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Here, we face a challenging problem. To achieve complete
security from untrusted software, it is well known that TEE
software must be hardened to block a plethora of microarchi-
tectural side channels (e.g., [14], [81], [90], [93]). Yet, existing
software-based techniques to block these channels—coming
from a rich line of research in data-oblivious/constant-time
programming [11], [25], [66], [75]—fall short of protecting
existing high-level language stacks such as R, Ruby and
Python. Specifically, these techniques typically require experts
to manually code core routines [11], [12], require the use of
custom domain-specific languages [16], [79], or only apply to
close-to-metal compiled languages [66], [75]. Modern high-
level languages, however, require complex stacks to support
interpreted execution, just-in-time compilation, etc. As a case-
in-point, the popular R stack features almost a million lines of
code written in a combination of C, Fortran, and R itself [74].
Subtle issues in any of this code create security holes.

The goal of this paper is to extend data-oblivious/constant-
time techniques to apply to existing high-level, interpreted
languages, thus enabling TEE-level security for non-experts.
The key strategy and insight is this: if key observable features
of a computation are truly independent of sensitive data, then
that computation can be carried out with a collection of stand-
ins for the data. We call these stand-ins “pseudonyms”.

To exploit this idea we perform computation in two
phases. In the first phase, we run the target computation
on pseudonyms in the chosen high-level language, like R
or Python. Since there is no sensitive data present, this
stage cannot leak sensitive information. We instrument the
programming stack so that this evaluation on pseudonyms
outputs what we call a “Data-Oblivious Transcript (DOT)”.
The DOT is akin to a straight-line code representation of the
original program, i.e., the transcript of operations performed
when the program is evaluated on the pseudonyms. In the
second phase of our computation, we evaluate the DOT on
a small Trusted Computing Base (TCB) that runs within a
TEE. This TEE contains the sensitive data, which is used
in place of the pseudonyms. Protecting sensitive data after
the DOT is constructed is relatively straightforward. Since
the DOT is similar to straight-line code, the TEE need only
apply simple transformations to evaluate it in a data-oblivious
fashion on real hardware. In the worst case, where the original
computation was actually data dependent on the pseudonyms,
the resulting computation in the TEE may be functionally
incorrect but leaks no sensitive information.

Conceptually, the DOT plays a role similar to a compiler
intermediate representation. Our approach can be characterized
as a frontend translating high-level evaluation to the DOT and
a backend evaluating the DOT data-obliviously, on sensitive

Abstract—Users can improve the security of remote commu-
nications by using Trusted Execution Environments (TEEs) to 
protect against direct introspection and tampering of sensitive 
data. This can even be done with applications coded in high-
level languages with complex programming stacks such as R, 
Python, and Ruby. However, this creates a trade-off between 
programming convenience versus the risk of attacks using mi-
croarchitectural side channels.

In this paper, we argue that it is possible to address this 
problem for important applications by instrumenting a complex 
programming environment (like R) to produce a Data-Oblivious 
Transcript (DOT) that is explicitly designed to support compu-
tation that excludes side channels. Such a transcript is then 
evaluated on a Trusted Execution Environment (TEE) containing 
the sensitive data using a small trusted computing base called the 
Data-Oblivious Virtual Environment (DOVE).

To motivate the problem, we demonstrate a number of 
subtle side-channel vulnerabilities in the R language. We then 
provide an illustrative design and implementation of DOVE for 
R, creating the first side-channel resistant R programming stack. 
We demonstrate that the two-phase architecture provided by DOT 
generation and DOVE evaluation can provide practical support 
for complex programming languages with usable performance 
and high security assurances against side channels.

I. INTRODUCTION

Recent commercially-available Trusted Execution Envi-
ronments (TEEs) such as Intel SGX [28], [47] and ARM 
TrustZone [4] have enabled significant progress towards the 
outsourcing of secure computation. Consider for example three 
competing drug companies investigating genomic factors for 
bipolar disorder. These companies would like to share their 
proprietary genome data and run a controlled study that 
releases only agreed-upon information to the three participants. 
TEEs enable such use cases, without requiring trust in remote 
administrator software stacks such as operating systems, using 
a combination of hardware-level isolation and cryptographic 
mechanisms.

The long-term vision pursued by TEE-based software sys-
tems (e.g., [10], [20]) is to bring TEE-level security to the 
masses where it can be used by data scientists familiar with 
existing high-level languages such as R, Ruby, and Python, but 
who may not have much background in security [17].
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data. A key benefit of this decoupled approach is that only the
backend (importantly, not the frontend) is part of the TCB.
This provides a powerful strategy for protecting complex,
high-level programming stacks against side channel attacks. In
addition to a reduced TCB, the decoupling provides modularity
and extensibility benefits similar to those found in modern
compilers. For example, to add support for a new high-level
language, we need only change frontend code. Likewise if a
security vulnerability is found in the TEE, or we wish to deploy
different TEEs to protect execution for different processor
microarchitectures, we need only change backend code.

Putting it all together, we design and implement an instance
of the above architecture, called the “Data-Oblivious Virtual
Environment (DOVE)”. As a proof-of-concept, we develop
a DOVE frontend that translates programs written in the R
language to a DOT representation and design a backend that
evaluates the DOT on sensitive data inside of an Intel SGX
enclave.

To validate DOVE, we show how to support a third-party
library of genomics analysis algorithms written in R [18],
which we call the evaluation programs. Out of 13 evaluation
programs, DOVE can run 11 of them, with these 11 totaling
326 lines of R code. For 10 of the 11 above programs, our
frontend can automatically convert the unmodified R program
into the DOT language; converting the remaining case required
manual user intervention because of a programming construct
not yet supported by our frontend. We collect performance
benchmarks on these programs with a real-world genomic
dataset consisting of three populations of honeybees [8].

Summary of contributions.

1) We identify a number of subtle side-channel vulnerabili-
ties in the R language.

2) We design DOVE, the first architecture that runs exist-
ing high-level interpreted languages and is demonstrably
resistant to side channels.

3) We provide an implementation of DOVE for R, creating
the first side-channel resistant R programming stack.

4) We evaluate the security and performance of DOVE
against evaluation programs drawn from the genomics
literature. Relative runtime overheads of DOVE against
vanilla R on these programs range from 12.74× to
341.62×.

Source code for the DOVE frontend and backend prototype
is available at https://github.com/dove-project.

Finally, the extended version of this paper [52] additionally
includes 1) a grammar for the DOT language, 2) more details
on the evaluation programs and 3) more details regarding the
use of the Intel Performance Counter Monitor (PCM) APIs for
our security evaluation.

II. BACKGROUND

A. Programming in R

R is a statistical language that provides convenient inter-
faces for computations on arrays and matrices. Most function
calls including primitive operators like addition and subtraction
perform element-wise operations on array-like values. Figure 1

is an R code example from our evaluation programs that
includes such operations.

Computation in R. R is an interpreted language [74], and its
interpreter is written mostly in C and to a lesser extent Fortran
and R itself. Every object is represented with a symbolic
expression (S-expression) [61] such that interpreter parses
R statements into S-expressions. The S-expressions are then
evaluated and dispatched to the corresponding library functions
written in C. Each C function runs on hardware as a compiled
binary object. Thus, analyzing code written in R is more
complex than analyzing code that is directly compiled and run
on hardware (e.g. C, C++).

Not Applicable (NA). R represents null-like, empty values
with NA, the representation of which depends on the datatype.
A real-valued S-expression in R is represented with a IEEE
754 double; NA_REAL is defined with the special double
value NaN with a specific lower word (1954). The interpreter
treats NA differently from other values, even from NaN. Integer
and logical (i.e., boolean) S-expressions are implemented with
an int type, so R reserves the lowest integer value INT_MIN
for the representation of NA_INTEGER and NA_LOGICAL.

S3 method dispatch. The most common object-oriented
programming system in R is S3 method dispatch. For
each function call on an object, the S3 object system
calls the correct method associated with that object. For
example, for print(x), when x is a scalar, S3 calls
print.numeric(x); when x is a matrix, S3 calls
print.matrix(x) instead. A programmer who wishes to
add their custom type myObject to print would define
a function print.myObject(x). This paradigm makes it
easy to supply new types of objects to existing functions,
making the differences in implementation transparent to the
end user. S3 is the OOP system used in the base R, making it
especially useful to override commonly used functions.

B. Microarchitectural Side-Channel Attacks

Microarchitectural (shortened as “µArch”) side-channel
attacks are a class of privacy-related vulnerabilities where a
sensitive program’s hardware resource usage leaks sensitive in-
formation to an adversary co-located to the same (or a nearby)
physical machine [38]. Over the years, numerous hardware
structures—a variety of cache architectures [71], [94], [96],
[97], branch predictors [1], [34], pipeline components [3], [5],
[43] and other structures [33], [42], [64], [73], [90], [93]—
have been found to leak information in this way. Many of these
attacks require that the attacker only share physical resources
with the victim (e.g., Prime+Probe and the cache [60], [71] or
Drama and the DRAM row buffer [73]), as opposed to sharing
virtual memory with the victim (e.g. [96]).

C. Enclave Execution and Intel SGX

Enclave execution [84], such as with Intel SGX [47], pro-
tects sensitive applications from direct inspection or tampering
from supervisor software. That is, the OS, hypervisor and other
software are considered to be the attacker [14], [41], [45],
[65], [70], [75], [78], [81], [90], [98], who will be referred
to as the SGX adversary for the rest of the paper. To use
SGX, users partition their applications into enclaves at some
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interface boundary. For example, prior work has shown how
to run whole applications with a LibOS [10], [20], contain-
ers [80], and data structure abstractions [78] within enclaves.
At boot, hardware uses attestation via digital signatures to
verify the user’s expected program and input data are loaded
correctly into each enclave. Isolation mechanisms implemented
in virtual memory protect enclave integrity and confidentiality
during execution.

SGX uses the Enclave Page Cache (EPC) to store enclave
application code and data. The EPC is stored in a protected
region of memory known as Processor-Reserved Memory
(PRM). The processor prevents other system components from
reading the PRM with the help of another component, the
Memory Encryption Engine (MEE), that provides encryption
and integrity protection for the PRM [62]. The EPC has a fixed
size of 64 or 128 MB, shared among all enclaves [49]. For
applications requiring more memory, SGX uses an EPC paging
mechanism supported by the SGX OS driver. Specifically,
the OS can move pages out of/into the EPC and manipulate
them as if they were regular pages from a demand-paging
perspective. For security, pages moved out of/into the EPC are
transparently encrypted/decrypted and integrity checked by the
SGX hardware [47], [62].

Side-channel amplification. Despite providing strong virtual
isolation, SGX enclave code is still managed by untrusted
software. Prior work has shown how this exacerbates the side-
channel problem described in Section II-B.

First, SGX does not provide any physical isolation. Thus,
nearly all of the µArch side-channel attacks discussed in
Section II-B immediately apply in the SGX setting.

Second, importantly, the OS-level attacker has significant
control over the enclave’s execution and the processor hard-
ware and thus can orchestrate finer-grain, lower-noise attacks
than would otherwise be possible. For example, controlled
side-channel attacks [93] and follow-on work [90] provide a
zero-noise mechanism for an attacker to learn a victim’s mem-
ory access pattern at page (or sometimes finer) granularity. A
line of work has further shown how the attacker can effectively
single-step, and even replay, the victim to measure fine-grain
information such as cache access pattern and arithmetic unit
port contention [14], [41], [44], [45], [65], [81], [88].

D. Data-Oblivious Programming

Data-oblivious (sometimes called “constant-time” in the
hardware setting) programming is a way to write programs
that makes program behavior independent of sensitive data,
with respect to the side channels discussed in Section II-B [2],
[5], [11]–[13], [16], [19], [25], [30]–[32], [36], [59], [59],
[63], [66], [67], [70], [75], [78], [79], [82], [83], [87], [91],
[99]–[101]. In the hardware setting, what constitutes data-
oblivious execution depends on the intended adversary. In the
SGX setting, we must assume a powerful adversary that can
monitor potentially any µArch side channel as described in
Section II-C.

Thus, prior works that try to achieve data obliviousness
in an SGX context [2], [32], [36], [63], [70], [75], [78],
[79], [101] implement computation using only a carefully

chosen subset of arithmetic operations (e.g., bitwise oper-
ations), conditional moves, branches with data-independent
outcomes, jumps with non-sensitive destinations, and memory
instructions with data-independent addresses. For example, an
if statement with a sensitive predicate is implemented as
straight line code that executes both sides of the if and
uses a data-oblivious ternary operator (such as the x86 cmov
instruction or the CSWAP operation) to choose which result
to keep.

III. THREAT MODEL

In this paper we consider a setting where one or more
users submit data to an untrusted server that computes on
said data in a high-level language such as R. The server
hosts SGX as well as a regular software stack outside of
SGX. The user(s) and SGX hardware mechanism are trusted.
The program computing on user data, like the R interpreter
and evaluation programs, is assumed to be non-sensitive. No
software running on the remote host outside of an SGX
enclave is trusted—this includes the supervisor software stack,
disks, the connection between client and server, and the other
hardware components besides the processor hosting SGX. Per
the usual SGX threat model (Section II-C), we assume the
OS is compromised and may run concurrently on the same
hardware, such as in adjacent hyperthread/SMT contexts, on
neighboring physical cores, etc.

Security goal. Our goal is to prevent arbitrary non-SGX
enclave software from learning anything about the users’ data,
other than non-sensitive information about the data such as its
bit length. Given SGX’s architecture, this implies protecting
user data from leaking over arbitrary non-speculative µArch
side channels (Section II-B), given the powerful SGX ad-
versary described in Section II-C. This is formalized in our
security analysis (Section VII).

Security non-goals. We do not defend against hardware
attacks such as power analysis [51], EM emissions [68],
compromised manufacturing (e.g., hardware trojans [95]), or
denial of service attacks. Also, our current implementation
does not have mechanisms to mitigate speculative execution
attacks [50] beyond default SGX protections (e.g., flushing
branch predictor state on context switches [24]). If additional
protection is needed, our backend (an SGX enclave) can be re-
compiled with a software-level protection such as speculative
load hardening [40].

Functional correctness. While we designed DOVE to pre-
serve semantic equivalence (functional correctness) between
the input high-level program and output DOT plus its subse-
quent execution, we do not have a formal proof that our imple-
mentation does indeed preserve semantic equivalence. This is
in line with other data-oblivious compilation frameworks (e.g.,
[59]) and we consider such end-to-end verified compilation to
be important future work. Note that even if the DOVE frontend
has bugs, leading to functionality- or security-related issues,
our security guarantee in Section VII still holds.

Note, when we refer to trusted computing base (TCB) we
mean the DOVE software that must function as intended—
i.e., be free of logic bugs and control-flow hijacking
vulnerabilities—for security to hold.
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IV. ATTACK EXAMPLES

A major problem this paper addresses is how to protect R
programs from the SGX adversary. As a starting point, imagine
we try to run secure R code by moving the whole R stack
into the SGX enclave (which is the approach taken by prior
work [10], [20]). We demonstrate subtle µArch side-channel
attack vectors that come up in this approach, using the code
snippet in Figure 1 as a guiding example. This code is found
in 4 of 13 evaluation programs that form a public repository of
code for genomics research. Three additional programs from
these evaluation programs feature a similar snippet. We explain
what these programs are in Section VIII-B. The program takes
as input a set of samples made up of diploid Single Nucleotide
Polymorphisms (SNP) sequences and outputs the number of
samples that express a given genotype for each SNP position.
We use R version 3.2.3 to illustrate these attack examples.

A. Example Walkthrough

The program represents the database of samples as geno,
an m by n matrix, where each column is one of n samples,
each of which has m SNP positions. Each position in the
matrix has a genotype, denoted as an integer 0, 1 or 2. The
sensitive data is the contents of geno, namely which genotype
each SNP is for each sample. The matrix dimensions (m and
n) are non-sensitive.

Computationally, the code works as follows. Line 1 san-
itizes the input database: any entry that is not one of the
three allowed genotypes is replaced with the special value
NA (Section II-A). This occurs in real data due to noise in
the sequencing process; in particular, 1.5% of the SNP entries
in the honeybee dataset that we use in Section VIII-B are
marked as NA. The code first computes element-wise filters
geno != 0, geno != 1, geno != 2, each of which pro-
duces a matrix of booleans (a mask) indicating whether the
condition is satisfied for each SNP position in each sample.
The logical AND (&) performs element-wise AND of these 3
masks (producing a new mask) which is used to conditionally
assign elements in geno to NA. Then, the code in Lines 3–
5 produces three vectors n0,n1,n2, where R “applies”
the sum() function on each row (specified by the second
argument 1) such that each vector is the count (sum on rows)
of the number of samples that express each genotype.

Given the above code, the adversary’s goal is to learn the
genotype at each SNP position—that is, whether the value
of each cell in geno is 0,1,2 or NA. Importantly, given
no additional information about R’s implementation, the R-
level code in Figure 1 follows guidelines for achieving data-
obliviousness (Section II-D), which would seemingly prevent
leaking the above information. For example, it applies simple
arithmetic/logical operations element-wise over matrices of
non-sensitive size, performs a count over a subset of samples
with a non-sensitive length, etc. Yet, as we now show, this
code nonetheless leaks privacy through µArch side channels.

B. Logical Operators

We start with Line 1 in Figure 1, specifically the logical
& operations performed between the masks. At the level
of R code, these look like safe data-oblivious operations

Fig. 1: R code snippet. geno is a sensitive diploid dataset.

1 geno[(geno!=0) & (geno!=1) & (geno!=2)] <- NA
2 geno <- as.matrix(geno)
3 n0 <- apply(geno==0,1,sum,na.rm=T)
4 n1 <- apply(geno==1,1,sum,na.rm=T)
5 n2 <- apply(geno==2,1,sum,na.rm=T)

(Section II-D). Recall that the dimensions of geno are non-
sensitive. Thus, combining each mask with & entails perform-
ing a data-independent number of simple logical operations
(&); this is traditionally regarded as safe.

Yet, this code is not data-oblivious thanks to the transfor-
mations it undergoes in the R stack before reaching hardware.

First, the code is transformed from R into C calls by the R
interpreter, shown in Figure 2a. When R interprets &, it invokes
the C routine given in Figure 2a. This snippet takes different
code paths, depending on the values of x1 and x2, which
the SGX adversary can detect by single-stepping [88] or by
replaying the victim [81] and measuring time, branch predictor
state, etc. (see below). In this case, the attacker learns if one
of x1 or x2 equals 0. Since this & is applied to each SNP
position of each sample, this information is leaked for every
SNP position.

Second, the compiler compiles the resulting C into assem-
bly, which leaks additional information. Consider Figure 2b,
which is the assembly for Lines 1 to 2 in Figure 2a, Note that
the C standard requires short-circuit evaluation for the logical
|| operator such that if the left operand is true, the right
operand is not evaluated. Depending on the outcome of the
left predicate x1 == 0, the code at the assembly level will
again take different paths. Hence, the attacker learns not only
whether one of x1 or x2 equals 0, but also learns information
about which one of them equals 0.

Figure 3 counts the number of instructions executed at the
assembly level for each possible input to &. Confirming the
above explanation, we see that the instruction count equals 45
if and only if x1 equals 0. Thus, the adversary learns whether
this is the case if it can monitor a function of the instruction
count. Other cases leak other pieces of information such as
whether both x1 and x2 equal 1.

To test how small differences in instruction count translate
into measurable effects, we conduct a simple experiment. We
measure the number of cycles taken to evaluate one million
iterations of expression 0 & 0 against those of 1 & 0. Note
that the execution length of these two expressions only differ
by two x86-64 instructions in Figure 3. Having access to a
large number of measurements may occur naturally, e.g., if
the sensitive data is accessed in a loop, or if the attacker
performs a µArch replay attack [81]. We make 100 trials
of such measurements against R with the Intel Performance
Counter Monitor (PCM) [27]. On average, it took µ00 = 73.9
million cycles (σ00 = 441K) for (0 & 0), but it took µ10 =
75.2 million cycles (σ10 = 416K) for (1 & 0) on average;
the cycle count differences vary by a noticeable margin in the
evaluation of these two expressions.

Similar issues exist for other logical operators | and
xor(). In fact, xor() is implemented using R-level & and |
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Fig. 2: The R interpreter implementation of the & operator.

(a) C source code snippet of the & operator implementation.

1 if (x1 == 0 || x2 == 0)
2 pa[i] = 0;
3 else if (x1 == NA_LOGICAL || x2 == NA_LOGICAL)
4 pa[i] = NA_LOGICAL;
5 else
6 pa[i] = 1;

(b) The Intel-syntax x86-64 assembly for Lines 1 and 2 of the C code in
Figure 2a, lightly edited for clarity.

; x1 in [rbp-0x58], x2 in [rbp-0x54]
a8: cmp DWORD PTR [rbp-0x58],0x0 ; x1==0
ac: je b4 ; if true, jump to pa[i]=0
ae: cmp DWORD PTR [rbp-0x54],0x0 ; x2==0
b2: jne cf ; if false, jump to else if
b4: mov rax,QWORD PTR [rbp-0x50]
b8: lea rdx,[rax*4+0x0]
c0: mov rax,QWORD PTR [rbp-0x8]
c4: add rax,rdx ; calc addr of pa[i]
c7: mov DWORD PTR [rax],0x0 ; pa[i]=0
cf: ...

Fig. 3: The associated x86-64 instruction counts for different permu-
tations of x1 and x2 fed as input to & in R.

Expression Value Instruction Count
0 & 0 0 45
0 & 1 0 45
1 & 0 0 47
1 & 1 1 54
0 & NA 0 45
1 & NA NA 57
NA & 0 0 47
NA & 1 NA 53
NA & NA NA 53

operators. Even binary comparison operators such as == and
!= have similar issues. For example, R’s implementation of
both these operators uses branches at the R level to first check
if either operand is NA.

C. Functions

Aside from R-level primitive operators, R also has a large
library of functions written in either R or C. In Figure 1,
we see base R functions as.matrix(), apply(), and
sum(). The as.matrix() function simply converts geno
to a matrix object, similarly to dynamic_cast in C++.

In Line 3, geno==0 produces a matrix of booleans (a
mask) similar to those created on Line 1. Then, apply()
invokes the sum() function for each row (dimension 1) that
counts the occurrence of TRUE in each row of the argument
matrix. Calls to apply() in Lines 4-5 have similar issues.

sum() for integers and booleans is implemented in C as
isum() in the R source [26]. Interestingly, this code does
perform accumulations data-obliviously; that is, each boolean
is treated as 0 or 1 and accumulated without a branch that
checks if (TRUE) or if (FALSE). Yet, the code does
still branch based on whether the current value is NA before
accumulation, once again leaking which entries are NA.

D. Data-Dependent Constructs

Finally, any code construct that is not data-oblivious in C
is more-than-likely not data-oblivious in R. For example, an
if statement in C with a sensitive predicate can reveal that
predicate to the SGX adversary [1], [34]. Likewise, an if
statement in R with a sensitive predicate causes an even larger
(easier to measure) perturbation in program execution, due to
the additional steps taken to execute that branch on hardware.

E. Discussion

These examples are only a small subset of the parts of
R that leak sensitive information. R is a large code base
comprising 992,564 lines of code with sophisticated runtime
mechanisms such as just-in-time compilation [15], and is
composed of hundreds of API functions and other features,
implemented in a combination of R, C and Fortran [74].1 Not
to mention, even when an R script makes it to assembly code,
we must still worry about microarchitecture-specific unsafe
instructions that modulate hardware resources as a function
of their input operands (e.g., [5], [25], [43], [98]).

This presents a serious security problem. Many data scien-
tists and statisticians use R to compute on sensitive data every
day. Clearly, it is not tractable for these users to understand
the security implications of the code they write. At the same
time, R’s large code base makes manually patching data leaks
inherently haphazard and error prone, even for security experts.
As a result, experts have hitherto focused on replicating R’s
functionality in a new language/stack [79].

In the next section, we address this challenge by designing
the first secure R stack, where data scientists can program in
(nearly) unchanged R, interact with the same R functionality
with which they are familiar, and have strong confidence there
are no latent side channels.

V. DESIGN

We now describe the Data-Oblivious Virtual Environment
(DOVE). This begins with a design overview and summary
of design benefits (Sections V-A, V-B). Section V-C discusses
the Data-Oblivious Transcript (DOT), which serves as the link
between high-level programming and data-oblivious execution.
Section V-D discusses the DOVE frontend, which is a set of
classes that convert R code into the DOT, using pseudonyms
instead of sensitive data. Finally, Section V-E describes the
DOVE backend, an SGX enclave that converts the DOT
operations on pseudonyms to data-oblivious computation on
the actual sensitive data.

A. Design Overview

As stated in the threat model (Section III), DOVE’s security
objective is to evaluate programs written in high-level (e.g.,
interpreted) languages in a data-oblivious manner. The key
insight is that an operation that is truly data oblivious does
not require the actual data to be present. Instead, the operation
can take place on a pseudonym of the data. These pseudonyms
have the same interface as normal data of the same type

1Specifically, there are 388,141 lines of C, 345,547 lines of R and 258,876
lines of Fortran in the version of the R source we used for this paper.
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and support the same operations. For example, matrices are
replaced with matrix pseudonyms, and matrix pseudonyms
can be computed upon using the same operations as normal
matrices (e.g., element-wise addition, matrix multiplication).
However, the pseudonym contains no sensitive data, i.e., all
of its data entries are replaced with ⊥. This pseudonym is
constructed solely through non-sensitive information specified
for each pseudonym, such as, for matrices, the number of
rows and columns. However, since the pseudonym does not
actually have the data, any operation on the pseudonym is
functionally equivalent to a NOP, i.e., ∗ ⊕ ⊥ → ⊥ where ∗
is a wildcard for any data value and ⊕ is an operation on the
data. Instead, the operation performed is appended to a log.
This log, which we call a Data-Oblivious Transcript (DOT),
is thus akin to a straight-line representation of the execution of
the input program. The DOT can then be replayed on the actual
data, executing the same operations as the input program.

With this in mind we propose the following architecture,
shown in Figure 4. Our architecture is broken into two
components, making up a frontend and backend. Each of
N clients runs the same input — a common (non-sensitive)
high-level program — in their local environment (“frontend”).
The frontend replaces any references to sensitive data with
pseudonyms and generates a DOT of the input program. Al-
though only a single DOT needs to be generated for evaluation
later on, each client can optionally compute its own DOT
for program integrity-checking purposes (see Section V-D for
more information). This TEE (“backend”) hosts the DOVE
virtual machine, which is built with data-oblivious primitives.
The virtual machine checks that all DOTs are equivalent
(optional, for integrity) and runs the operations listed on the
actual data.

Intuition for security comprises two parts. First, because
the DOT is conceptually an execution trace, the backend
TEE evaluates the same operations in the same order as the
R program input to the frontend, regardless of the sensitive
data provided to the backend. Importantly, the DOT was not
created using any sensitive data, so the functions listed in the
DOT are inherently independent/oblivious of that data. Second,
we will architect the backend to ensure each operation is
data oblivious, using well-established techniques for constant-
time/data-oblivious execution.

The above architecture is general. The frontend can be
adapted for different high-level languages (e.g., R, Python,
Ruby), and the backend can be implemented for a variety of
TEEs (e.g., SGX, TrustZone). For the rest of the paper, we
explain, design, and evaluate ideas assuming the frontend input
language is R and the TEE is SGX.

Sensitive & non-sensitive data. Our goal is to make execution
independent of sensitive data from a µArch side channel
perspective. However, like other systems enforcing a similar
information flow policy, DOVE allows for non-sensitive (i.e.,
public) data to influence attacker-visible execution. This is
an important performance optimization. For example, matrix
operations on rows and columns are common in our target
domain; such operations’ performance is largely a function of
the matrix dimensions, which are usually non-sensitive. DOVE
performs optimizations based on non-sensitive data during
DOT construction (in the frontend) by generating the DOT

Fig. 4: High-level overview of DOVE. Bold-face arrows between
nodes represent communication over (mutually-authenticated) TLS,
while thinner ones are intra-process communication within a compo-
nent. Shading indicates the location of our trusted computing base
(TCB).

with concrete non-sensitive inputs. This includes concretizing
dimension arithmetic, loop bounds and control flow—when
they are not a function of sensitive data. As we discuss in
Section V-D, certain constructs such as loops with sensitive
loop bounds are disallowed.

B. Benefits of Proposed Architecture

The above two-phase architecture has the following secu-
rity, performance, and extensibility benefits.

• Small trusted computing base. The only part of the
DOVE architecture that actually handles sensitive data
is the backend, which is made up of a relatively small
C/C++ codebase featuring 7,001 lines of code, 4,295
of which consist of a previously-vetted, external data-
oblivious fixed point library [5]. Importantly, the R stack
(with its almost 1 million lines of code [74]) is not in the
trusted computing base.

• No use of cryptographic encrypted computation. Our
design performs data-oblivious computation without re-
sorting to encrypted computation techniques (such as
homomorphic encryption and garbled circuits).

• Minimal changes to programmer-facing interface. The
DOVE frontend performs a set of automated transfor-
mations (e.g., if-conversion, converting loops with early
exits to guarded loops [25], [59]) to make input R code
compatible with DOT semantics. As we show in our eval-
uation, the client can typically submit their unmodified R
programs to the frontend and therefore is not required to
learn a new language.

• Extensibility to other languages. Because the DOT de-
couples R semantics from backend semantics, DOVE can
in principle support additional languages by implementing
a new frontend without rewriting the backend.

• Extensibility to other threat models. Because the DOT
decouples backend semantics from R semantics, if a
new µArch side channel is discovered that undermines
backend security, the backend can be patched locally
without necessarily making a change to the frontend.

C. Data-Oblivious Transcript (DOT)

The Data-Oblivious Transcript, or DOT, forms the core of
the DOVE architecture, bridging an input program written in a
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Fig. 5: A DOT (left) and its associated R program (right). The matrix
x corresponds to the pseudonym $1 in the DOT, and the loop index
i with \1. 1© corresponds to line 1 of the program, 2© the for loop
on line 3, 3© the if statement on line 4, and 6© the assignment in
line 5. Intermediate values are stored in variables marked with %, and
constants are declared using #.

high-level language with data-oblivious execution on a secure
enclave. The DOT is designed to be built using only parameters
related to the computation that are non-sensitive (such as data
size). Because DOTs in DOVE are generated automatically, the
client programmer does not need to learn the DOT language to
write data-oblivious code. Once generated, the DOT is sent to
the backend, where it is used to “replay” the same operations
on the actual data (Section V-E).

What to include in the DOT semantics strongly influences
the TCB size in the backend and DOVE’s overall performance.
We designed the DOT semantics to follow the program counter
(PC) model [66], at the granularity of primitive operations
supported by the DOT. That is, the structure of the DOT is
similar to straight-line code where every operation is evaluated
in the order it appears. Conditionals, data-dependent loops,
etc. must be emulated with predicated, bounded execution as
described below. We chose this design because while it can
be difficult to transform normal programs to the PC model,
it is generally much simpler to turn PC model programs
into constant-time/data-oblivious programs.2 For example, to
convert an if-else style conditional to the PC model, a compiler
(or similar) needs to convert the conditional to a predicated
execution abstraction, which can be complex depending on
whether the conditional is nested, etc. However, converting
predicated code into data-oblivious code usually entails simple
transformations such as replacing point instructions with other
side channel-resistant instructions such as cmov. Thus, since
the frontend is not in the TCB and the backend is in the TCB,
we have pushed the complex program transformation tasks into
the frontend, and therefore out of the TCB.

Then, what primitive operations to include in the DOT se-
mantics becomes a security/performance trade-off, because the
cost to parse each operation in the DOT incurs non-negligible
overhead in our current implementation (Section VI). For
example, DOVE might implement a transcendental function
such as sin as a single primitive operation in the DOT or

2We note that our current implementation implements data memory-trace
obliviousness [58] in a simplistic fashion. For example, if a data memory
access has a sensitive address, we implement that access as a naive “scan
memory” Oblivious RAM-style lookup. Depending on parameters, future work
can improve this using a poly-log overhead contant-time Oblivious RAM
client [75], [78].

as a sequence of simpler operations in the DOT (such as
bitwise operations). The former design is higher performance
but requires a larger TCB: the backend parses a single DOT
operation and evaluates that operation using a dedicated data-
oblivious implementation of sin in the target Instruction Set
Architecture (ISA), e.g., x86-64. The latter has the opposite
characteristics: the backend parses each bitwise operation yet
only needs dedicated support to implement data-oblivious bit-
wise operations. In these situations, we decide what operations
to include in the DOT semantics on a case-by-case basis,
described below and in Section V-D.

We now discuss DOT semantics in more detail, using
Figure 5 as a running example. We break the discussion into
two parts, first describing data creation and operations on said
data, and second describing (data-oblivious) control flow. A
formal EBNF grammar for the DOT can be found in the
paper’s extended version [52].

Data creation, types and operations. We first discuss variable
declarations, types and primitive operations.

Data types. When the frontend transcribes a program into
a DOT, the DOT grammar only allows program inputs to be
(1) fixed, concrete values or (2) pseudonyms. For example,
in Figure 5, the input nrow(x) of an R program (right) is
translated into a concrete value 10 by the frontend, used as
a fixed-loop bound in 3© for a DOT (left). This is possible
because nrow(x) is fixed as 10 in line 1 of the original R
program. Likewise, a concrete value 0 that is being assigned
to x[i,1] is transcribed with a prefix # in 5© in order to
indicate that it is a concrete value.

The two basic types of pseudonyms are matrices and
scalars, with matrices being composed of m × n scalar (i.e.,
numeric) elements. 1© in Figure 5 shows the definition of such
a matrix, with m = 10, n = 7. Matrices are indicated with $,
scalars with %. Each operation on a matrix is usually decom-
posed into an operation on (1) its rows, (2) its columns or (3)
its elements. Thus, in the case where matrix dimensions are
non-sensitive, the sequence of operations needed to compute
on actual matrix data is fully captured in the DOT.

Operations on data. Core functions comprise the set of
primitive operations available to the DOT, including mathemat-
ical and logical operators (e.g. +, ==), common mathematical
functions (e.g. exp, sin), and summary operations (e.g. sum,
prod).

There are two flavors of operations supported in the DOT,
shown in first two rows of Figure 6. The Safe DOT/Core
category contains operations deemed safe to operate on sensi-
tive data in the backend. Every operation in this set must be
implemented data-obliviously by a compliant backend, i.e., its
evaluation must result in operand-independent resource usage
on the target microarchitecture (see Sections III and VII). Each
operation in this set has the following type signature: if at least
one operand is a pseudonym, the result is a pseudonym. This
is similar to taint algebras in information flow [76], [85] where
if one operand is tainted, the result is tainted.

The Unsafe DOT/Core category contains operations which
the DOT deems not safe to operate on sensitive data. For
example, the forloop construct. These operations are only
allowed to take non-pseudonyms as operands.
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Importantly, the selection which operations are marked
Unsafe is a design choice. An alternate set of DOVE semantics
can specify a Safe variant of any Unsafe operation, subject to
the constraint that the backend must support a data-oblivious
implementation of said Safe operation. Certain constructs,
such as forloop, are difficult (and sometimes impossible) to
implement data-obliviously with respect to their arguments—
which motivates why we place them in the Unsafe category.
Thus, the trade-offs in deciding whether each operation is
Safe vs. Unsafe are analogous to those for deciding which
instructions should be made Safe vs. Unsafe in the Data-
Oblivious ISA [98].

To summarize, we have:

• Rule 1: If an operation’s operand(s) are pseudonyms, the
result is a pseudonym.

• Rule 2: Safe operations may take pseudonyms or non-
pseudonyms as inputs. Safe operations must be imple-
mented data obliviously by the DOVE backend.

• Rule 3: Unsafe operations may only take non-pseudonyms
as inputs.

This is analogous to the Data-Oblivious ISA policy Confi-
dential data9Unsafe instruction, which is analogous to the
classic policy High9Low in information flow. If a DOT
follows the above rules, we call it a valid DOT. Whether a
DOT is valid is checked before the DOT is evaluated by the
backend (Sections V-E, VI), and invalid DOTs are disallowed.

Control flow. For reasons discussed above, the DOT disallows
traditional control-flow constructs such as if, while, and
goto, but supports predicated execution and bounded-iteration
loops (similar to the program counter model [66]).

Bounded iteration. The DOT provides a forloop iteration
primitive that only allows non-sensitive/non-pseudonym pred-
icates. This primitive further does not support infinite loops.
2© in Figure 5 corresponds to the body of the loop. In the
example, 3© defines the bounds of the loop (from 1 to 10 in
steps of 1), along with the loop index, \1. Loop indices are
declared as non-pseudonyms.

We note that supporting forloop is purely a perfor-
mance/DOT size optimization. Equivalently, the loop could
have been unrolled and the forloop construct removed.

Predicated conditionals. The DOT supports a select
primitive that takes a pseudonym-typed predicate and returns
one of two pseudonym operands based on the value of the
predicate. select supports both scalar (i.e., logical 0 and
1) and matrix predicates. Matrix predicates are transformed
into element-wise select operations between the predicate and
result/operand matrices. Thus, the predicate and its operands
must have the same dimensions.

This flow is shown in 4© in Figure 5. This predicated
execution model, similar to that used in prior work [25], [75],
facilitates data-oblivious branching. That is, once conditionals
are re-written to select, it is relatively straightforward to
further convert them to backend-specific data-oblivious opera-
tors such as cmov (Section II-D).

Going back to our example, in 4©, the condition is a < com-
parison between sensitive at row \1 (loop index), column

1, with the scalar value 0. This condition is a pseudonym, and
thus it cannot be evaluated directly using the DOT alone. The
select ( 5©) uses this condition, and if it is true, returns a
scalar 0. Otherwise, it returns the value already in that location
($1@(\1,1)). This result value, stored in %3, is placed back
into the [\1,1] position ( 6©). In other words, the location
is updated with either 0 or itself, based on the condition, in a
data-oblivious fashion.

D. Frontend

The frontend takes R program with non-sensitive param-
eters as input and outputs a DOT. We develop our prototype
frontend for R, but stress that the structure of the DOT is
language-agnostic. As in a traditional compiler stack, one
could design a different frontend for a different language that
likewise compiles into the DOT representation.

Before initialization, clients share non-sensitive informa-
tion, such as names and dimensions of datasets, with each
other. The data within each dataset is considered sensitive and
is not shared. To create a DOT, a client sources the DOVE
frontend, which loads the names and dimensions for each
sensitive input and creates a pseudonym for each in the R
environment. The client then runs their program, performing
operations as normal. Instrumentation in the R interpreter
(see below) records each operation into the DOT, translating
each dataset to primitives supported by the DOT semantics
(e.g., scalar and matrix types). Clients can access elements,
assign new values, apply operators, and run functions, all
while dealing only with pseudonyms. Because the frontend
does not have the actual data, this transcription is sensitive
data-oblivious by design.

Our DOVE implementation ensures interface compatibility
with base R in the implemented functions of the frontend. We
use R’s S3 method dispatch, as described in Section II-A to
overload functions in base R for pseudonyms.This requires no
modification to the R interpreter, as clients merely have to
import the DOVE frontend in their existing programs; in most
cases, no programmer intervention is necessary.

Figure 6 lists all functions available to programmers. The
Safe and Unsafe “DOT/Core” group of functions are those in-
cluded in the DOT semantics (see previous section). To provide
a richer library for clients, we also provide a “Supplemental”
group of functions which are built using only the operations in
“DOT/Core”. For example, colSums calls the DOT function
sum in a loop over the columns of a matrix. We provide these
functions to enhance the user programming experience and
to show that our DOT functions are sufficient primitives to
develop more complex functions. Note that the “Supplemental”
functions do not add to size of the TCB. They do not require
changes to DOT semantics and therefore do not change the
backend implementation.

Construct-specific handling. We now describe how the front-
end translates different R programming constructs to the DOT
semantics from Section V-C.

Bounded iteration. Native R’s for loop is not DOT-aware,
so it just repeats the body of the loop m times. The frontend
will naively record repeated invocations of the loop body every
iteration; this results in the DOT size being proportional to
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Fig. 6: DOVE functions/operations. Functions in group “DOT/Core” are implemented directly in the DOVE backend and are included in the
DOT semantics. Functions in the group “Supplemental” are implemented using operations in “DOT/Core” and exposed to the user as library
functions. Safe functions require a data-oblivious implementation in the backend as they may receive pseudonyms as operands. Unsafe functions
do not require a data-oblivious implementation, but can only take non-pseudonyms (non-sensitive) data as operands.

Group Functions
Safe DOT/Core abs sqrt floor ceiling exp log cos
(in TCB) sin tan sign + - * /

ˆ %% %/% > < >= <=
== != | & ! all any
sum prod min max range is.na is.nan
is.infinite select %*% cbind rbind

Unsafe DOT/Core forloop dim [ [[
(in TCB)
Supplemental fisher.test pchisq mean colMeans colSums rowMeans rowSums
(not in TCB) is.finite as.numeric as.matrix apply lapply unlist which

data.frame matrix split pmin pmax nrow ncol
len t

complexity of the loop. Instead, the frontend automatically
transforms such bounded loops to use the forloop DOT
construct. As discussed in Section V-C, explicitly defining
the forloop is purely a performance enhancement. In our
testing, we observed a > 99% decrease in frontend runtime
using the DOT’s forloop loops over normal for loops for
compute-heavy O(m2)-complexity programs.

We also note that many loops are written with early termi-
nation (e.g., break) conditions. When a break statement is
encountered, the frontend first examines a predicate associated
with the break condition and its associated operations. Then
the frontend performs a transformation to each statement in the
loop to mask out architectural state updates, using select,
once the break condition has been tripped. This transformation
is similar to those of prior works [16], [59].

Predicated conditionals. The frontend must translate con-
ventional if-then-else structures into the predicated execution
model supported by the DOT (Section V-C). For this, we
implement an if-conversion transformation that is similar to
prior works [25], [75]: an if-else with a sensitive predicate is
converted into straight-line code where both sides of the if-else
are unconditionally evaluated and a DOT select operator is
used to choose the correct results at the end.

Our frontend automatically converts R if statements to
use the select primitive (discussed in Section V-C) in the
DOT. The branch in Figure 5 is converted to 4© through this
process. Updating the matrix value at the current position
with either 0 or itself retains the semantics of the original if
statement while making the operation explicitly data oblivious.
The whole expression is then recorded into the DOT directly;
since the frontend does not have access to the actual data, the
DOT must necessarily record both sides of the condition.

Disallowed constructs. Overall, the frontend’s job is to
translate R semantics into DOT semantics. Sometimes this
is not possible, in which case the frontend signals an error.
We explain two such cases (which are also common issues
in related work). First, the frontend does not allow loops
where the predicate depends on a pseudonym. Second, the
frontend does not allow running operations with unimple-
mented types e.g., string-based computation or symbol-based
computation. For example, one genomic evaluation program
named geno_to_allelecnt in Section VIII-B receives a

matrix of characters as a sensitive input. This program calls
string operations like substring search or string concatenation.

Importantly, mentioned before, the frontend may contain
a bug that results in an invalid DOT that contains an illegal
construct such as those mentioned above. Such non-compliant
DOTs are checked at parse time in the backend and rejected
before being run (Section VI).

Support for integrity protection. While our primary focus is
privacy, DOVE can achieve integrity through SGX’s attestation
support. Specifically, each client can run the frontend and
generate the DOT locally. These DOTs, or their hashes, can
be checked against the DOT evaluated on the server side, by
a DOVE backend that is attested to perform such checks.

E. Backend

The backend is a trusted SGX enclave that runs the DOVE
virtual machine that parses the DOT and runs the instructions
contained within on the clients’ sensitive data. Code in the
backend ensures that only valid DOTs are run (Section V-C),
and includes implementations of all operations in the DOT
semantics, i.e, those listed under Safe and Unsafe “DOT/Core”
in Figure 6. Each client securely uploads (e.g., over TLS)
the DOT of their R program. All clients additionally upload
their shares of the sensitive dataset to the backend as well, in
preparation for processing, as shown in Figure 4.

The scope of DOVE is to block all non-speculative µArch
side channels (Section III). For this purpose, the backend
provides a data-oblivious implementation for operations in
Safe “DOT/Core” of Figure 6. To implement these operations,
we rely on a subset of the x86-64 ISA and well-established
coding practices [25] for implementing constant-time/data-
oblivious functions (see Section VII for details). For example,
we implement the select operation using the x86-64 cmov
instruction, and all floating-point arithmetic functions are im-
plemented using libfixedtimefixedpoint (libFTFP), a constant-
time fixed-point arithmetic library created as a work-around
for timing issues on floating-point hardware [5].

Importantly, what hardware operations (e.g., machine in-
structions) open µArch side channels depends on the µArch.
For example, two x86-64 processors can implement cmov
differently: one in a safe way, one in an unsafe way (e.g.,
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Fig. 7: A simplified graph representing the flow of
ecall_dispatch() for the addition instruction +. The
final, bold-face portion is the only block that dereferences sensitive
data.

by microcoding the cmov into a branch plus a move [98]).
DOVE is robust to new leakages found in specific µArch
because to block a newly discovered leakage, it is sufficient
to make a backend change. For example, if a vulnerability is
found in cmov, the backend can opt to implement the DOT
select operation using a CSWAP (bitwise operations) or
other constructs.

VI. IMPLEMENTATION

We now discuss the backend implementation, the C++
codebase that evaluates DOT operations and forms the DOVE
TCB. We will rely on this description during our security
analysis (Section VII). We eschew detailing our frontend
implementation as it is outside the TCB. As noted pre-
viously, the backend code runs in an SGX enclave. The
three functions that run in this secure enclave (or ECALLs
in SGX parlance) are associated with the three phases of
the backend: loading sensitive data into secure memory
(ecall_load_data), parsing the DOT into an abstract
syntax tree (ecall_parse), and evaluating DOT operations
based on said tree (ecall_dispatch).

Loading the data. The enclave loads client data, as it is
received, into the SGX EPC (Section II-C). The binary blobs
received consist of 8-byte, little-endian double values along
with metadata about the dataset format (e.g., tensor shape).
The dataset is then copied into enclave memory via memcpy,
and converted into a fixed-point integer representation. The
dataset in memory is stored in a p_block data structure,
which consists of a matrix of pointers to the scalar data values
in memory and the matrix dimensions it represents.

Parsing the DOT. This phase involves recursive-descent pars-
ing of the DOT into an abstract syntax tree (AST). Concep-
tually, this tree is akin to a list of instructions (see Figure 5)
to be interpreted by the enclave. Recall, the DOT is created

by the frontend without access to sensitive data. The AST, by
extension, is not a function of sensitive data.

Importantly, the parsing process verifies that the DOT
complies with DOT semantics. Specifically, that no disallowed
construct appears in the DOT (Section V-D) and that each
DOT operation type checks (Section V-C). The latter ensures
that pseudonyms cannot be downgraded to non-pseudonyms
(Rule 1, Section V-C) and that pseudonyms are not passed as
operands to Unsafe operations (Rule 3, Section V-C).

Evaluating the DOT. After loading datasets and parsing the
DOT, DOVE is ready to run instructions from the DOT on the
data. Broadly, this phase occurs in four steps per instruction
across four functions in the backend. Figure 7 depicts a
simplified call graph for the addition instruction (+). Running
different instructions entails a similar call graph.

During instruction fetch ( 1© in Figure 7), the
ecall_dispatch() function is the top-level call that
fetches the next instruction from the DOT to be run and
also allocates a placeholder datatype for use with the
results of the instruction: in our running example, this is a
matrix C of type p_block*. The argument loading step
( 2©) loads pointers to instruction datatypes that form the
arguments to the instruction. Our example loads two matrices:
p_block* A and p_block* B. The iteration step ( 3©)
utilizes polymorphism to dispatch the backend operation
corresponding to the instruction.

When one or more operands are matrices, as in Figure 7, we
must perform the addition operation over all matrix elements.
So, the final step is to iterate over all elements in the matrices
and pass each element’s pointer to a subcall to actually operate
on the scalars in the matrix.

In this final step, control reaches a leaf function, the
highlighted, bottom level of the graph in Figure 7. This is
the only step when the scalar elements of the sensitive data
matrix are dereferenced and utilized in the operation. At this
point in our example ( 4©), we use the external libFTFP library
to perform a data-oblivious operation, addition in our example,
on actual scalar values.

VII. SECURITY EVALUATION

We first present our formal definition of security under the
SGX adversary first discussed in Section III. We then argue
that this security definition holds given our DOVE backend
implementation, for the setup and instruction execution phases.

A. Security Definition

In order to analyze the security properties of DOVE, we
first formalize our security definition. We denote an execution
of the R interpreter as R(S,D), where S is an R program,
and D is the data on which the program S is run. The SGX
adversary’s view of R(S,D) (i.e., the leakage trace) is denoted
µArch. As discussed in Section III, this view includes hard-
ware resource usage at a fine spatial- and temporal-granularity.
For example, the attacker can monitor contention for the
cache or other hardware resources, the program runtime, etc.
However, due to the virtual isolation provided by the SGX
TEE, the view does not include the enclave memory itself.

10



From our analyses in Section IV, it is clear that
µArch[R(S,D)] 6= µArch[R(S,D′)] for certain D and D′.
That is, the adversary’s view of the µArch side channels of
the execution of the R interpreter on a program S is different
for different datasets D,D′. In practice, this means that the
adversary can glean information from the datasets via these
side channels, implying the computation for the given view is
data dependent.

Now, we consider the notation for DOVE. We define the
frontend as A : S 7→ TS , a compiler A that translates S into a
DOT TS . This computation is vacuously data-oblivious, since
no data is passed as a parameter to A. We then define the
backend as V (TS , D), a virtual machine that runs the DOT
on the data. We aim to show that DOVE is secure against an
SGX adversary, with the following definition.

Security Definition. We say a Data-Oblivious Virtual Ma-
chine backend V is secure in the SGX adversary model if for
any pair of datasets D, D′, and DOT TS compiled from a
program S, we have the following equation.

µArch[V (TS , D)] = µArch[V (TS , D
′)]

where µArch denotes the adversary’s view in the SGX adver-
sary model.

This is equivalent to a non-interference property, where
high (sensitive) state is the backend input data and low (non-
sensitive) state is other architectural state in the processor
(across all running programs). We show that the DOVE im-
plementation meets the above security definition through an
analysis of the flow of sensitive data through the backend and
compiled object code the backend uses.

B. Security Argument

Our evaluations were performed on a machine with an
Intel Skylake Core i3-6100 CPU, 1 TB HDD, and 24 GB of
RAM, of which 19.37 GB was allocated to the SGX enclave.
The machine was running Ubuntu 18.04.4 LTS and SGX
software version 2.9.1 with EPC paging support. Thus DOVE’s
memory is not limited to EPC size, but this mechanism adds
performance overhead when it is required. We analyze this
further in Section VIII.

The frontend ran under R interpreter version 3.4.4, and
the backend was compiled against g++, toolchain version
7.5.0-3ubuntu1˜18.04. For our security analysis, we
ran DOVE without SGX enabled for easier inspection of
potential side channels. Our security evaluation related to side
channels is independent of SGX, with the enclave technol-
ogy being an implementation choice to guard against direct
introspection/tampering by supervisor software. We provide a
performance evaluation of DOVE in Section VIII.

The backend forms our trusted computing base, and it
consists of 7,001 lines of code, of which 4,295 lines is the
libFTFP library which we adopt from prior work [5]. Since the
frontend has no access to sensitive data, the security evaluation
of DOVE reduces to the evaluation on the remaining 2,706
lines of code in the backend. We now examine each step of
DOVE’s workflow prior to the leaf function call (described
in Section VI). Finally, Section VII-C examines the leaf
functions.

Creating the DOT. Each client runs their R program on their
local frontend to produce a DOT. The adversary can only learn
non-sensitive information (e.g., dataset dimensions) explicitly
given to the frontend.

Transferring the data and DOT. After DOT creation, the
DOT and sensitive data is sent by the user to the server
through a secure channel whose endpoint is within the TEE [7].
The secure channel and SGX-provided attestation ensures that
the correct DOT is run and that the data is privacy/integrity-
protected in transit. In the case of multiple users submitting
data and DOTs, this process is applied to each user, after
which the DOTs are hashed and compared to ensure the
computation is consistent with that requested by each user (also
see Section V-D).

Loading the data. Once datasets arrive, the SGX backend
stores the data in the enclave by passing the datasets through
ecall_load_data. As mentioned in Section VI, each
dataset is a binary blob which is copied into enclave memory
via memcpy. This operation consists of a sequence of data-
oblivious mov operations. Prior to the copy, we convert floating
point values in each sensitive dataset to fixed point numbers
(to be compatible with libFTFP [5]). This conversion process
is also data-oblivious; further, the number of bits in the fixed-
point representation is independent of the underlying value.

Parsing the DOT. As noted in Section V-C, the DOT contains
no sensitive information. By extension, the DOT parsing
phase—whereby the DOT is parsed into an AST—cannot leak
sensitive information. Recall that the parsing process also
ensures the DOT complies with DOT semantics (Section VI),
which ensures that Rules 1 and 3 are enforced (Section V-C).
The DOT grammar is simple, so type-checking the DOT is
also simple.

Evaluating the DOT. This phase occurs in four steps, as
shown in Figure 7: instruction fetch, argument loading, matrix
iteration and operation on dereferenced sensitive data. The
first three phases do not perform operations on the underlying
sensitive data and only operate based on the DOT, which is
a function of non-sensitive information as discussed above.
Specifically, until the runtime reaches the operation in the leaf
function, pointers to the sensitive data are passed around, but
the sensitive data values are never accessed.

C. Leaf Functions

Based on the above discussion, only leaf functions read
and modify sensitive data. Thus, we now scrutinize whether
these leaf functions enable our security guarantee, i.e., uphold
Rule 2 from Section V-C. For this, we manually disassemble
and analyze every binary object file associated with DOVE
functions, and verify that the subset of instructions which
operate on sensitive data are instructions that do not create
µArch side channels as a function of their operands. The fol-
lowing analysis applies well-established principles for writing
constant-time and data-oblivious programs (Section II-D).

We first analyze the leaf function instructions that take
sensitive data as operands. These instructions are shown in
Figure 8. We determined this set by inspecting instruction
dependencies in the objdump disassembly. All but one of the
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Fig. 8: All x86-64 opcodes that operate on sensitive data in the leaf
functions of DOVE. Those marked with * are those not found in
libFTFP.

add and cdqe cmovne* cmp imul
lea mov movabs movsd movsx movsxd
movzx mul neg not or pop
push sar sbb seta setae setbe
sete setg setl setle setne shl
shr sub test xor

opcodes in Figure 8 is considered to be a data-oblivious in-
struction by libFTFP, our constant-time fixed-point arithmetic
library. We refer to its authors’ analysis for its security [5].
The one instruction not found in libFTFP, cmovne, is used
for conditional moves of sensitive data in the backend. This
instruction is likewise shown to be data oblivious in [75]. We
further verify that the above instructions use the direct register
addressing memory mode for each operand, if the value stored
in the register for that operand is sensitive (which also follows
standard practice for writing data-oblivious code).3 Thus, we
conclude that the machine instructions operating on sensitive
data in the backend do not create µArch side channels.

Beyond the instructions in Figure 8, there are other instruc-
tions in the leaf functions that do not operate on sensitive data.
Examples include jumps to implement loops with non-sensitive
iteration counts, checks to validate dimensions on operations,
sanity checks for nullptr, and instructions associated with
implementing polymorphism. Some of these are not data
oblivious (e.g., jumps), but do not impact security because
they operate on non-sensitive data such as matrix dimensions.

To further corroborate our static security analysis, we
also looked at runtime instruction statistics. We used the
branch-trace-store execution trace recording [48] of the DOVE
backend execution, varying the input data. We found that
the sequence of non-speculative dynamic instructions executed
was independent of the data passed to the backend: that is,
the backend satisfies the PC model [66]. Security follows
from these two analyses: (a) that the backend follows the PC
model and (b) that each individual instruction that operates
on sensitive data consumes operand-independent hardware
resource usage (previous paragraphs). Additional details re-
garding dynamic security analysis of the DOVE backend can
be found in the paper’s extended version [52].

VIII. EXPERIMENTAL EVALUATION

We now turn to the experimental evaluation of DOVE
in three areas: (1) correctness, (2) expressiveness, and (3)
computational efficiency. It is necessary to provide some
evidence that computed values are correct, at least for a basic
collection of computations. Since DOVE works with a subset
of R, it is also important to demonstrate that it can code
enough interesting cases to be worthwhile. Moreover, DOVE
computations must sufficiently limit computational overhead.
We carry out the validation via two case studies, using the
same machine configuration that we introduced in Section VII

3x86-64 operands can utilize one of several flavors. For example, rax
denotes a register file read and [rax] denotes a memory de-reference. The
former is considered safe for use in constant-time/data-oblivious programming,
while the latter creates memory-based side channels.

for experimental evaluation. The first echoes prior work [79]
by coding and analyzing applications of the PageRank algo-
rithm [72]. The second examines a suite of programs [18] for
genomic analysis and a case study using it for the analysis of
honeybee genomes [8]. It is easier to work with this type of
data than, say, genomic data of people with bipolar disorder,
while it illustrates similar issues of scale and the potential value
of controlled data sharing.

For correctness, we confirm that what we get from DOVE
is the same as what we would get from R. That is, using
the notation of Section VII-A: Q[V (TS , D)] = Q[R(S,D)]
where Q denotes the calculated output for a given execution.
For expressiveness, we demonstrate that we can conveniently
create DOTs from R code for each case study. As such, we
devote most of the section to the evaluation of computational
efficiency.

One run of our performance benchmark is as follows.
We first record the runtime of vanilla (insecure) R with data
and a program. Then, we run the DOVE frontend on the
same program, generating the DOT and writing it to disk.
We then initialize the backend, read in the DOT, parse it, and
execute the DOT instructions. Our evaluation of the DOVE
implementation discusses two measures. First, we wish to
consider if our frontend primitives are sufficient to express
complex programs. Second, we examine the performance of
DOVE when compared to its base R counterpart.

To highlight the overheads inherent to SGX and libFTFP,
the external data-oblivious fixed point library, we ran per-
formance benchmarks on three configurations of DOVE: (1)
backend outside an SGX enclave and without libFTFP, (2)
backend outside an SGX enclave and with libFTFP, and (3)
backend inside an SGX enclave and with libFTFP (our default
configuration). SGX-related overheads include SGX’s memory
encryption and access protections that isolate the enclave from
the rest of the machine [28]. The libFTFP instructions’ relative
performance overhead is measured against its Streaming SIMD
Extensions (SSE) counterpart; the overhead varies depending
on the instruction, ranging from 1.2× for neg (operand nega-
tion) to 208× for exp (exponential function evaluation) [5].

A. PageRank

We begin with an introductory case study on the PageRank
algorithm that is used as a case study on a custom data-
oblivious programming language [79]. A large proportion of
this algorithm is composed of matrix multiplications, which
other works choose as primary performance benchmarks [57],
[75].

We use the Wikipedia vote network (WikiVote) [53] and
Astro-Physics collaboration network (ca-AstroPh) [54] datasets
from the Stanford Network Analysis Project [55] for this case
study. Both datasets are converted to adjacency matrices, where
WikiVote has 7,115 nodes (≈ 405 MB) and ca-AstroPh has
18,772 nodes (≈ 2.8 GB). Figure 9 shows the runtimes for the
PageRank algorithm on two datasets where the DOVE frontend
took on average of 3.34 seconds for each dataset. Note that we
evaluate several configurations for the DOVE backend (SGX,
libFTFP) as discussed before.

Vanilla R ran faster than DOVE, even without the SGX
enclave and without libFTFP. This is expected for several
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Fig. 9: Runtimes for running PageRank algorithm on different con-
figurations. All measurements are in seconds, and the measurements
are sums of frontend and backend runtimes. The frontend took on
average of 3.34 seconds.

Configurations WikiVote ca-AstroPh
Vanilla R 6.91 46.88
DOVE w/o libFTFP, w/o SGX 23.70 122.18
DOVE w/ libFTFP, w/o SGX 137.00 951.62
DOVE w/ libFTFP, w/ SGX 509.04 2,254.46

reasons. First, R uses the highly-optimized Fortran BLAS
library for matrix multiplication, while DOVE does not. Sec-
ond, DOVE code (with or without libFTFP) disables compiler
vectorization for safety reasons. Finally, DOVE uses the data-
oblivious x86-64 cmov for any conditional statement on
sensitive data whereas the R interpreter is written with unsafe
branch statements (Section IV).

Enabling libFTFP increases runtime overhead of DOVE
by around 6×, and enabling SGX on top of libFTFP incurs
3× additional overhead. The PageRank implementation shows
that DOVE is expressive enough to handle a common data-
processing algorithm without severe performance degradation.

B. Genomic Analysis

To further validate DOVE, we work with an application that
performs a controlled study on honeybee genomic data [8]. The
study relies on R code drawn from a set of 13 genetics research
programs [18] that implement important statistical measure-
ments found in the literature [37], [69], [86], [92], totaling
478 lines of R code [18]. These programs, in addition to the
coding of PageRank, constitute a practical illustration of the
expressiveness of DOVE. The paper’s extended version [52]
provides more details about the programs’ applications to
genomics.

Using DOVE, we were able to transform (in the frontend)
and run (in the backend) 11 out of the 13 evaluation programs,
totaling 326 lines of R code. The first program that we could
not implement, geno_to_allelecnt, works on character
data instead of numeric data, and as such is not supported
by the current types available in the DOT. The second pro-
gram, gwas_lm, performs a Genome-Wide Association Study
(GWAS) using support in R for linear models. We were
not readily able to implement this; R provides parameters to
models as a formula of symbols, not values. DOVE currently
does not support this paradigm, but we believe that DOVE can
be extended to do so in the future.

Ten of the remaining 11 evaluation programs were au-
tomatically transformed by the frontend into data-oblivious
code. Only one program, LD, required manual intervention,
as it was written entirely in a data-dependent style. For this
program we: (1) replaced some functions that are intrinsically
data-dependent with data-oblivious primitives and (2) changed
lines that required sensitive data-dependent array indexing
with worst-case array scans. Future implementations could
alternatively use an oblivious memory, e.g., [78], to avoid such
worst-case work.

We utilize the dataset from the honeybee study [8] to per-
form performance benchmarking. We run the full 2,808,570 ×

60 (≈ 1.3 GB) dataset for all programs with space complexity
of O(m ∗ n) where m is the number of rows and n is the
number of columns. However, some of the evaluation programs
could not run on this dataset due to machine limitations.
Specifically, some programs with space complexity of O(m2)
refuse to run even in vanilla R at full size. To address these
limitations, we run a subset of programs with the first 10,000
rows of the honeybee dataset. Some related work also runs
performance benchmarks on genomic data with similar sizes
to that of our reduced dataset [22], [23], [77].

To normalize benchmark results run on datasets of different
sizes, we present a relative overhead metric: runtime for DOVE
(DOT generation, disk reading/writing, DOT evaluation) di-
vided by runtime in vanilla R. This relative overhead metric
is shown as stacked bar graphs in Figure 10.4 Each part of
the bar represents the overhead contributed by a component of
the backend, categorized by three factors: the DOVE runtime’s
data-oblivious implementation itself, constant-time fixed point
operations (libFTFP), and the use of the SGX enclave. Overall,
each factor provides additional security at the cost of increased
overhead. We separate our programs into two bins: programs
that run on the full honeybee dataset, and programs that run
on a reduced dataset due to machine limitations (marked with
* across the subfigures).

The min/avg/max size overhead of each DOT relative to its
R script is 0.284x/10.8x/105x. Note, the DOT may be smaller
than the original program because of the DOT instruction set.
We expect that the DOT can be significantly compressed. Case
in point, the current DOT is represented in ASCII which is
space inefficient.

We now provide more detailed analysis for several pro-
grams with noteworthy performance characteristics.

Programs with quadratic space complexity. The relative
overhead with DOVE is 120.7× against vanilla R on average
for programs EHHS, iES, and LD. These three programs run
statistics based on pairwise SNPs, i.e., a row is compared to
each other row in the dataset. They operate in O(m2) space, or,
quadratic in the number of rows m. The large relative overhead
in the base DOVE implementation for iES and EHHS is due to
data-oblivious transformations. Namely, the vanilla R versions
of these programs benefit from early breaks in the loop
body that occur depending on sensitive values. DOVE does
not directly allow such behavior for security reasons. Hence,
the backend must iterate through the entire matrix, regardless
of the data, causing potentially high overhead.

Statistical programs. The programs hwe_chisq and
hwe_fisher each call a base R statistics function: pchisq
(Chi-Square distribution) and fisher.test (Fisher’s ex-
act test), respectively. The program snp_stats calls both
functions. In base R, the implementation of fisher.test
is written in R itself whereas pchisq is written in C.
We implement both as supplemental group functions in R
(Figure 6), to provide a fair comparison and to reduce TCB
size. When called, the frontend will convert the call into a
series of equivalent DOT operations.

4Numbers for each program’s absolute runtime are given in the paper’s
extended version [52].
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Fig. 10: Performance evaluation results for the evaluation programs.
Each stacked bar represents a measurement for each program. Each
stack represents relative overhead of DOVE against vanilla R caused
by generic data-oblivious computation, libFTFP and SGX from left to
right. Programs marked with * run on reduced dataset due to machine
limitations.

We note that, to achieve data obliviousness, our implemen-
tations of these functions are somewhat different than their
vanilla R counterparts. For instance, computing a factorial of a
sensitive value is intrinsically data dependent, but it is required
to compute Fisher’s exact test (in R, fisher.test). To
implement factorial data obliviously, we implement it as an
oblivious table lookup over a pre-determined domain of inputs,
noting that other data-oblivious implementations are possible.

While hwe_chisq has reasonable performance overhead
given our data-oblivious implementation of pchisq, both
hwe_fisher and snp_stats show large performance
overheads. These programs call the fisher.test function
O(m) times. The insecure version of this function takes O(n)
time. Our data-oblivious implementation takes O(n2) time due
to inefficient oblivious-memory reads. As mentioned before,
a more efficient oblivious-memory primitive would reduce
overhead.

Remaining programs. The remaining programs do not incur a
significant performance penalty, as both the insecure and data-
oblivious codes run in O(m) time. The average overhead with
DOVE is 28.3× relative to vanilla R for these programs. One
program, allele_sharing (in Figure 10b), has a notably
larger performance overhead than others when running inside
the SGX enclave. We believe this is due to EPC paging costs.
Specifically, this program has a larger working set size than
SGX has EPC/PRM (2 GB vs. 64-128 MB). It further makes
column-major traversals for a matrix that is stored in row-
major order in memory, which leads to low spatial locality
and therefore, we hypothesize, a high EPC fault rate.

IX. DISCUSSION AND FUTURE WORK

Current prototype limitations. The DOT has been designed
to provide functionality for real-world data science tasks.
Some features such as multi-threading and networking, that
are present in general-purpose languages, are not currently
supported in either the DOT or DOVE more generally. This is
not fundamental. Additional functionality can be added to the
DOT, as long as there exists a data-oblivious implementation
of said functionality.

Handling loop bounds (and related constructs) that de-
pend on sensitive data. In the current DOVE prototype,
loop bounds (and related constructs such as recursion depth)
must be a function of non-sensitive data. For example, we
consider matrix dimensions to be non-sensitive and matrix
dimensions determine loop bounds in our evaluation scripts.
An interesting direction for future work would be to add either
static or dynamic program analysis to enable such control-flow
information to be a function of sensitive data. For example, if
a given loop iterates i1 or i2 times depending on a sensitive
value, one would like an analysis to discover i1 and i2, set the
loop’s bound to max(i1, i2) and add the instrumentation from
Section V-D to mask out architectural state updates when the
actual input requires fewer loop iterations.

Possible performance optimizations. Finally, as our primary
objective was to demonstrate a proof-of-concept of DOVE’s
security benefits, we believe many performance optimizations
are possible. For example, there are performance-optimized
data-oblivious implementations of several key primitives (e.g.,
sensitive array lookup [78], matrix multiply [79]) which could
be integrated into our backend to improve performance without
changing the DOVE architecture. Finally, as mentioned in
Section V-C, users can add frequently-used routines as DOT
primitives implemented in the backend, to trade-off perfor-
mance and TCB size.

X. RELATED WORK

A. SGX Programming

Our work is related to prior efforts in running/partitioning/-
managing general purpose applications in SGX [6], [10], [20],
[35], [39], [46], [56], [78]–[80], [89]. The four most relevant
axes for comparison are: (i) whether the application running is
untrusted, (ii) whether the proposal runs interpreted code such
as R, (iii) what is the threat model (in particular, does it include
defense against µArch side channels) and (iv) whether the pro-
posal requires a new custom programming language. We show
a comparison along these axes in Figure 11. The takeaway
is that no prior proposal, to our knowledge, simultaneously
runs (i) untrusted code, (ii) high-level interpreted code such as
R, (iii) provides broad protection against µArch side-channel
attacks, (iv) supports existing languages. Moreover, our work
makes a distinct conceptual- and design-level contribution,
namely to orchestrate computation through existing high-level
languages without showing those languages the sensitive data.

The works most similar to our proposal are TrustJS [39]
and SGXBigMatrix [79]. The former runs untrusted JavaScript
code but assumes a weaker adversary that cannot monitor fine-
grain application behavior over, e.g., side channels. The latter
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provides a data-oblivious matrix API, but requires program-
mers to adopt a custom scripting language for performing
computation. We view this work as complementary: our work
strives to enable general-purpose data oblivious computing
on existing high-level languages, but could benefit from the
performance optimizations made to matrix computations in
SGXBigMatrix.

B. Data-Oblivious Programming

There is a rich literature that studies how to write and run
different applications in a data-oblivious fashion on today’s
ISAs. For example, application-centric works propose data-
oblivious cryptography [11], [12], machine learning [70], [79],
databases [32], [63], [101], memory and datastructures [2],
[78], general purpose code [25], [29], [35], [66], [75], utili-
ties [87] and floating point functions [5]. Many of these [29],
[32], [35], [36], [63], [70], [75], [78], [79], [101] were
designed for SGX-enabled applications to block the µArch
side channels discussed in Sections II-B-II-C. Programming
language, compiler and runtime works study how to write
(e.g., [16], [30]) and compile (e.g., [59], [82], [100]) programs
to software circuits. ISA abstractions study how to design
interfaces usable by both software designers and hardware
architects to uphold data-oblivious security guarantees [98].
These efforts are backed on the theory side by studies on how
to run different algorithms and data structures in the circuit
model [13], [19], [31], [59], [67], [82], [83], [91], [99].

Our work differs from these application-centric works by
targeting high-level interpreted programming stacks such as R
as opposed to low-level C. As discussed in Section IV, R in-
troduces significant new challenges in establishing confidence
that code is actually data-oblivious. Our work differs from the
PL, runtime, compiler work because it focuses on hardening
mostly-unmodified R code, as opposed to creating a new end-
to-end stack with a custom language; our work differs from
ISA work, such as the Data-Oblivious ISA extensions [98]
(OISA), by not requiring ISA-level changes to the underlying
machine. Finally, our work is complementary to data-oblivious
algorithm and data structure design, as our backend can
leverage these algorithms to implement specific operations.

C. Privacy-Preserving Genomics

Our case study is based on the genomics of honeybees
collected from three different locations [8]. Genomics has been
a promising test case for privacy-preserving application of
SGX before in other areas. These include at least the privacy-
preserving computation of admixtures [21], Genome Wide
Association Studies (GWAS) [77], and analysis of rare diseases
(viz. Kawasaki disease) [23]. There is also an SGX-based study
of privacy-preserving queries on genomic data [22]. There is a
survey [9] that discusses approaches to genomic privacy based
on SGX, on cryptography, and on a hybrid of both.

XI. CONCLUSION

DOVE offers an approach to achieve data-oblivious com-
putation within a TEE for programs originally written in lan-
guages with complex stacks such as R. The approach takes as
input a high-level program and transforms it to an intermediate
representation (DOT) that can be more easily reasoned about

Fig. 11: Related works on application partitioning/management in
SGX.

Name Untrusted
Apps?

Interpreted
Code?

Blocks
µarch Side
Channels?

Supports
existing
languages?

Haven [10] 7 3 7 3
Graphene-SGX [20] 7 3 7 3
Scone [6] 7 3 7 3
Panoply [80] 7 7 7 3
Glamdring [56] 7 7 7 3
TrustJS [39] 3 3 7 3
ScriptShield [89] 7 3 7 3
Ryoan [46] 3 7 7 3
SGXBigMatrix [79] 3 3 3 7
ZeroTrace [78] 7 7 3 N/A
Felsen et al. [35] 3 7 3 N/A
DOVE (This paper) 3 3 3 3

with respect to providing data obliviousness on a constrained
TCB. This gives the advantage of being able to program in a
familiar and convenient language while providing a very strong
security guarantee. The trade-off for achieving these benefits,
in general, is limits on the high-level programs that can be
processed. We have demonstrated a design and implementation
that can cover a significant range of programs with efficiency
that is an acceptable trade-off for the benefits. This provides a
foundation for future study using our methodology, such as
expanding to richer high-level programming constructs and
languages.
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[35] Susanne Felsen, Ágnes Kiss, Thomas Schneider, and Christian Wein-
ert. Secure and private function evaluation with Intel SGX. In
SIGSAC’19.

[36] Ben A. Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey
Gorbunov. Iron: Functional encryption using Intel SGX. In CCS’17.

[37] Xiaoyi Gao and Joshua Starmer. Human population structure detection
via multilocus genotype clustering. BMC genetics, 8(1):34, 2007.

[38] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contempo-
rary hardware. IACR’16.

[39] David Goltzsche, Colin Wulf, Divya Muthukumaran, Konrad Rieck,
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