use the executable name, argument, and PID for
a process element, the absolute path for a file element, and
the IP address and port number for a socket element. We do
not directly employ element labels (e.g., PID and inode) for
identification because they are recycled in a system and can
easily cause a collision. For a Relation element, we use the
system call number as the identifier due to its uniqueness. Note
that element identifier bears no relation to domain-specific
semantics during embedding.

In the training phase, TransE optimizes the embedding
space of elements by minimizing the translational distance of a
triple found in the KG (training triple) while maximizing that
of a triple not found in the KG (corrupted triple). We generate
corrupted triples by replacing either Head or Tail in a training
triple with a random element and ensuring that the new triples
do not exist in the KG. The loss function for the embedding
model optimization is summarized as follows:

L =
∑

(h,r,t)∈KG

∑
(h′,r′,t′)/∈KG

(‖eh + er − et‖−‖eh′ + er′− et′‖+γ),

where ‖ · ‖ denotes the L1-norm distance function. h, r, and
t represent Head, Relation, and Tail elements. ex denotes
the embedding of element x. Note that for a given element,
its embedding is constant no matter it acts as Head or Tail
in a triple. Moreover, TransE uses Margin γ to encourage
discrimination between training and corrupted triples. We
refer interested readers to [20] for the detailed optimization
procedure.

In summary, the result of TransE is an n×m embedding
matrix, which maps n-dimensional one-hot encoded elements
into an m-dimensional embedding space. To further infer the
semantics of an audit event, we concatenate the embeddings of
its constituent elements (Head, Relation, and Tail) and generate
a 3m-dimensional vector (192 dimensions in our case).

D. Behavior Summarization

The next step of behavior abstraction is identifying behav-
ior instances from one user login session. We define a behavior
instance as a sequence of audit events operated on related data
and correlated by information flows. Accordingly, the problem
of summarizing individual behavior instances can be reduced
to extracting causally connected subgraphs with data objects
(i.e., file and network socket) as the root in the session’s
KG. Note that unlike path-based approaches [36], [77], which
decompose a provenance graph into overlapping paths for anal-
ysis, we partition the KG on the basis of subgraphs to represent
behavior instances. This is because an individual path cannot
preserve the complete context of behaviors representing multi-
branch data transfers. For example, path-based approaches
would fail to correlate all system operations belonging to the
Data Exfiltration behavior in our motivating example because

operations of the program compilation and github upload are
located in separate paths.

In order to extract subgraphs that summarize behavior
instances, we perform an adapted forward depth-first search
(DFS) on the session’s KG rooted at data objects. Figure 2
demonstrates three resulting subgraphs of behavior summa-
rization in the motivating example. During graph traversal, we
enforce the constraint that the timestamp of each following
edge has to be monotonically increasing from all previous
edges. This design can prevent false dependencies due to
information flowing from a future event to a past event.
Besides, we note that the ancestry of a system entity usually
contains critical behavior contexts. For example, the process
creating root data objects describes where they come from
(e.g., downloaded by email clients). However, such ancestries
are lost in the plain forward DFS because they belong to
backward dependencies. Therefore, we further incorporate one-
hop incoming edges of reached system entities during graph
traversal. In addition, we do not bound the DFS based on
the level of depth but rather domain-specific system entities
(e.g., files read and written by numerous processes [39]). As
only coarse-grained causal dependencies (system calls) are
recorded in audit logs, the causality analysis suffers from
the dependency explosion problem [49]. This also has an
adverse effect on WATSON’s ability to track data transfers
and summarize behavior instances. While solving the general
problem of dependency explosion is not within the scope
of this work, we aim to mitigate its influence by applying
heuristics to specify system entities (e.g., .bash_history
and firefox) that potentially trigger dependency explosion
as the termination condition in our DFS. To guarantee no
behavior instance loss, we perform the adapted DFS on every
single data object found in the KG except libraries that do
not reflect the roots of user intended goals. Two behaviors are
further merged if one behavior is the subset of the other.

In summary, we apply an adapted DFS algorithm to parti-
tion the session’s KG into subgraphs, where each describes a
behavior instance.

E. Behavior Semantics Aggregation

After behavior instance summarization, we next extract
the semantics of behavior instances. Recall that each behavior
instance partition is composed of audit events whose semantics
has been represented with high-dimensional vectors using the
embedding matrix. We then naturally derive the semantics of
behavior instances by combining behavior instance partitions
and the embedding matrix.

To obtain the semantic representation of a behavior in-
stance, a naïve approach is to add up the individual vectors
of its constituent events. However, this approach only works
under the assumption that all constituent events contribute
equally to the behavior instance semantics. In practice, this
assumption usually does not hold due to how events have
different relative importance to reflect behavior semantics and
the influence of noisy events.

Relative Event Importance. Any given high-level task which
a user performs consists of multiple smaller operations, but the
importance or necessity of each operation may not be the same.
While completing the desired task, users are typically required
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to execute boilerplate operations. Consider the compilation of a
program in Figure 4. Users usually do not directly launch gcc
to compile source code but first locate the source file using
common utilities like ls and dir. Although such boilerplate
operations reflect user activities, they do not uniquely associate
with high-level behavior. Therefore, concerning the task of be-
havior abstraction, these boilerplate operations should be given
less attention than operations directly representing behavior.

The key question is, how can we automatically ascribe
the relative importance of each operation? Our insight stems
from how operations are described in audit events of user
sessions. We observe that behavior-unrelated events are more
prevalent in sessions as they are repeated across different
behaviors, whereas actual behavior-related events happen less
frequently. Based on this observation, we propose using the
frequency of events as a metric to define their importance.
More specifically, we employ the Inverse Document Frequency
(IDF) to determine the importance of a particular event to the
overall behavior. IDF is widely used in information retrieval as
a term weighting technique [59]. Its principle is to give more
discriminative capacity to less-common terms in documents.
In our particular scenario, each audit event and user session
are viewed as a term and document. The equation to measure
the IDF value is as follows:

wIDF (e) = log
(
S

Se

)
,

where e denotes an audit event, and S and Se are the numbers
of all the sessions and specific sessions that include event e.
To summarize, each event in a behavior partition is assigned a
weight using IDF, representing its importance to the behavior.

Noisy Events. The low-level and verbose nature of audit
logs makes the presence of noisy events one of the primary
challenges analysts struggle with. Reducing noise occurrence
helps to improve WATSON’s effectiveness. In this section, we
will discuss two types of noisy events, redundant events and
mundane events.

(1) Redundant events. In behavior instances, there are
events when removed that do not change the data transfers.
To identify these redundant events, we built on top of the
shadow event [82], a concept that refers to file operations
whose causalities have already been represented by other
key events. We also incorporate domain knowledge in [50],
[82] to enhance redundant event reduction. At a high level,
analysts have listed specific files that do not introduce explicit
information flows in causality analysis. For example, many
processes create temporary files to store intermediate results
during execution. Because such files exclusively interact with
a single process during their lifetime, they do not affect
data transfers nor contribute to behavior abstraction. Note
that /tmp/1 and /tmp/2 in Figure 4 serving as IPC are
not categorized as temporary files. All redundant events are
considered noise and removed from behavior partitions.

(2) Mundane events. Another source of noise comes from
file operations that are regularly performed for an action.
We call them mundane events. Examples of such events are
(vim, write, .viminfo) for file editing history cache
and (bash, read, /etc/profile) for shell program
setup. We classify mundane events as noisy events because

they are associated with system routines rather than specific
behaviors. Typically, mundane events have two characteristics,
(a) they always occur for a given action, and (b) the order of
their occurrence is fixed. In order to identify and filter them,
we first enumerate all possible actions a program can perform.
By one action, we refer to a sequence of events a program
generates during its execution lifecycle in the system. Then,
given sequences of events for each program, we summarize
events always occurring in a fixed pattern as mundane events.
Essentially, we formulate the mundane event identification
problem as the longest common subsequence (LCS) searching
problem. Given event sequences of a program, we extract the
LCS among them as the mundane events. Similar to (1), all
mundane events are removed from behavior partitions. We
note that NODEMERGE [75] first proposes to identify mundane
events (i.e., data access patterns) for data reduction. However,
it focuses on file reading operations (e.g., load libraries and
retrieve configurations) in the process initialization action. In
contrast, WATSON targets all types of file operations in more
general actions (e.g., vim creates and writes .viminfo to
cache where users leave off editing files).

After weighting events with IDF and removing noisy
events, we derive the semantic representation of behavior
instances by pooling its constituent vectorized events. We have
attempted different pooling approaches for implementation,
such as addition, bi-interaction, and global average pooling.
The addition pooling is eventually utilized as we observe that
simply summing the semantics of events has already integrated
the semantic information of events effectively.

In conclusion, the Behavior Abstraction phase takes a log-
based KG as input and generates vector representation of
behavior instances in a 3m-dimensional embedding space.

F. Behavior Clustering

As described in Section II-C, behavior instances are vari-
ations on how high-level behaviors can be realized. In other
words, a behavior can be thought of as one cluster of similar
instances. It naturally follows that the behavior signature is the
most representative instance (e.g., centroid) in the cluster. In
this way, analysts only need to investigate a few auto-selected
signatures for behavior matching rather than the whole cluster
space. Given the vector representation of behavior instances,
WATSON calculates their semantic relationships using cosine
similarity as follows:

S (Fm, Fn) =
Fm · Fn

‖Fm‖ × ‖Fn‖
=

∑
ei∈Fm

∑
ej∈Fn

ei · ej√∑
ei∈Fm

(ei)2 ×
√∑

ej∈Fn
(ej)2

,

where Fm and Fn refer to the vector representation of two
behavior instances, and S(Fm, Fn) representing the cosine
similarity score is positively correlated with behavior semantic
similarity. This equation intuitively explains the effectiveness
of using addition to pool embeddings of events in a behavior
instance. Since Fi and Fj are the summations of their respec-
tive constituent events, cosine similarity, in effect, compares
the similarities of individual events in two instances.

WATSON uses Agglomerative Hierarchical Clustering
Analysis (HCA) algorithm to cluster similar behavior in-
stances. Initially, each behavior instance belongs to its own
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cluster. HCA then iteratively calculates cosine similarities
between clusters and combines two closest clusters until the
maximum similarity is below the merge threshold (0.85 in
our case). We select Centroid Linkage as the criterion to
determine the similarity between clusters. In other words,
cluster similarity estimation depends on centroids (arithmetic
mean position) in clusters.

Once the clusters are identified, a behavior signature for
each cluster would be extracted based on the instances’ rep-
resentativeness. WATSON quantifies the representativeness of
each instance in a cluster by computing its average similarity
with the rest of instances. The instance with the maximum
similarity is picked out as the signature. By distinguishing the
behavior signature, we expect to see a substantial analysis
workload reduction as semantically similar behaviors have
been clustered before human inspection. Take for instance
our motivating example. WATSON groups multiple Program
Compilation and Upload instances together into one cluster and
only reports the representative for analyst investigation. It is
noteworthy that the Data Exfiltration behavior fails to compile
the illegitimate source code and thus loses the data transfers
from the source file to an executable file. As a result, it is not
clustered together with the Program Compilation behavior even
though they use identical utilities (gcc to compile programs
and git to upload files).

In summary, the Representative Behavior Identification
phase clusters similar behavior instances and distinguishes
representative behaviors as signatures.

IV. IMPLEMENTATION

We prototype WATSON in 9.2K lines of C++ code and 1.5K
lines of Python code. In this section, we discuss important
technical details in the implementation.

Log Input Interface. WATSON takes system audit data as
inputs. We define a common interface for audit logs and
build input drivers to support different log formats, such as
Linux Audit [9] formats (auditd [8], auditbeat [7], and DARPA
dataset2). Our drivers can be extended to support other audit
sources, i.e., CamFlow [68] and LPM [17] for Linux, ETW
for Windows, and Dtrace for FreeBSD.

Modular Design. Modularity is one of our guiding principles
in WATSON design. Each module can be freely swapped out
for more effective solutions or application-specific trade-offs in
terms of performance vs. accuracy. Take the Event Semantics
Inference module for example. In our implementation, TransE
is used to learn the embedding space of audit events for its
memory and time efficiency despite the limitation on the types
of relations it can encode [81]. If WATSON users wish, TransE
can be easily replaced with other embedding algorithms (e.g.,
TransR [51]) without affecting WATSON’s functionality.

Knowledge Graph Construction. To construct a log-based
KG, WATSON first sorts audit events in chronological order.
Then, it translates each event into a KG-based triple by using
the system entities as the Head and Tail, and the system
call function as the Relation. To interpret rules for triple
translation, we manually analyze 32 commonly-used system

2To achieve platform independence, audit logs in DARPA datasets are
represented in a Common Data Model (CDM) format [43].

calls, including (1) process operations such as clone, execute,
kill, and pipe; (2) file operations such as read, write, rename,
and unlink; (3) socket operations such as socket, connect, send,
and receive. After parsing audit events into triples, a relational
database (PostgreSQL [11]) is used to store the built KG.
Note that we compute the 64-bit hash value of system entity
identifiers defined in Section III-C as the primary key in the
database. Besides, all the properties of system entities (e.g.,
process name) and relations (e.g., timestamps) are preserved
as attributes of elements in triples.

Parameter Settings. We implement the embedding model in
the Event Semantics Inference module with Google Tensor-
flow [15]. The model is optimized with SGD optimizer, where
the margin, batch size, and epochs are fixed at 1, 1024, and
500, respectively. In terms of hyperparameter, we apply a grid
search: the learning rate and embedding size are tuned amongst
{0.005, 0.010, 0.015} and {32, 64, 128, 256}. Similarly, for
behavior clustering, the merge threshold is searched in {0.7,
0.75, 0.80, 0.85, 0.9}. In light of the best F1 score in our
experiments, we show the results in a setting with learning rate
as 0.010, embedding size as 64, and merge threshold as 0.85.
Note that the merge threshold is a configurable parameter, and
analysts can customize it according to particular scenarios. For
example, the threshold can be decreased to satisfy high true
positive or increased to maintain low false positive.

Behavior Database. We observe that behaviors are recurrent in
the system. New sessions always include behaviors that appear
previously. Therefore, to avoid repetitive behavior analysis,
we label WATSON-generated behavior signatures with domain-
specific descriptions and store them in our database. The
embedding of each behavior quantifying semantics is preserved
as an attribute for behavior objects. Once a new behavior
instance appears, WATSON first computes its cosine similar-
ities with all stored signatures. If no similarity is above the
merge threshold, analysts manually investigate its semantics;
Otherwise, its semantics is retrieved by querying the similar
behavior signature in the database.

V. EVALUATION

In this section, we employ four datasets and experimentally
evaluate four aspects of WATSON: 1) the explicability of in-
ferred event semantics; 2) the accuracy of behavior abstraction;
3) the overall experience and manual workload reduction in
attack investigation; and 4) the performance overhead.

A. Experimental Dataset

We evaluate WATSON on four datasets: a benign dataset,
a malicious dataset, a background dataset, and the DARPA
TRACE dataset. The first three datasets are collected from ssh
sessions on five enterprise servers running Ubuntu 16.04 (64-
bit). The last dataset is collected on a network of hosts running
Ubuntu 14.04 (64-bit). The audit log source is Linux Audit [9].

In the benign dataset, four users independently complete
seven daily tasks, as described in Table I. Each user performs
a task 150 times in 150 sessions. In total, we collect 17
(expected to be 4×7 = 28) classes of benign behaviors because
different users may conduct the same operations to accomplish
tasks. Note that there are user-specific artifacts, like launched
commands, between each time the task is performed. For our
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TABLE I: Overview of tasks with scenario descriptions. Column 3 shows the ground-truth behaviors when completing the tasks.

Task Scenario Description Behavior
U1 U2 U3 U4

Program Submission Upload machine learning programs to a GPU server vim + scp vi + scp emacs+ scp nano + scp
Code Reference Download and compile online programs for reference wget + gcc elinks + gcc wget + python elinks + python

Dataset Download Download and uncompress public datasets wget + gzip wget + bzip elinks + unzip wget + bzip
Program Compilation Write a C/C++ program and testify its functionalities vim + gcc vim + g++ vim + gcc vim + gcc

FTP Server Login Use ssh or ftp services to sign in a FTP server ftp ssh ftp ftp
Package Installation Run apt application to install software packages apt update/install apt update/install apt update/install apt update/install

Package Deletion Run apt application to remove software packages apt purge apt purge apt purge apt purge

TABLE II: Overview of attack cases in our malicious dataset with scenario descriptions.

Attack Cases Scenario Description Reference

Data Theft A malicious script is mistakenly downloaded by a normal user and when being executed it exfiltrates
sensitive information on the local machines PRIOTRACKER [53]

Illegal Storage An attacker creates a directory in another user’s home directory and uses it to store illegal files Taser [30]
Content Destruction An insider tampers with classified programs and documents Taser [30]

Backdoor Installation An attacker compromises a FTP server, invokes a remote bash shell, and installs a backdoor program to
obtain permanent access to the server Protracer [57]

Passwd-gzip-scp An attacker steals user account information from /etc/passwd file, compresses it using gzip and transfers
the data to a remote machine using ssh service Xu et al. [82]

Wget-gcc Malicious source code is downloaded, compiled and executed Xu et al. [82]

Configuration Leakage A downloaded txt file exploits the code executable vulnerability in vim to collect machine configuration
for future compromise preparation CVE-2019-12735 [2]

Passwd Reuse An administrator reads encrypted user password from /etc/shadow file, decodes it with John, and uses
the plaintext to log in on other applications Passwd Reuse [10]

benign dataset, there are 55,296,982 audit events, which make
up 4,200 benign sessions.

In the malicious dataset, following the procedure found in
previous works [2], [10], [30], [53], [57], [82], we simulate3

eight attacks from real-world scenarios as shown in Table II.
Each attack is carefully performed ten times by two security
engineers on the enterprise servers. In order to incorporate the
impact of typical noisy enterprise environments [53], [57],
we continuously execute extensive ordinary user behaviors and
underlying system activities in parallel to the attacks. For our
malicious dataset, there are 37,229,686 audit events, which
make up 80 malicious sessions.

In the background dataset, we record behaviors of devel-
opers and administrators on the servers for two weeks. To
ensure the correctness of evaluation, we manually analyze
these sessions and only incorporate sessions without behaviors
in Table I and Table II into the dataset. For our background
dataset, there are 183,336,624 audit events, which make up
1,000 background sessions.

The DARPA TRACE dataset [13] is a publicly available
APT attack dataset released by the TRACE team in the DARPA
Transparent Computing (TC) program [4]. The dataset was
derived from a network of hosts during a two-week-long red-
team vs. blue-team adversarial Engagement 3 in April 2018.
In the engagement, an enterprise is simulated with different
security-critical services such as a web server, an SSH server,
an email server, and an SMB server [63]. The red team carries
out a series of nation-state and common attacks on the target
hosts while simultaneously performing benign behaviors, such
as ssh login, web browsing, and email checking. For the

3For Illegal Storage and Content Destruction attacks, we leverage different
vulnerabilities (CVE-2019-13272 [3] and CVE-2019-12181 [1]) to implement
privilege escalation because the prior exploits are out-of-date.

DARPA TRACE dataset, there are 726,072,596 audit events,
which make up 211 graphs. Note that we analyze only events
that match our rules for triple translation in Section IV.

We test WATSON’s explicability and accuracy on our first
three datasets as we need the precise ground truth of the event
semantics and high-level (both benign and malicious) behav-
iors for verification. We further explore WATSON’s efficacy in
attack investigation against our malicious dataset and DARPA
TRACE dataset because the ground truth of malicious behaviors
related to attack cases is available to us.

In general, our experimental behaviors for abstraction are
comprehensive as compared to behaviors in real-world sys-
tems. Particularly, the benign behaviors are designed based
upon basic system activities [84] claimed to have drawn
attention in cybersecurity study; the malicious behaviors are
either selected from typical attack scenarios in previous work
or generated by a red team with expertise in instrumenting and
collecting data for attack investigation.

B. Explicability of Event Semantics Inference

We measure what semantics WATSON learns for audit
events both visually and quantitatively: Visually, we use t-
SNE to project the embedding space into a 2D-plane giving us
an intuition of the embedding distribution; quantitatively, for
each triple, we compare the training loss in the TransE model
against our knowledge of event semantics and their similarities.

Embedding of system entities. Each element’s semantics
in events is represented as a 64-dimensional vector, where
the spatial distance between vectors encodes their semantic
similarity. To visualize the distance, we apply t-SNE to project
high-dimensional embedding space into a two-dimensional
(2D) space while largely preserving structural information
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Fig. 5: t-SNE visualization: (a) shows the embedding space of 20 sampled sessions. Each dot denotes a system entity or relation.
The red (left) and green (right) boxes are where (b) and (c) locate; (b) and (c) point out 53 process entities and 25 data entities.

TABLE III: The semantic distance ("surprise" factor) in six
audit events (KG-based triples). B and M indicate whether an
event is benign or malicious.

Head Relation Tail Distance |h + r − t| B/M
bash execve vim 0.4152 B

/usr/include/stdio.h read cc1 0.4273 B
wget send 172.26.X.X 1.6401 B

.ssh/id_rsa read ssh 0.8078 B
vim execve bash 6.2447 M
bash send 172.26.X.X 4.2952 M

among vectors. To manage the complexity, we randomly sam-
pled 20 sessions from the first three datasets for visualization,
obtaining a scatter plot of 2,142 points. Figure 5a shows the
2D visualization of the embedding space. Points in the space
are distributed in clusters, suggesting that events are indeed
grouped based on some metric of similarity.

We further select eight programs (git, scp, gcc, ssh,
scp, vim, vi, and wget) to investigate process element
embeddings. Figure 5b shows a zoom in view of Figure 5a
containing 53 elements corresponding to the eight programs.
For clarity, the elements are labeled with process names and
partial arguments. Note that identity information is erased
during one-hot encoding and thus does not contribute to
semantics inference. While most elements of the same pro-
gram are clustered together, there are a few interesting cases
supporting the hypothesis that the embeddings are actually
semantic-based. For example, git has a few subcommands
(push, add, commit). Git push is mapped closer to
scp and wget instead of git commit and git add.
This agrees with the high-level behaviors where git push
uploads a local file to a remote repository while git add and
git commit manipulate files locally. Another interesting
example involves ssh where two different clusters can be
identified, but both represent ssh connection to a remote host.
Upon closer inspection, we notice that these two clusters, in
effect, correspond to the usage of ssh with and without X-
forwarding, reflecting the difference in semantics.

Similarly, Figure 5c shows the t-SNE plot of 25 data object
elements. As expected, socket connections are separated from
files and clustered through different network ports. Note that
the relatively large distance between socket elements of port
22 is an artifact of the projection by t-SNE. They are actu-

ally close in the pre-projected embedding space as measured
using cosine similarity. Moreover, WATSON groups id_rsa,
id_rsa.pub, and known_hosts together, suggesting that
they share similar functions as identity authentication. How-
ever, id_rsa and id_rsa.pub have different semantics
as they represent private and public key, respectively. TransE
does not identify their differences because both are only
accessed by ssh during SSH Login. One potential approach to
distinguishing them is to involve additional information such
as file permissions for event semantics inference.

Event Semantics. We calculate the translational distance in
KG-based triples to quantify the event semantics learned by
WATSON. This distance can be intuitively thought of as a
measure of how “surprising” one event is, with a lower value
being commonly seen and a higher value being rarely seen.
Some existing approaches [36], [77] leveraged the rareness of
events to measure their anomaly scores. To explore whether
our event semantics is consistent with such heuristics, we
also consider whether events are benign or malicious while
analyzing semantic distances. We classify one event as ma-
licious if it plays a critical role in an attack campaign. This
experiment is performed on 1,000 random events in our mali-
cious dataset. The statistical result shows that the distances in
malicious events are always larger than those in benign events.
This matches our domain knowledge as malicious events
should be considered “surprising” for analysts. Due to space
limitations, we present six events as examples in Table III.
Specifically, (vim, execve, bash) and (bash, send,
172.26.X.X) in the Configuration Leakage behavior result
in much higher distance than other benign events.

In summary, WATSON learns semantics that consistently
mirrors our intuitive understanding of event contexts.

C. Accuracy of Behavior Abstraction

To evaluate WATSON’s accuracy in behavior abstraction,
we use behavior signatures that WATSON learns to predict
ssh sessions in our first three datasets with similar behaviors.
To this end, we select 25 behaviors, including 17 benign
routines in Table I and eight malicious attacks in Table II,
as the abstraction candidates. Due to considerable background
noise, audit events regarding these behavior candidates only
constitute 0.2% of the entire log volume. For each behavior
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TABLE IV: Evaluation results for behavior abstraction in
sessions. Columns 2 reports the number of events in raw
audit logs (AL), KG (after noise reduction), and behavior
signatures (BS). Column 3-5 elaborate the abstraction accuracy
of WATSON on 25 different behaviors in 5,280 sessions. -U#
in column 1 denotes specific users in Table I.

Behavior AL KG BS Recall Precision F1
Program Submission-U1 3256 101 13 92.7% 49.7% 64.7%
Program Submission-U2 3178 98 13 94.0% 50.3% 65.5%
Program Submission-U3 3854 117 28 88.0% 94.3% 91.0%
Program Submission-U4 3208 97 10 89.3% 95.7% 92.4%

Code Reference-U1 3336 131 24 96.7% 91.8% 94.2%
Code Reference-U2 4274 141 27 82.7% 84.3% 83.5%
Code Reference-U3 2915 92 6 93.3% 95.2% 94.2%
Code Reference-U4 3141 105 10 92.0% 93.1% 92.5%

Dataset Download-U1 3361 111 10 98.7% 99.3% 99.0%
Dataset Download-U2 3471 121 10 95.3% 96.6% 95.9%
Dataset Download-U3 3635 116 13 92.7% 97.2% 94.9%

Program Compilation-U1 3229 137 24 96.7% 98.6% 97.6%
Program Compilation-U2 3962 210 103 96.0% 93.2% 94.6%

FTP Server Login-U1 3126 97 5 100% 100% 100%
FTP Server Login-U2 3086 101 8 100% 100% 100%

Package Installation-U1 55610 1243 480 95.3% 97.9% 96.6%
Package Deletion-U1 19595 312 165 90.6% 98.6% 87.5%

Data Theft 409949 9013 26 100% 100% 100%
Illegal Storage 203994 6906 41 100% 100% 100%

Content Destruction 550281 17524 33 100% 100% 100%
Backdoor Installation 310783 40417 75 90.0% 100% 94.7%

Passwd-gzip-scp 280451 5906 13 100% 83.3% 90.1%
Wget-gcc 357449 15928 39 90.0% 100% 94.7%

Configuration Leakage 1144963 101225 116 80.0% 100% 88.9%
Passwd-Reuse 465098 31834 9 100% 100% 100%

Average 153968 9283 52 94.2% 92.8% 92.8%

candidate, we first randomly select one session of it and then
generate the corresponding behavior signature. Next, we use
the signature to predict similar behaviors in the remaining
5,279 sessions. Recall in Section III-F that two behaviors
are considered similar if their cosine similarity is beyond the
merge threshold (0.85). The performance metrics are measured
using Recall, Precision, and F1 scores. Intuitively, they provide
a measure of true-positive rate, false-positive rate, and general
accuracy, respectively. We refer true positives to sessions cor-
rectly predicted with the behavior candidate and false positives
to sessions incorrectly predicted with the behavior candidate.

Table IV provides a summary of the experimental results.
WATSON demonstrates promising results (an average F1 score
of 92.8%) in behavior abstraction. Even for the complicated
behavior, the Code Reference-U2, WATSON still accomplishes
an F1 score of 83.5%. This is because by leveraging contextual
information of audit events, WATSON can reason the semantics
of behavior instances accurately. For example, when compiling
programs with gcc, child processes like cc1 and as will
create, read, and write temporary files for IPC. Such temporary
files are first initialized randomly in the embedding space.
Through their contextual relationships with cc1 and as, WAT-
SON infers that they share similar semantics as the IPC medium
between cc1 and as, and thus enhances their proximity
in the embedding space. Consequently, WATSON boosts the
similarity of Program Compilation instances, although they
access different temporary files at first glance.

Another interesting observation is that the precision is,
in most cases (20/25 in Table IV), higher than or equal to
the recall. The relatively low recall shows that the semantics
of behavior instances can be affected by noisy events even
after using IDF weighting and noise removal. That said, the
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Fig. 6: F1 scores of five different embedding methods in
behavior abstraction.

high precision indicates that the impact caused by such noise
is limited. In particular, we discover that behavior instances
suffering from noisy events can drift away from the original
cluster. However, they will most likely form a new cluster
as false negatives instead of joining the existing one as false
positives. Furthermore, the average precision (92.8%) is lower
than the average recall (94.2%), although the precision is,
in most cases, higher than the recall. This primarily results
from two exceptional cases, the Program Submission-U1 and
Program Submission-U2 (PS1 and PS2 for short). PS1 and
PS2 significantly pull down the average precision because they
are clustered together and continuously recognized as false
positives to each other. In fact, it is reasonable to predict PS2
given PS1 or vice versa as their only difference is using vim
or vi to edit documents. Consequently, WATSON still achieves
behavior abstraction with low false positives.

Next, the abstraction accuracy has no direct relationship
with the size of behavior signatures. For example, although
the Package Installation produces the largest signature, nearly
orders of magnitude larger than others, they manage to achieve
an F1 score of 96.6%, surpassing most cases. However, the
Package Deletion also generates a relatively large size signa-
ture but achieves one of the lowest accuracy (87.5%), which
even falls far behind the average. A plausible explanation is
that WATSON recognizes behaviors by representative patterns,
which do not necessarily coincide with spatial scale. The Apt
Update and Install using gpgv to authenticate keys is a unique
behavioral pattern. On the other hand, the Apt Purge uses
update-motd to examine the number of packets needed
for updates. However, this pattern is also in the Apt Update
and Install, which lowers its distinguishability. Moreover, the
abstraction accuracy does not rely on task types either. For
example, the Code Reference task simultaneously has 94.2%
and 83.5% accuracy for the Code Reference-U1 and Code
Reference-U2 behaviors. This suggests that it is system op-
erations that decide the recognizability of behaviors instead of
the task itself.

Finally, we observe that WATSON exhibits high accuracy at
categorizing malicious behaviors. For all eight attack scenarios,
WATSON can achieve, on average, 95.0% and 97.9% in terms
of recall and precision. In other words, 4 out of 80 malicious
sessions are missed, and 2 out of 5,200 benign sessions
are falsely predicted with malicious behaviors. Analysts can
further improve the recall and finally detect all 80 malicious
sessions by decreasing the merge threshold in HCA. Although
malicious behaviors can be seamlessly blended in background
activities by performing daily routines, most of them, if not all,
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Fig. 7: Statistics of analysis workload (a) and behaviors (b) in our malicious dataset under raw audit logs (AL), KG (noise
removed) and behavior abstraction (WATSON). Each attack case corresponds to ten sessions, and we report the average results.

possess distinct operations. Take for example the Configuration
Leakage and Backdoor Installation attacks. It is not an every-
day occurrence that vim collects system configurations and
sends them out remotely, or ProFTPD invokes a privileged
bash and downloads executable files. Accordingly, WATSON
can recognize malicious behaviors and separate them from
benign ones.

D. Comparison of Different Embedding Methods

To demonstrate the effectiveness in behavior semantics in-
ference, we compare TransE with four other embedding meth-
ods, namely node2vec [31], metapath2vec [24], TransH [81],
and TransR [51]. Before training these embedding models,
we have transformed our encodings of audit events to their
accepted input formats. For example, we define three types of
meta paths (i.e., file to process to file, socket to process to
socket, and process to process to process) for random walks
in the metapath2vec model.

• node2vec: This method defines the context of a node in
the graph based on its local neighborhood. It follows the
intuition that nodes from the same network community
should be mapped closely together in an embedding space.

• metapath2vec: This method treats meta-path based random
walks in a graph as natural language sentences in a corpus.
It then feeds these sentences into a skip-gram model to
learn node embeddings.

• TransH: To address the issue of TransE when modeling
relations that translate one entity to various entities (i.e., 1-
to-N problem, and similarly, N-to-1 and N-to-N problems),
this method extends TransE by introducing an additional
hyper-plane to learn relation embeddings.

• TransR: Unlike TransE and TransH, which assume that
entity and relation embeddings are within a shared space,
this method builds entity and relation in separate spaces. To
train embeddings, it first projects entities from the entity
space to relation space and then calculates translations
among projected entities.

Figure 6 summarizes the behavior abstraction accuracy
of different embedding methods on our first three datasets.
Translation-based embedding methods (i.e., TransE, TransH,
and TransR) consistently outperform the node2vec and meta-
path2vec, which well justifies our design choice of using a
translation-based model to infer contextual semantics. Specif-
ically, the node2vec learns the semantics of elements based
on the behaviors they belong to. Its principle is that elements
from the same behavior share similar roles and thus should

have similar embeddings. However, for audit data, system
entity elements of a behavior are not necessarily similar. For
example, in the Program Compilation behavior, vim and gcc
are semantically irrelevant to each other. Moreover, the meta-
path2vec leverages meta-path based random walks to generate
heterogeneous neighborhoods for different types of elements
(e.g., processes and files). The downside is that it does not
consider relation elements when training the embedding space
for system entity elements. However, we note that relations
are critical to infer system entity semantics. For example,
(bash, read, /etc/passwd) and (bash, delete,
/etc/passwd) indicate completely different semantics for
the bash elements. As such, we hypothesize that this explains
why node2vec and metapath2vec are unable to achieve a
comparable abstraction accuracy as compared to translation-
based methods.

Within three translation-based embedding methods, TransR
slightly outperforms TransE and TransH through separating
the entity and relation embedding space. Notwithstanding, it
incurs a much larger runtime overhead. In our experiment,
the model training time of TransE, TransH, and TransR are
2.13, 3.47, and 5.70 hours, respectively. Different translation-
based methods demonstrate a trade-off between computational
efficiency and predictive accuracy. The fact that TransE and
TransR achieve almost the same accuracy, but TransE is around
three times faster suggests that TransE is more scalable for
long-term log analysis.

E. Efficacy in Attack Investigation

We explore WATSON’s efficacy by empirically measuring
the reduction of analysis workload in attack investigation.
In this paper, analysis workload is quantified as the number
of events an analyst would have to go through to identify
all behaviors in a session. More specifically, events of an
investigation before and after using WATSON refer to raw
audit logs and the sum of events for each behavior signature
identified. Although analysts do not necessarily search through
all related events to recognize a behavior, this metric provides
a reasonable way to demonstrate the proportion of reduced
events due to behavior abstraction. We evaluate WATSON
against our simulated malicious dataset, which includes eight
attack scenarios in Table II, as well as the DARPA TRACE
dataset, which includes five real-life APT attacks.

1) Evaluation on malicious dataset: Figure 7b summarizes
the resulting analysis workload reduction in our malicious
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Fig. 9: Statistics of analysis workload and behaviors in DARPA
TRACE dataset under raw audit logs (AL), KG (noise removed)
and behavior abstraction (WATSON).

dataset. As a comparison, we also present intermediate work-
load reduction by removing noisy events defined in Sec-
tion III-E. Combining the results in Table IV with Figure 7b,
we notice that WATSON significantly decreases analysis work-
load without sacrificing the accuracy of attack investigation.
In the analysis of eight attack scenarios in 80 malicious
sessions, WATSON shows two orders of magnitude (up to 284
times, with 134 times on average) workload reduction. We
also see a massive reduction in the number of behaviors, as
shown in Figure 7a. This is predictable as there are always
more behavior instances than representative behaviors in a
session, and WATSON can group them to prevent duplicate
investigations.

To gain further insights, we study behavior abstraction of
two attack cases from Table II: the Configuration Leakage
and Content Destruction. Their audit events are visualized in
Figure 8a and Figure 8b. We color-code information flows
summarizing behavior instances.

Configuration Leakage. In this attack case, an attacker
leverages the code executable vulnerability in vim to collect
machine configuration for future compromise preparation. The
background scenario is that one AI engineer in an enterprise
intends to develop an image recognition model. She first
downloads the training dataset from the company website
as it cannot be found on the internal file server. Next, she
implements and evaluates the learning model by submitting
data and codes to a GPU server specialized for machine
learning. Meanwhile, she uses elinks to search online about
model optimization. Unfortunately, one malicious text file is
mistakenly downloaded for her reference. The file successfully

bypasses the prefix check in vim, invokes a bash to collect
machine configuration, and further transfers the information
remotely. To improve image prediction accuracy, the engineer
frequently seeks model optimization techniques online, which
introduces a bunch of noisy events.

As shown in Table IV, WATSON accurately recognizes
the Configuration Leakage from other launched common be-
haviors. It can distinguish this behavior due to two reasons:
(1) Collecting and transferring machine configurations is a
unique behavioral pattern compared with daily routines like
material download and code submission; (2) The (vim, fork,
bash) triple is assigned high importance weight due to its low
frequency in the system. Any behavior instance containing it
would significantly deviate from the rest. Furthermore, WAT-
SON clusters redundant behaviors like the Training Program
Submission and the Online Material Reference, thus efficiently
reducing analysis workload by avoiding duplicate inspection.

Content Destruction. This attack is an insider threat. Through
a downloaded malicious payload, an attacker first exploits
the Serv-U FTP local escalation vulnerability to invoke a
privileged bash. After a successful initial compromise and
foothold establishment, he discovers a directory of classified
projects. However, the firewall blocks remote file transfer, so he
decides to randomly tamper with completed programs. Since
the knowledgeable insider is aware of the deployed IDS, he
simulates an extensive number of ordinary activities to disguise
himself as a regular developer, such as compiling programs
and receiving daily tasks. Therefore, although IDSs generate an
alert for this session, the attacker still wastes analysts intensive
labor and time to pinpoint all behaviors and reconstruct attack
scenarios. Traditionally, an analyst would have to investigate
all the behaviors in a session to verify the truth of alerts
reported by IDSs and explore other potential threats. To do
so, a total of 550,281 audit events, where most are noisy
information, are manually inspected. Fortunately, because most
noisy behaviors incorporated by the insider to bury attack
footprints are redundant, WATSON can efficiently assemble
them and save analysis workload by 284 times. For instance,
multiple Program Compilation instances are substituted with
one behavior signature for analysis. We find WATSON partic-
ularly effective in insider threat investigation, which primarily
credits to its capability of clustering benign behaviors.

2) Evaluation on DARPA TRACE dataset: According to
the ground truth in the DARPA TC program report, DARPA
TRACE dataset contains five attack scenarios, namely Fire-
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TABLE V: Overview of attack cases in DARPA TRACE dataset with scenario descriptions. Column 3 shows the root data objects
of malicious behaviors. Column 4 and Column 5 reports the number of nodes and edges in behaviors.

Attack Cases Scenario Description Root Node Edge

Firefox
Backdoor

A malicious ad server exploits Firefox to execute an in-memory payload. This provides a remote
console to exfiltrate sensitive information. A cache process is exploited and displayed similar
behaviors as the compromised Firefox.

passwd 233 688

Browser
Extension

The attacker exploits a target host via a vulnerable browser-plugin pass-mgr. The compromised
plug-in downloads and executes a malicious program, which scans ports for internal recon and
exfiltrates sensitive information.

gtcache 895 1750

Pine
Backdoor

Pine is compromised by a malicious executable to scan ports for internal recon and establish a
connection to the attacker’s machine. tcexec 67355 67453

Phishing
Executable

The attacker sends a malicious executable as an e-mail attachment to exploit a vulnerability
in Pine. However, the attack fails to run as expected even though the user manually downloads
and executes the executable.

tcexec 22 23

Fig. 10: Malicious behaviors of four APT attacks in DARPA TRACE dataset.

fox backdoor with Drakon in-memory (Firefox Backdoor for
short), browser extension with Drakon dropper (Extension
Backdoor for short), Pine backdoor with Drakon dropper (Pine
Backdoor for short), phishing email link, and phishing email
with executable attachment (Phishing Executable for short).
We note that the phishing email link attack is by nature not
visible in the system-call audit logs as there is no subsequent
system operation on the victim’s machine after the user visits
the phishing website and enters credential information [39].
Therefore, we have omitted this attack from behavior analysis
and investigate only the remaining attacks described in Ta-
ble V. The details of these attacks’ roots are shown in Table VI.

Figure 9 presents the reduction of analysis workload and
behaviors for attack investigation in the DARPA TRACE
dataset. As we can see, WATSON significantly decreases the
analysis workload by around 930 times. Besides, the reduced
behaviors indicate that WATSON can cluster semantically simi-
lar behaviors and help security analysts to stay focused on the
inspection of representative behaviors. To better understand
WATSON’s efficacy, we then look into the behavior clusters
related to APT attacks in Table V. Our analysis reveals
that for three (i.e., Extension Backdoor, Pine Backdoor, and
Phishing Executable) of four APT attacks, WATSON success-
fully summarizes the corresponding malicious behaviors in
Figure 10, which match the ground truth provided. Moreover,
our summarized malicious behaviors are generally comparable
to attack scenarios constructed by existing work (e.g., MORSE
[39]) that also investigates the DARPA TRACE dataset. Upon
closer inspection of the remaining Firefox Backdoor attack,
we discover that the data provenance of cache process
(PID 26317) is missing in the original dataset. Accordingly,
WATSON only captures the second part of the attack: a cache
process exfiltrates sensitive information remotely.

Moreover, we observe that high-level behaviors of suc-
cessful APT attacks are all abstracted as separate clusters.
That is, no benign behavior is falsely classified as attacks. As
an example of the Extension Backdoor attack in Figure 10,
the attacker first compromises a vulnerable password man-
ager extension in Firefox to implant an on-disk malicious
program, gtcache. Then, the attacker executes the program
to exfiltrate sensitive information (e.g., /etc/passwd) to
the public network and perform a port scan of target hosts
(e.g., 128.55.12.73) on the internal network. We note that
scanning ports and exfiltrating data are quite different from
running common utilities in terms of contextual semantics.
Specifically, the port scan for internal reconnaissance typically
involves thousands of network connections to local network
hosts. As a result, any behavior containing the port scan is
labeled with different semantics from daily behaviors and
constitutes a separate cluster. Another discovery is that the
Extension Backdoor attack would be clustered together with
the Pine Backdoor attack if we decrease the cluster merge
threshold from 0.85 to 0.75. This is expected because both
APT attacks leverage a command and control agent to scan
network ports — a particularly unique behavioral pattern. It is
also worth noting that the cluster of Phishing Executable attack
includes normal behaviors unrelated to APT attacks. This
matches our domain knowledge as Phishing Executable attack
fails to exploit Pine’s vulnerabilities and just demonstrates the
user downloading and executing an email attachment, which
is normal compared to regular email checking behaviors.

We further study what benign behaviors are clustered by
WATSON. For reasons of space, we present two benign clusters,
Syslog Rotation by Gzip (Syslog Rotation for short) and SSH
Login with MOTD (SSH Login for short), in Figure 11.
Syslog Rotation behavior is a common system routine that
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TABLE VI: Root data objects of attack cases in DARPA TRACE dataset. Column 2 and 3 shows the name and UUID of roots.
Column 4 represents the graph where WATSON locates malicious behaviors in Figure 10.

Attack Cases Name UUID Graph
Firefox

Backdoor /etc/passwd C13A910B-8966-7C95-549F-6EACF06F2429 ta1-trace-e3-official.json.125

Browser
Extension /etc/firefox/native-messaging-hosts/gtcache 17498F61-1D2A-DEB2-F6E5-EB447ABF4A60 ta1-trace-e3-official-1.json.3

Pine
Backdoor /tmp/tcexec 7169B097-1601-297F-2F6E-CEF5924F1C68 ta1-trace-e3-official-1.json.4

Phishing
Executable /home/admin/Desktop/tcexec BBC43AE7-8DF9-49DD-44A0-030EEC564E84 ta1-trace-e3-official-1.json.4

Fig. 11: Syslog Rotation and SSH Login behaviors in DARPA TRACE dataset.

compresses system logs (/var/log/syslog.1) to prevent
them from growing too large on disk. In our experiment,
WATSON summarizes five Syslog Rotation behaviors in one
cluster with no false positive. The signature of Syslog Rotation
cluster includes eight nodes and ten edges. SSH Login behavior
displays the Dynamic Message Of The Day (MOTD) when a
user logs in to the system through ssh. WATSON in total
captures 16 of SSH Login behaviors in one cluster with four
false positives. The signature of SSH Login cluster includes
13 nodes and 198 edges. Note that we cannot verify whether
WATSON misses any true-positive benign behavior as the
ground truth is unknown to us.

In summary, our results show that WATSON can cluster
similar behaviors to reduce analysis workload while not losing
accuracy in attack investigation. It is also worth mentioning
that even though WATSON effectively abstract behaviors, large-
scale benign behaviors may still cause trouble for analysts
as individual behavior signatures from benign clusters require
manual inspection. One approach to mitigating this problem is
to borrow ideas from anomaly detection systems. For example,
we can extract the signatures from a comprehensive benign
dataset and report only deviations to analysts.

F. System Performance

We measure WATSON’s performance overhead for behavior
abstraction in our malicious dataset and the DARPA TRACE
dataset. The scale and magnitude of these two datasets are
generally comparable with that of daily user data. The on-disk
sizes of a session in the malicious dataset and a graph in the
DARPA TRACE dataset are on average 420 MB and 3 GB,
respectively. We conduct the experiments on a Linux server
with Intel(R) Core(TM) i9-9900X CPU @ 3.50GHz and 64GB
memory. The Operating System is Ubuntu 18.04.4 LTS.

In this setting, WATSON abstracts behaviors from a mali-
cious session and a DARPA graph within 35 and 170 seconds,
respectively. We do not include the runtime overhead of KG
construction, as it largely depends on audit logs’ volume.
However, we show that WATSON can parse 40k audit events
in the default auditbeat format and build the KG within one

second. Construction of the KG in the DARPA TRACE dataset
format [43] is faster, operating at about 70k per second. Our
current implementation loads audit events from disk and runs
the experiments on a single machine using a single thread. The
system efficiency can be further improved by main memory
storage [38] and distributed graph processing [58]. Moreover,
the constructed KG and abstracted behaviors represent the
majority of WATSON’s runtime memory overhead. While ana-
lyzing our malicious dataset (33 GB) and the DARPA TRACE
dataset (635 GB), the memory consumption increases up to 2.6
GB. The storage overhead mainly comes from the audit events’
embeddings and behavior database, which is on average 18
MB (10 MB for embeddings and 8 MB for behaviors) for
a malicious session and 121 MB (78 MB for embeddings
and 43 MB for behaviors) for a DARPA graph. We note that
storage overhead does not increase linearly with the increase of
sessions or graphs because events are recurrent on the system.

VI. DISCUSSION

In this section, we will introduce some of the design
choices, implications, and possible extensions to this work.

Benefit for Related Solutions. Related security tools on log
analysis require intensive manual efforts to develop knowledge
in understanding audit events. WATSON acts as an “assistant”
to these solutions for analysis workload reduction. In fact,
half of the efforts of defining domain knowledge can be
performed automatically. We can use procedural analysis to
identify behavioral patterns and cluster similar ones via a
quantitative representation of behavior semantics. Therefore, it
is relatively easy for an analyst to investigate the representative
behavioral patterns (i.e., behavior signatures) from clusters and
provide domain-specific labels. Specifically, behavior signa-
tures in our behavior database can be taken as the inputs to
related security tools. For example, if TGMiner [35] applies
WATSON to extract behavior signatures before formulating
behavior queries, significant analysis efforts would be saved
from labeling behaviors of interest in training logs, given that
benign or redundant behaviors have been clustered. With the
assistance of WATSON, MORSE [39] only needs to initialize
tags for representative system entities (e.g., one of IPC files)
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rather than the whole entity space. In addition, WATSON
uncovers event semantics indicating how “surprising” an event
is for security analysis. This helps to reduce human workload
in defining TTP specifications, as “unsurprising” (e.g., benign)
events are identified before analysts extract attack patterns.

Embedding Space Retraining. Common to most learning
approaches using embedding techniques [67], WATSON needs
to retrain the embedding space periodically due to semantics
shifts and the inclusion of previously unseen data. That said,
our choice of a computationally efficient embedding model
(TransE) helps to mitigate the overheads incurred by such
retraining. Empirically in our experiments, we observe that
WATSON typically retrains the embedding model on one daily
session within 25 seconds. Especially, we can further leverage
NLP techniques [19], [44], [69] to learn the semantics of "out-
of-vocabulary" (unseen) audit events from their morphological
information (e.g., file path) so that WATSON does not neces-
sarily retrain the whole embedding space.

Robustness of Behavior Abstraction. To evade the behavior
abstraction, an attacker may attempt to obfuscate a behavior
by intentionally introducing irrelevant events. However, the
impact of such events on behavior semantics is limited. In Sec-
tion III-E, we design two strategies (relative importance and
noise events) to improve WATSON’s robustness for behavior
abstraction. Specifically, while WATSON aggregates behaviors’
contextual semantics, irrelevant events would be assigned low
importance weights or even removed as noise events. Another
potential approach to deobfuscating behaviors is to incorporate
additional side information (e.g., semantically-rich arguments
of audit events) into WATSON’s KGs. We believe this can give
WATSON more capabilities to sift through uninteresting events
for security analysis. We acknowledge that more advanced
techniques could be used to mimic normal behaviors. Nev-
ertheless, mimicry attack detection itself is an open research
problem [76] and beyond the scope of this study.

VII. RELATED WORK

Causality Analysis. Causality analysis is an orthogonal but
important problem relating to behavior abstraction. King and
Chen [45] first introduce building a dependency graph on
system audit logs to track back from a given security incident
and locate its root cause. King et al. [46] improve the causality
tracking by capturing forward and cross-host dependencies. A
large number of research efforts have been further made to
mitigate the dependency explosion problem and high storage
overhead in causality analysis. Recent work has proposed fine-
grained unit partition [49], [54], [56], [57], [73], dynamic taint-
ing [66], [83], modeling-based inference [47], [48], record-
and-reply [41], [42], and universal provenance [37] techniques
to achieve more precise causality tracking. Another line of
research strives to decrease overall log volume for analysis
by graph compression [21], [34], [38], [40], [75] and data
reduction [50], [57], [82]. Although the scope of WATSON
is different from these solutions, its effectiveness relies on
accurate causality analysis when correlating data transfers to
summarize behaviors.

Behavior Abstraction. Abstracting behaviors as graph pat-
terns or causal dependencies has proved useful in under-
standing OS-level activities and detect potential threats and

risks. TGMiner [84] mines discriminative graph patterns from
behaviors of interest and use them as templates to identify
similar behaviors. Based on cyber threat intelligence reports,
POIROT [62] extracts query graphs for APT behaviors and
presents an alignment algorithm to search for their existence
in provenance graphs. HOLMES [63] and RapSheet [35] view
multi-stage attacks as a chain of causal events that match
TTP specifications. SLEUTH [38] and MORSE [39] propose
tag policies to model information leakage behaviors. Compared
with prior work, we abstract behaviors as embeddings (numeric
vectors) based on contextual information. Our findings suggest
that this quantitative representation of behaviors can preserve
behavior semantics and enable advanced behavior analysis
(e.g., similar behavior clustering).

Embedding-based log analysis. Extensive literature exists
on applying embedding techniques for other log analysis
tasks. Such tasks include anomaly-based IDS [22], [25],
[33], [52], [60], malware identification [18], [77], [78] and
cyberattack evolution understanding [72]. Much prior work
uses machine learning models such as neural networks, word
embedding, and n-grams to embed logs into vectors. For
example, DeepLog [25] is a neural network-based approach
that leverages a long short-term memory (LSTM) to learn exe-
cution patterns in streams of normal log entries. PROVDETEC-
TOR [77] applies a neural word-embedding model, doc2vec,
to quantify behaviors of processes running on the system.
Similarly, ATTACK2VEC [72] leverages a temporal word-
embedding model to quantify the context in which cyberattack
steps are exploited over time. On the contrary, WATSON first
proposes employing a translation-based embedding, TransE, to
uncover the contextual semantics of audit events. Our principle
of using TransE is its translational distance matching our
knowledge of event usage context. UNICORN [33] presents a
graph sketching algorithm to summarize long-running system
executions. Essentially, it makes use of statistical properties of
graphs to represent semantic information, which is different
from our contextual semantics learning approach.

VIII. CONCLUSION

Abstracting high-level behaviors from low-level audit logs
is a key task in security response. It helps to bridge the seman-
tic gap between audit events and system behaviors and thus
reduce human efforts in log analysis. In this paper, we propose
an automated approach, WATSON, to abstract behaviors from
audit logs. WATSON addresses two primary challenges in event
semantics inference and behavior summarization and aggrega-
tion. Specifically, WATSON leverages contextual information
in log-based knowledge graphs to enable semantics inference.
To distinguish representative behaviors, WATSON provides a
vector representation of behavior semantics and uses it to
cluster semantically similar behaviors. We evaluate WATSON
against both behaviors simulated from real-life cyber attacks
as well as behaviors of an adversarial engagement organized
by DARPA. Our experimental results show that WATSON can
accurately abstract both benign and malicious behaviors and
dramatically reduce manual workload in attack investigation.
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