
CHANCEL: Efficient Multi-client Isolation Under
Adversarial Programs

Adil Ahmad† Juhee Kim§ Jaebaek Seo∗ Insik Shin‡ Pedro Fonseca† Byoungyoung Lee§
†Purdue University §Seoul National University ∗Google ‡KAIST

Abstract—Intel SGX aims to provide the confidentiality of
user data on untrusted cloud machines. However, applications
that process confidential user data may contain bugs that leak
information or be programmed maliciously to collect user data.
Existing research that attempts to solve this problem does not
consider multi-client isolation in a single enclave. We show
that by not supporting such in-enclave isolation, they incur
considerable slowdown when concurrently processing multiple
clients in different enclave processes, due to the limitations of
SGX.

This paper proposes CHANCEL, a sandbox designed for
multi-client isolation within a single SGX enclave. In particular,
CHANCEL allows a program’s threads to access both a per-thread
memory region and a shared read-only memory region while
servicing requests. Each thread handles requests from a single
client at a time and is isolated from other threads, using a Multi-
Client Software Fault Isolation (MCSFI) scheme. Furthermore,
CHANCEL supports various in-enclave services such as an in-
memory file system and shielded client communication to ensure
complete mediation of the program’s interactions with the outside
world. We implemented CHANCEL and evaluated it on SGX
hardware using both micro-benchmarks and realistic target
scenarios, including private information retrieval and product
recommendation services. Our results show that CHANCEL out-
performs a baseline multi-process sandbox by 4.06− 53.70× on
micro-benchmarks and 0.02−21.18× on realistic workloads while
providing strong security guarantees.

I. INTRODUCTION

Intel SGX guarantees the confidentiality and integrity of a
program without trusting software components such as the OS
or hypervisor, and protects against specific hardware attacks [1].
SGX also supports remote attestation to ensuring that programs
are correctly installed on remote machines. Thus, SGX is a
promising candidate to ensure the confidentiality of sensitive
data running on remote machines in the cloud.

However, the traditional assumption behind SGX’s im-
plementation is that the program running inside an enclave
is trusted. This assumption is not always valid because
applications may contain bugs or may have been built by
malicious programmers (i.e., adversarial programs). Hence,
users cannot trust remote programs because they may leak

∗The author worked on this project as a PhD student at KAIST.

confidential data, even if protected by SGX. For example,
consider a scenario where a service provider rents a cloud
machine, with SGX capabilities, to provide a service to its
clients. In this scenario, SGX will protect client data from a
malicious cloud provider, but cannot prevent the data from
being collected by the service provider using an adversarial
program. Therefore, clients must trust the service provider to
not leak their confidential data.

The significant value of private user data makes it an
appealing target for service providers. For example, consider a
popular messaging platform, Signal [2], which supports private
contact discovery [3]. Signal keeps an offline database of its
users and periodically updates it on an SGX machine. The
users connect to the SGX machine to discover which contacts
use Signal. The private contact discovery is meant to prevent
Signal from extracting a social graph, i.e., determine which
contacts know each other. However, although Signal’s source
code is available for inspection, it is non-trivial to determine
that it satisfies such security properties. Moreover, unlike Signal,
many companies do not disclose their proprietary algorithms
which further aggravates the problem by requiring users to
blindly trust service providers.

Existing research concerning client data protection in remote
machines (e.g., Ryoan [4], VC3 [5]) does not support multi-
client isolation within a single enclave. Considering the Signal
example, the application could be designed such that multiple
threads (handling requests from individual clients) directly
share a contact database provided by Signal. However, lacking
such support, prior approaches require a dedicated enclave
process for each client. Although lacking a single process
multi-client sandbox is not critical in non-SGX environments,
it is a significant drawback in SGX environments. In particular,
the lack of secure memory sharing between enclaves and limited
enclave memory (i.e., only 128−256 MB), results in inefficient
use of the limited memory and prohibitive overheads when
different processes have distinct copies of shared data.

To further elaborate, SGX does not allow the sharing of
enclave pages between different enclave processes; therefore,
common data must either be shared through untrusted interfaces
(e.g., OS-controlled IPC), which is insecure, or be cloned to
each enclave process. However, since SGX has limited trusted
memory, cloning common data for each process/enclave would
waste precious memory resources and eventually slowdown the
entire system due to the expensive page-swaps between trusted
and untrusted memory [6]. Our experiments on a real-world
product recommendation application suggest that under a four
client scenario with 112 MB of product catalog memory, a
multi-process sandbox (i.e., the catalog is cloned to 4 processes)
incurs almost 20× more page-swaps, and an overhead of more
than 17×, compared to a multi-client sandbox (i.e., the catalog

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24057
www.ndss-symposium.org

is shared by 4 threads) (§VIII-C).

This paper proposes CHANCEL1, a multi-client sandbox that
enables multiple threads to securely and efficiently handle re-
quests from different clients, within a single enclave. CHANCEL
relies on a novel Multi-Client SFI (MCSFI) scheme to enable
thread isolation, i.e., sensitive client data and other thread
content is only available within the thread’s context, and shared
memory enforcement, i.e., threads can only use shared memory
that is protected against data leakage or tampering. Furthermore,
CHANCEL ensures the confidentiality of computational results
by encrypting all outgoing data using a shared secret key
with each client. Lastly, CHANCEL provides various in-enclave
functionalities (e.g., an in-memory filesystem) and offers
practical protections against covert channel attacks.

Existing SFI techniques are not designed for multi-client
scenarios and require advanced hardware features to implement
in SGX enclaves. In particular, Native Client (NaCl) [7] consid-
ers the program’s data to belong to a single client; therefore, it
provisions a single memory view for each thread and does not
support thread isolation. Furthermore, Multi-Domain SFI [8, 9]
supports thread isolation but lacks shared memory (or its
enforcement) between the threads, crucial to ensure efficient
memory usage, and hence high performance for SGX enclaves.
Finally, SGX implementations of SFI techniques [4, 9, 10]
require hardware features that are not widely available, e.g.,
SGX2 [11], or have been discontinued, e.g., Memory Protection
eXtensions (MPX) [12, 13], significantly hindering deployment.

Therefore, to enable efficient multi-client separation, we pro-
pose Multi-Client SFI (MCSFI), inspired by Native Client [7].
In particular, MCSFI allows each thread to access two memory
regions: (a) per-thread private data region, (b) shared read-
only region for all threads of the program. Each thread stores
sensitive data obtained from a single client in its private region,
inaccessible to other threads. Furthermore, all threads can
access a common region to share non-sensitive data (e.g.,
Signal’s contact database). However, to ensure that malicious
threads cannot abuse the shared region to leak their sensitive
contents or tamper with the service, MCSFI ensures read-only
enforcement of the shared region, except during initialization
or after servicing all client requests.

CHANCEL enforces a specific enclave memory layout and
uses compiler instrumentation to enforce MCSFI without requir-
ing advanced or discontinued hardware functions. Specifically,
CHANCEL reserves two general-purpose registers (i.e., r14
and r15) to hold executable and accessible addresses for each
thread to restrict the program’s control-flow and data-flow
depending on the execution stage and thread context. For
example, CHANCEL’s data-flow instrumentation ensures that
the program can write to the shared memory region, during
initialization, and only write to a per-thread private region,
while serving client requests. CHANCEL also instruments the
program’s control-flow to ensure it can only execute the target
program’s code and cannot bypass the instrumentation checks,
thereby preventing attacks that rely on binary rewriting or
arbitrary code execution. Our evaluation case studies (§VIII-C)
show that MCSFI is applicable to many classes of real-world

1CHANCEL is the part of a church near the altar that is reserved for clergy
and choir, and separated from the main hall

scenarios, including private information retrieval and product
recommendation services.

To ease program development for CHANCEL, we implement
a compiler toolchain using LLVM [14]. The service provider
must utilize CHANCEL’s toolchain to build an instrumented
binary, which is loaded into CHANCEL’s enclave after instru-
mentation validation using an x86 disassembler, capstone [15].
During program execution, CHANCEL provides various services,
i.e., dynamic memory allocation, file system, and shielded
client communication, and also protects against covert channel
attacks (e.g., encoding information in the output size). Our
evaluated programs required no manual changes to build using
our toolchain and few additional code (less than 10 lines) to
utilize CHANCEL’s runtime services.

We evaluate CHANCEL on SGX hardware to assess its
security impact and performance. Our security evaluation
confirms that CHANCEL can prevent a wide range of attack
scenarios, including attempts to compromise the instrumentation
checks, perform code injection attacks, and leak client data.

Furthermore, our evaluation shows that CHANCEL has
significantly higher performance than the baseline secure
multi-process sandbox approach (e.g., Ryoan [4]). CHANCEL
showed a 4.06− 53.70× performance improvement in micro-
benchmarks and 0.02− 21.18× improvement across a range
of important real-world workloads—intrusion detection sys-
tems (OSSEC [16] and Snort [17]), private information re-
trieval (DrugBank database [18, 19] and ShieldStore [20]
key-value store), and product recommendation systems (Rec-
ommender [21]). Finally, the average overhead of CHANCEL
compared to a native execution is only 12.43% on the nbench
benchmark [22], which demonstrates CHANCEL’s applicability
to a wide range of scenarios with only modest overheads.

II. BACKGROUND ON INTEL SGX

Intel SGX [23] allows a user process to create a protected
memory region in its virtual address space, called an enclave.
Privileged software, including the OS and hypervisor, is
prevented by the hardware from accessing the enclave’s runtime
execution context and memory. The enclave can arbitrarily
access any memory location within its process’s unprotected
memory. This section provides a brief overview of the critical
SGX aspects that are relevant to this work and defers the reader
to other sources for more comprehensive information regarding
SGX [23, 24].

Remote attestation. The user can attest that their programs
are correctly loaded onto SGX enclaves using remote attestation.
In particular, the CPU creates a SHA-256 digest of the enclave
memory, signed using the CPU’s secret key, and sent to the
user for verification.

Memory management. SGX dedicates a portion of the
physical memory, Enclave Page Cache (EPC), to store enclave
pages. The EPC memory is limited—128 and 256 MB for SGX1
and SGX2, respectively. If this memory is exhausted, the Linux
OS can perform page-swaps to extend the enclave memory on
page faults. However, these page-swaps are expensive due to the
encryption of enclave pages and context switch overheads (e.g.,
TLB and L1D flushes) [6, 25]. Finally, concerning SGX1, the

2

Intel SGX

Adversarial
program

1. Adversarial
program

Cloud service

Untrusted
cloud provider

Untrusted
service provider

Client A

Client B

No user data
leakage

2. Private
data & result

No user data
leakage

Fig. 1: CHANCEL’s system model with three participants: the clients,
the service provider, and the cloud provider. CHANCEL must prevent
the service provider’s adversarial program that uses multi-threading to
concurrently serve many clients, from leaking confidential client data.

entire enclave memory must be statically allocated at compile-
time, but SGX2 permits dynamic allocation of enclave memory
during execution.

Multi-threading. SGX supports multi-threaded execution in
an enclave, but the maximum number of parallel threads must
be specified in the enclave’s configuration file.

III. MOTIVATION

This section provides an overview of the multi-client system
model that CHANCEL is concerned with (§III-A), enumerates
examples of critical services (e.g., private information retrival
and product recommendation services) that are relevant to the
system model (§III-B), and discusses the limitations of existing
approaches concerning multi-client scenarios (§III-C).

A. System Model

This paper considers a computing model in which a server
program runs on a machine to provide a service (database,
intrusion detection, etc.) to multiple clients (shown in Figure 1).
This model has three main entities: the service provider, the
clients, and the cloud provider. The underlying assumption is
that none of the parties trust each other. In the following, we
explain the role of each participant in the system.

• Service provider. The service provider builds and deploys
a possibly adversarial program that serves many clients. The
program uses multi-threaded programming abstractions to
handle multiple clients efficiently. Importantly, each thread
handles a request which involves confidential data from one
client at a time while accessing information from a shared
read-only region (e.g., database).

The service provider is honest but curious—it provides a
functionally correct service but is tempted to collect its
client’s data for monetary purposes (e.g., advertisements).
The rationale behind such an adversary is that, in most cases,
dishonesty is easy for clients to detect using redundancy
(e.g., ask two providers for the same service and compare
results). Furthermore, dishonesty may result in lower service
quality, prompting the clients to terminate their contracts
with the provider. In contrast, clients cannot detect secrecy
violations; hence, secrecy violations are a more significant

concern. Finally, despite the provider’s curiosity, we expect
the service provider will still deploy security mechanisms
(e.g., SGX) due to client privacy concerns and to observe
governmental regulations (e.g., GDPR [26]).

• Client. The client issues requests, containing confidential
data (e.g., database query, internet history, etc.) to the
program to utilize the provided service. The client wants
to ensure that their confidential data is not leaked from
the program. Note that the client might intentionally share
some data (e.g., passwords) with the service provider, before
accessing the service. Such intentionally shared data is not
considered confidential.

• Cloud provider. An optional third entity, the cloud provider,
may exist if the service provider rents hardware from third-
parties such as Microsoft Azure [27]. In such scenarios, we
assume that the cloud provider is also honest but curious,
i.e., it will not deny a client access to the service but desires
to extract the client’s sensitive data.

B. Examples of Target Scenarios

Many critical real-world scenarios follow this paper’s system
model (§III-A), including private information retrieval, intrusion
detection systems, and product recommendation services. This
section describes how an efficient multi-client sandbox (such
as CHANCEL) can be beneficial in such cases.

Private information retrieval. Consider a company that
provides health-care suggestions (e.g., drug information [18])
based on a client’s provided information, such as previous
medical history. The company can determine the health
condition of its clients by observing their queries. A multi-
client sandbox could serve many clients in a single sandbox,
allow each client to query a shared database, and get relevant
information without revealing their health conditions. Other
examples include Signal’s private contact discovery (mentioned
in §I), navigation services (e.g., Google Maps), and web servers
that serve sensitive pages (e.g., prohibited political content).

Intrusion detection systems. Intrusion detection systems
(IDS) analyze packet payloads to detect trojans, viruses, and
malware based on a pre-defined signature dictionary. Since
dictionaries are huge and inspection can take many computa-
tional cycles, cloud-based systems [28–30] allow uploading files
which are scanned on cloud machines and a report is provided to
the client. However, such services inspect unencrypted sensitive
files, potentially from many untrusted users simultaneously.
Multi-client (and multi-threaded) sandboxes can enable secure,
efficient, and parallel inspection of many files from the same
or different clients, within isolated threads, using a common
dictionary.

Product recommendation services. Modern product recom-
mendation services [31] use machine learning algorithms on
their product’s catalog and a user’s search history to predict
the products that users are most likely to buy. However,
purchase or search history is sensitive, so many companies
provide the option of anonymizing such history but at the
cost of less relevant recommendations. A multi-client sandbox
enables secure servicing of many users’ previous history on
the service provider’s common catalog and provides relevant
recommendations.

3

System Scope Multi-client Requirements

Adversarial Unintended Thread Shared mem.
program bugs isolation and enforce.

Ryoan [4] ✓ ✓ ✗ ✗ SGX2
Occlum [9] ✗ ✓ ✓ ✗ SGX1/SGX2 + MPX
MPTEE [10] ✗ ✓ ✗ ✓ SGX1/SGX2 + MPX

CHANCEL ✓ ✓ ✓ ✓ SGX1/SGX2

TABLE I: A comparison between CHANCEL and closely related
schemes. Please refer to §X for a discussion on other SGX permission
enforcement schemes. For Occlum [9] and MPTEE [10], both SGX
and MPX are required hardware features.

C. Limitations of Existing Approaches

The effective handling of multi-client scenarios in adversar-
ial programs requires enforcing restrictions during execution.
For example, each thread must have a different view over the
enclave memory to prevent data extraction between threads.
Hence, the closest related work to CHANCEL are SGX systems
that use SFI for in-enclave permission enforcement [4, 9, 10].
However, none of the existing work can efficiently tackle multi-
client scenarios (§III-A) because they suffer from limited pro-
tection scope and inefficient multi-client support. Furthermore,
existing approaches require uncommon hardware features that
are either discontinued [12, 13] or not widely-supported [11];
therefore, they are challenging to deploy. Table I compares
CHANCEL and relevant SFI implementations in SGX.

Limited protection scope. Several existing systems [9, 10]
do not consider adversarial programs. In particular, Occlum [9]
runs untrusted application binaries in isolated threads of a
single enclave while MPTEE [10] provides general-purpose
memory protection for SGX enclaves. Both systems consider
the program’s code and data to belong to the same entity;
therefore, they only prevent attacks involving untrusted inputs
and unintended bugs (e.g., buffer overflows) in the program.
Hence, they do not prevent an adversarial program from
divulging sensitive client data through direct disclosure (e.g.,
transmitting information outside the enclave) or covert channels.

Inefficient multi-client support. None of the existing systems
considers multi-client scenarios in a single enclave. In particular,
Ryoan [4] and MPTEE [10] lack thread isolation; which
requires multiple clients to be inefficiently isolated in different
enclaves. While Occlum [9] supports thread isolation, it does
not (a) allow directly shared memory (i.e., shared global or
heap objects) and (b) enforce permissions on indirectly shared
memory (i.e., shared files) between threads. On the one hand,
lacking directly shared memory is contrary to general multi-
threaded program development patterns, also evident from our
evaluated programs (§VIII-C). On the other hand, lacking
enforcement on indirectly shared memory allows malicious
threads to leak sensitive client data or compromise the service
for other clients (e.g., overwrite contained data).

Therefore, considering existing systems, commonly shared
data (e.g., a database) must be cloned to each enclave process
or thread. Since EPC memory is limited (i.e., 128 − 256
MB), CHANCEL’s secure multi-client sandbox outperforms
such schemes by upto 53.70× (refer to §VIII-A), without
compromising on its security goals.

Substantial hardware requirements. All related systems that
implement SFI in SGX enclaves require advanced hardware

features, in particular SGX2 and MPX (Memory Protection
eXtensions). Such requirements are likely to hinder deployment.
In particular, SGX2 (required by Ryoan [4]) is supported by
few machines and currently lacks cloud deployment [11]. In
comparison, the original SGX1 is supported by all Intel desktop
machines from Skylake onwards and is deployed in all major
public clouds [27, 32–34]. Furthermore, MPX support (required
by Occlum [9] and MPTEE [10]) has been discontinued from
Linux 5.6 [13] and GCC 9 [12]. Therefore, building enclave
programs with MPX is no longer possible using the latest Linux
kernel and GCC compiler. Finally, Intel Memory Protection
Keys (MPK) [35], can provide protections similar to MPX but
requires kernel privileges.

IV. THREAT MODEL

CHANCEL prevents the leakage of client data from a remote
program that uses different threads to serve different client (i.e.,
one thread services only one client). To this end, the program
and all its executing threads are considered malicious. In
practice, they can be malicious because: (a) the service provider
deliberately wrote the program to extract users’ confidential
data, or (b) the cloud provider or third-party hackers gain control
of the program (e.g., using ROP attacks [36, 37]). However,
we assume that a malicious thread will not provide the wrong
output since clients could catch such actions, but will attempt
to leak client data through the following strategies.

1) Leak its contained confidential data. Each thread con-
tains data from its respective client, which is confidential.
The thread can try to leak this data by (a) writing outside
its thread context, (b) writing to the shared region between
threads, and (c) passing some information through covert
channels (e.g., system-calls).

2) Leak another thread’s confidential data. A malicious
thread can try to leak sensitive data belonging to other
threads of the program. In addition to all the leakage
techniques mentioned above, a malicious thread can try to
leak such data by sending it to its connected client, who
may be distinct from the client who provided the victim
thread’s confidential data.

Out-of-scope. SGX does not guarantee the availability of the
service. The program can choose not to service a user’s request,
or the enclave might not be scheduled by a malicious OS.

Digital side-channels [38–42] and micro-architectural de-
fects [43–45] are outside this paper’s scope. A malicious thread
can also abuse these issues to covertly pass information outside
the enclave. CHANCEL should be used together with existing
countermeasures [46–50] and the latest patched processors [51]
to address these hardware limitations. We briefly discuss digital
side-channels and micro-architectural defects in §IX. Other
side-channels, e.g., power monitoring, electromagnetic attacks,
and hardware snooping, are also beyond our scope since they
are generally costly to launch and require physical access.

While CHANCEL addresses covert channels due to software
interfaces such as system calls and network communication,
there are some covert channels that it cannot adequately protect,
e.g., the execution time of the enclave. CHANCEL mitigates
information leakage through this channel by ensuring that all
output is sent back at fixed intervals and not in between. The

4

issue can be further addressed by normalizing the execution
time of programs [49, 52]. Nevertheless, this is a low bandwidth
channel, i.e., once every request.

V. DESIGN

This section begins with an overview of CHANCEL (§V-A)
and an operation workflow related to the service provider and
clients (§V-B). Then, it describes CHANCEL’s implementation
of Multi-Client SFI (MCSFI) within an SGX enclave (§V-C).
Finally, it details shared data initialization mechanisms (§V-D),
and CHANCEL’s runtime services (§V-E).

A. Overview

CHANCEL implements Multi-Client SFI, an efficient and
scalable multi-client isolation scheme under adversarial pro-
grams to guarantee client data confidentiality within an SGX
enclave. In particular, CHANCEL guarantees the following
properties:

• P1. Program isolation. The program is isolated from the
untrusted world to prevent direct external leakage.

• P2. Thread isolation. Each thread handles sensitive data
from a single client and is isolated to protect the data
from leakage across thread boundaries.

• P3. Shared memory enforcement. All threads share a
memory region, holding common non-sensitive data, and
enforced with read-only permissions during servicing.

• P4. Encrypted outgoing communication. All data leav-
ing the enclave is encrypted with a shared secret key
known only to the client (of a specific thread).

• P5. Mediated interactions. All interactions between the
program and the untrusted world are fully mediated to
prevent leakage through such channels.

To ensure the properties mentioned above, CHANCEL runs
a sandboxed execution environment, SecureLayer, inside the
enclave. SecureLayer bounds the program’s load and store
operations according to Multi-Client SFI, with three rules. First,
reading or writing outside the enclave by the program is
prohibited (P1). Second, each thread can read and write to
its private memory region (P2). Third, each thread can only
read from memory shared with other threads of the program
(P3).

Besides, SecureLayer provides a shielded communication
interface to allow the program to obtain data from the client and
return its results securely. SecureLayer encrypts all outgoing
data with a corresponding client’s session key so that only the
client can decrypt it (P4). Lastly, SecureLayer provides a set of
required functionalities, e.g., in-enclave filesystem and dynamic
memory allocation. Through this, CHANCEL ensures that all
interactions are handled internally to the enclave and mediated
by SecureLayer (P5).

B. Workflow

The workflow of CHANCEL consists of five steps. The first
two steps (Step-1 and Step-2) can be performed anytime before
running a program, and the following three steps are performed
while the program is running (Figure 2).

Step-1. Agreement (Offline). Both parties, a service provider
and a client, inspect and agree on the implementational details

Enclave

Program
Space

User address space

Service
provider

Enclave

User address space

Client

No leak

Adver.
program

A. Multi-stage loading
(Step-3)

B. Servicing
(Step-4)

A2. Validation

SecureLayer

A3. Load program

SecureLayer

B0. Secure
channel setup

A0. Secure
channel setup

A1. Program
transfer

B1. encrypted
query & result

Fig. 2: Overall workflow of CHANCEL. A) An enclave containing
SecureLayer is created, which then validates and loads a program
provided by the service provider. B) The runtime behavior of the
program is restricted, and SecureLayer mediates all interactions
originating from it to avoid any security threat.

of SecureLayer. In particular, they ensure that the source code
of SecureLayer2 satisfies their security requirements. Then,
each party computes a SHA-256 hash of SecureLayer, which
acts as the trust anchor of their agreement and is required for
verification during SGX remote attestation (Step-3 and Step-4).

Step-2. Program Building (Offline). The service provider
builds a program using CHANCEL’s development toolchain
(i.e., compiler and compatible libraries). CHANCEL’s compiler
enforces its security requirements (§V-C) and outputs a binary
which will be loaded into the enclave (Step-3).

During program building, some service providers obfuscate
program binaries to protect their intellectual property. However,
CHANCEL obviates the need for such obfuscation by guaran-
teeing stronger protection using end-to-end binary encryption
between the service provider and CHANCEL’s enclave (as we
explain in Step-3). Note that since the service provider already
inspected CHANCEL’s implementation (in Step-1), it verified
that CHANCEL would not leak program contents.

Step-3. Multi-stage Loading (Online). This step involves
loading two binaries into the enclave, SecureLayer and the
target program (Step-2).

Initially, the service provider creates an enclave containing
SecureLayer, either locally or on a remote machine (e.g., cloud
machines). Then, SecureLayer obtains the target program’s
binary from the service provider and loads it into the enclave.
More specifically, the second loading phase involves the
following: (a) concerning remote enclaves, SecureLayer and
the service provider mutually authenticate using SGX remote
attestation and the pre-computed hash value; (b) the service
provider sends the encrypted program built during Step-2; (c)
SecureLayer decrypts the program and ensures (using a binary

2To be made available for inspection

5

disassembler) that all desired security properties are applied;
(d) if validation is successful, SecureLayer loads the program
and jumps to the program’s entry point.

Step-4. Servicing (Online). At this point, SecureLayer is wait-
ing for client requests. Upon receiving a request, SecureLayer
provisions an available thread which authenticates to the client
using SGX remote attestation and establishes a secure channel
with the client (e.g., using Diffie-Hellman key exchange).
Then, the client’s data is securely transmitted to the thread.
After receiving the data, all external interactions are encrypted
through SecureLayer using the exchanged session key, thereby
restricting the visibility of all results only to the connected
client. Lastly, to stop covert channels, CHANCEL normalizes
communication patterns (see §V-E for more details).

Step-5. Cleanup (Online). After servicing, SecureLayer clears
the thread’s private region to avoid potential misuse by the
next user of the thread. In particular, SecureLayer cleans up
the thread context, including registers and memory contents.
In some cases, the thread contains some initialization data, i.e.,
data put there by the program before servicing a client. In those
cases, SecureLayer restores the data to its original (unmodified)
version for the next request.

C. Multi-Client SFI (MCSFI)

This section presents CHANCEL’s design of SFI for multiple
clients, which supports thread isolation and enforced sharing
of memory between threads in an enclave, using only low-
overhead compiler instrumentation. CHANCEL’s MCSFI re-
quires a custom memory layout, a mechanism to enforce and
modify permissions during various stages of its executions, and
compiler instrumentation.

Memory layout. Apart from an enclave’s native memory
segments (e.g., .code, .bss), MCSFI requires the following
additional segments: (a) a private region dedicated to each
thread, (b) a shared region available to all threads, and (c) an
extra executable region. In particular, the private region is used
by threads to store client’s sensitive data, the shared region is
provisioned with non-sensitive memory (e.g., a map database),
and the executable region holds the code of the target program.
Based on these requirements, CHANCEL sets up a suitable
enclave layout.

Figure 3a shows the enclave’s memory segments and the size
of their reserved addresses. The SecureLayer memory region
contains the attestation and validation code (and data) required
to load the target program correctly. The rest of the enclave
memory contains per-thread private memory segments (with
guard regions in between), the executable sgx.code segment,
and the sgx.shared segment, which contains data shared by
all threads. The upper limit on the size of each segment (apart
from the guard regions) is configurable as 2n× 4 KB (in our
experiments we use 1 GB segments). The limit must be fixed to
ensure bounded data access and code execution (more details
in §V-C-(c)).

Similarly to other SGX SFI schemes [4, 9], MCSFI requires
static allocation of thread regions and their reserved addresses
at compile-time. In fact, SGX itself requires the specification at
compile-time of the maximum number of threads in an enclave
and SGX1 only allows statically-allocated enclave memory.

Out of Enclave

Out of Enclave

2. Load program
(HW permission)

3. Init shared data
(HW+ SW permission)

5. Service request
(HW+ SW permission

in the view of thread i)

SecureLayer

thread i

thread j

sgx.code

sgx.shared

1GB

1GB

1GB

1GB

(ELF spec) No permission

RWX

RW

RW No permission

No permission

RX

RW

RX

R

r14

r15

r14

r15

No permission

RW

No permission

1GB-aligned
enclave base

4GB-aligned sgx.code region

RW

1GB

(a) Memory Layout

Thread 0

Thread 1

Thread N

…

② Load
adversarial

program
① Setup enclave

③ Init
shared

data

(by multiple
threads)

④ Clone
non-shared

data

(to all
thread)

Enter enclave Wait for request

⑤ Service
request

(b) Timeline

Fig. 3: CHANCEL’s memory layout and permissions enforced during
5 stages of its execution.

While SGX2 allows dynamically increasing the enclave memory,
permitting such allocation would allow the program to leak
confidential information directly through the pages or covertly
through the allocation. Therefore, MCSFI’s required memory
layout fits well with SGX’s design philosophy and ensures
strong security properties.

Furthermore, while MCSFI can theoretically support an
arbitrary number of threads, it is bound by the limited virtual
address space of SGX (i.e., 64 GB). Therefore, considering the
described memory layout (Figure 3a), CHANCEL can support
60 threads when configured with 1 GB segments per thread
(4 GB is reserved for SecureLayer, sgx.code, sgx.shared, and
guard regions). Nevertheless, the size of thread regions can
be configured, e.g., 512 MB segments allow 120 threads. In
real-world scenarios though, CHANCEL does not need to be
configured to support many threads because the latest SGX
processor only supports up to 10 hardware threads [53].

Timeline and permissions. Figure 3b shows the timeline of
CHANCEL’s execution and the permissions enforced at various
execution stages are shown in Figure 3a.

Before loading the target program (1), only hardware
permissions are enforced in the enclave (second column
of Figure 3a). Therefore, SecureLayer can install a received
target program binary (after validation) in sgx.code (2).
After loading, both hardware and software-based mechanisms
(i.e., MCSFI) enforce permissions. At this stage, CHANCEL
allows the program to initialize sgx.shared (3) (explained
in §V-D). For example, a health service could install its drug
database in sgx.shared before handling user queries. However,
before allowing the program to execute, CHANCEL ensures that
all segments of SecureLayer and sgx.code are non-writable,

6

1 ; Before instrumentation
2 movq rax, [rdx] ; rax = *(rdx)
3

4 ; After instrumentation
5 leal r13, [rdx] ; r13 = rdx & (4GB - 1)
6 cmpq r13, r14
7 jge READ_SGX_SHARED ; If r13 >= r14, read sgx.shared
8 ; Otherwise, read from thread i
9 READ_THREAD_LOCAL:

10 andl r13d, 0x3fffffff ; r13 = r13 & (1GB - 1); masking
11 movq rax, [r15 + r13] ; rax = *(r15 + r13)
12 jmp DONE ; jump to DONE
13

14 READ_SGX_SHARED:
15 movq rax, [r13] ; rax = *(r13)
16

17 DONE:
18 ...

Fig. 4: Software enforcement on an indirect memory load instruction.
CHANCEL first checks if destination is less than the base of sgx.code
(i.e., r14), as shown in line 6. If yes, CHANCEL uses r15 as a base
address to read the thread region (lines 9-12). Otherwise, the target is
greater than sgx.code, i.e., cannot be SecureLayer or another thread
region, and is allowed since it can only be sgx.shared (lines 14-15).
It is assumed that r13 is an available register (or spilled beforehand)
and thus used as a temporary register.

1 ; Before instrumentation
2 movq [rdx], rax ; *(rbx) = rax
3

4 ; After instrumentation
5 leal r13d, [rdx] ; r13 = rdx & (4GB - 1)
6 andl r13d, 0x3fffffff ; r13 = r13 & (1GB - 1); masking
7 movq [r15 + r13], rax ; *(r15 + r13) = rax

Fig. 5: Software enforcement on an indirect memory store instruction.
The line 6 clears the upper 34 bits of r13. As a result, r13 becomes
an offset within the thread region. Then, r15+r13 in line 7 becomes
an address in the thread region. It is assumed that r13 is an available
register (or spilled beforehand) and thus used as a temporary register.

preventing modification of its code or the (validated) program
code. After initializing shared data, the program returns to
SecureLayer, which then clones per-thread data (e.g., private
global data) to each thread’s private region (4).

Finally, CHANCEL allows the program to execute in differ-
ent threads and service client requests (refer to §V-E) (5). At
this stage, CHANCEL enforces permissions (illustrated in the
last column of Figure 3a) as follows: (a) read-only permissions
on sgx.shared to ensure that malicious threads cannot tamper
with the service or leak their sensitive data, (b) read-or-execute
permissions on sgx.code to prevent code injection, and (c)
read-or-write permissions on each thread’s private region only
to avoid malicious writes outside a thread context.

Compiler instrumentation. This section explains how
CHANCEL enforces MCSFI during its execution (§V-C-(b))
through compiler instrumentation. Since the target program
must both initialize sgx.shared (i.e., stage 3) and service user
requests from various thread regions (i.e., stage 5), CHANCEL
must dynamically enforce permissions based on the execution
stage and thread context.

CHANCEL takes advantage of per-thread general-purpose
registers, i.e., r14 and r15, to achieve dynamic permissions.
In particular, CHANCEL reserves r14 to hold the base address
of the program’s code (sgx.code). Furthermore, CHANCEL
reserves r15 to hold either (a) the base address of shared region

1 ; Before instrumentation
2 subq rsp, 0x30 ; rsp = rsp - 0x30
3

4 ; After instrumentation
5 subl esp, 0x30 ; rsp = (0xffffffff & rsp)-0x30
6 leaq [r15 + rsp], rsp ; rsp = r15 + rsp

Fig. 6: Updating rsp register. SecureLayer safeguards direct updates
to rsp and rbp, ensuring they stay within a thread’s private region.

1 ; Before instrumentation
2 call rax
3

4 ; After instrumentation
5 andl eax, 0x3fffffe0 ; i.e., mask and align
6 leaq rax, [r14 + rax] ; rax = r14 + rax
7 call rax

Fig. 7: Software enforcement on an indirect branch instruction. The
line 5 clears the upper 34 bits of rax and aligns it with 32 bytes,
similar to the indirect branch enforcement of Native Client [7]. It
prevents the program from bypassing CHANCEL’s instrumentation
checks or jumping outside sgx.code.

(sgx.shared) during shared data initialization (the third column
of Figure 3a) or (b) the base address of each thread’s private
region during servicing (the last column of Figure 3a). Then,
CHANCEL enforces permissions by instrumenting the program’s
control-flow and data-flow instructions using these registers.
The following paragraphs explain CHANCEL’s MCSFI instru-
mentation concerning the servicing stage only but permissions
during initialization are enforced in the same way.

Figure 4 shows how CHANCEL instruments load instructions
to bound them to a thread’s private region and sgx.shared.
In particular, if the target of the load instruction (r13) is less
than the base of sgx.code (r14), the destination is masked to
point to the thread’s private region (see lines 10-12). Otherwise,
CHANCEL allows accessing the original target, since the target
must be sgx.shared.

Figure 5 depicts how CHANCEL instruments store instruc-
tions to bound them to a thread’s private region only. In
particular, line 6 masks the destination to set r13 as the
distance from the base of the thread region (r15). Therefore, the
destination of the store in line 7 (r15+r13) points to the thread
region. Note that this instrumentation also prevents the program
from rewriting the enclave’s executable regions, sgx.code and
SecureLayer.

However, CHANCEL does not need to instrument all load
and store instructions. In particular, CHANCEL confines data-
flow concerning stack objects (e.g., local variables), by ensuring
that the stack registers, rsp and rbp, point to a thread’s private
region (Figure 6). The guard region between segments (shown
in Figure 3a) prevents a malicious stack incursion on another
thread’s private region or code regions.

Moreover, to ensure that the program does not bypass
CHANCEL’s instrumented data-flow checks or execute code
that contains no checks (e.g., SecureLayer), CHANCEL aligns
the target program’s code and instruments every indirect branch
instruction including call, jmp, and ret (Figure 7). In particular,
each valid call target in the program is aligned with 32 bytes
(using nop instructions). Therefore, an indirect branch’s target
is also forced to be aligned with 32 bytes (line 5), which
ensures each transfer is a valid starting address of CHANCEL’s
instrumented indirect branch sequence, i.e., not a direct jump

7

to the call instruction. Then, the indirect branch’s target is
masked to 1 GB (line 5) and redirected using r14 (line 6),
ensuring that the target is within sgx.code.

Importantly, unlike other control-flow checks that are vulner-
able under multi-threaded execution (e.g., shadow stack [54]),
CHANCEL’s checks are thread-safe. In particular, CHANCEL
loads the indirect branch address into a register, performs
all transformations on the register, and jumps to the final
target stored in the register (Figure 7). Since a thread cannot
manipulate another thread’s registers, it cannot divert the other
thread’s control-flow.

Finally, direct memory access (i.e. using an absolute or
rip-relative address) can be abused to read memory belonging
to other threads during execution or overwrite executable pages.
Therefore, CHANCEL validates (§V-B) that the program binary
does not contain direct memory access instructions.

D. Shared Data Initialization

The read-only data, shared between threads, may belong to
global variables, the enclave’s heap, or shared (in-enclave) files.
The service provider specifies the shared data using annotation
(for global objects), run-time specification (for heap objects)
and load-time specification (for shared files). Furthermore,
CHANCEL allows the initialization of shared data both after
program loading and servicing all client requests.

Shared global objects. CHANCEL’s compiler provides an
attribute, annotate("sgx.shared"), to indicate that a certain
global variable is shared. During program loading, CHANCEL
moves the marked global data into sgx.shared.

Shared heap objects. CHANCEL initializes a heap region in
sgx.shared and allows the program to use heap allocation
routines (e.g., malloc, calloc) to allocate and subsequently
initialize shared data within the heap. Importantly, the shared
heap is meant only to share read-only data. While servicing
user requests, each thread writes to an internal heap initialized
at the thread’s private memory region (§V-E).

Shared files. The program developer informs CHANCEL
(during enclave creation) about the program’s required files and
their permissions (i.e., read-only or writable). CHANCEL loads
the read-only files into the sgx.shared segment and exposes
file system routines (§V-E) to permit initialization.

In the future, CHANCEL can automate shared data initial-
ization using static data-flow analysis to determine shared
objects and files, without developer annotation, similar to an
existing SGX automated compartmentalization scheme [55].
Furthermore, if the resulting analysis is too imprecise, it can
be improved through dynamic analysis with a representative
workload [56, 57]. Importantly, developer-assisted identification
does not pose security threats. In particular, shared objects
are read-only during servicing and cannot harm CHANCEL’s
goals. Hence, imprecise or malicious identification only reduces
performance since redundant data exists in thread regions.

E. Runtime Services

SecureLayer provides three runtime services to the pro-
gram: in-enclave file system, dynamic memory allocation, and
shielded client communication.

1 // Receive data from the corresponding client.
2 bool recv(void* buf, uint buflen);
3 // Send data to the corresponding client.
4 bool send(void* buf, uint buflen);
5 // Notify the end of data migration
6 void end_migration();
7 // Terminate the thread.
8 void exit();

Fig. 8: Some runtime interfaces supported by SecureLayer.

In-enclave file system. CHANCEL implements an in-enclave
file system for application compatibility since many applica-
tions, like web servers, extensively use file system abstractions
for operation. To use the file system, the program developer
specifies a list of files, which SecureLayer loads into the enclave
during initialization. In particular, SecureLayer loads the read-
only files into the sgx.shared segment and the writable files
into private thread regions. While servicing client requests,
SecureLayer exposes the POSIX file system routines (e.g.,
open, read) to access these files. Finally, after servicing, the
writable files, in each thread’s private region, are restored to
their original contents to avoid the leakage of confidential data
through overwritten files.

Dynamic memory allocation. CHANCEL provisions each
thread with a private heap, initialized at the thread’s private
region. The size of the internal heap is configurable but must be
specified by the program developer, similar to the heap in native
enclave programs. While servicing user requests, SecureLayer
exposes heap allocation routines (e.g., malloc, calloc) to allow
the thread to dynamically allocate memory from its internal
heap. After servicing a client’s request, the thread’s private
heap contents are cleared to avoid confidential data leakage.

Shielded client communication. CHANCEL mediates the
entire communication between a client and their connected
thread, to avoid direct and covert confidential data leakage
through this communication. Initially, SecureLayer validates
that the program binary does not contain instructions to exit the
enclave, i.e., EEXIT instructions required for SGX system calls
(OCALLs). Then, SecureLayer provisions two API functions,
recv() and send() (Figure 8), allowing a thread to receive or
send client data, respectively. However, to ensure confidentiality,
SecureLayer encrypts all outgoing data with a shared key
established with the concerned client (refer to §V-B). Finally,
to stop covert channels created by the service provider (i.e.,
encode client data into either size or timing of outgoing data),
SecureLayer transmits a fixed size of data at every predefined
time intervals, similar to prior work [4].

Note that, despite encryption, a program could try to
encode sensitive information in the output if it knows the
encrypted output. However, the encrypted output is generated by
SecureLayer, as mentioned previously. Hence, such encoding-
based attempts to exfiltrate sensitive information from the
enclave are unsuccessful.

VI. IMPLEMENTATION

This section describes CHANCEL’s development toolchain
and procedure to build the target program (§VI-A), as well as
SecureLayer’s components, executing in the enclave (§VI-B).

8

A. Program Development Toolchain

The toolchain compiles and instruments a target program
and its shared libraries into a binary (.so) file. The components
of the toolchain are not included in the trusted computing base
(TCB) since SecureLayer validates the instrumentation of the
output binary during program loading. Note that SecureLayer
is not developed using this toolchain.

Compiler. The CHANCEL compiler is based on the LLVM
backend [58] with 1,162 lines of code changes and 94 lines of
linker scripts. The backend instruments the program according
to MCSFI, whereas the linker script provisions a MCSFI-aware
memory layout (§V-C).

Supported C libraries. CHANCEL supports Linux programs
that are built using either tlibc [59], a minimalistic C library
provided by Intel, or musl libc [60], a robust C library which
simplifies program development. For CHANCEL’s musl libc,
we statically removed all routines requiring system calls and
redirected all supported system call functionality (e.g., file
system) to SecureLayer.

Required routines. CHANCEL expects the program to have
two additional routines, shared_init, which initializes shared
data, and service, which services a client’s request. These
routines are not unique since they are required for any program
that processes client requests. CHANCEL’s only additional
requirement is that the service routine must use the shielded
client communication (§V-E) to send and receive data.

B. SecureLayer Components

SecureLayer runs within the enclave, loads and validates a
provided binary, and enables runtime services. Therefore, the
SecureLayer constitutes CHANCEL’s TCB. Table II provides
a breakdown of SecureLayer’s components alongside other
libraries included within the enclave.

Validator. SecureLayer includes an x86 disassembler, based
on Capstone [15], which validates that the provided binary is
correctly instrumented (§V-C).

Loader. The loader is responsible for relocating program
symbols, enforcing MCSFI (i.e., using r14 and r15), and
provisioning the shared (i.e., sgx.shared) and per-thread data
(e.g., private global data).

Runtime services library. This library supports the services
mentioned in §V-E. For heap allocation routines, it includes
wrapper functions (e.g., malloc) but reuses the SGX SDK’s [61]
heap allocation logic to initialize and maintain a heap in private
thread regions. Furthermore, to create secure communication
channels with clients, it uses Intel’s cryptographic library,
tcrypto.

VII. SECURITY ANALYSIS

This section first elaborates on CHANCEL’s defenses against
attempts to bypass its instrumentation either using existing
code or by injecting code. Then, it describes how CHANCEL’s
instrumentation prevents the extraction of sensitive client data.
Finally, this section presents our validation results based on
several implemented attacks. Table III provides an overview of
all attacks and defenses.

Component KLoc Base

SecureLayer
Validator 53 Capstone [15]
Loader 1.3 -
Runtime services library 0.5 -

C library 15 / 66 tlibc [59] / musl [60]
Crypto library 23 tcrypto [62]

Total 92.8 / 143.8

TABLE II: CHANCEL’s components included in the enclave.

Prevent instrumentation bypass using existing code. The
attacker can attempt code reuse attacks to bypass CHANCEL’s
instrumentation checks (e.g., jump directly to a mov instruction),
execute code that does not contain instrumentation checks (e.g.,
SecureLayer), or modify general-purpose registers (e.g., r14,
rbp) to render instrumentation checks ineffective.

CHANCEL prevents all such attempts by restricting the code
that the attacker can execute. During compilation, CHANCEL
aligns all valid call targets in the program with 32 bytes. Then,
CHANCEL instruments control-flow instructions (e.g., call,
jmp, ret) to ensure that indirect branch targets are aligned with
32 bytes to prevent the attacker from jumping to the middle
of an instrumentation sequence (Figure 7). The control-flow
instrumentation also ensures that the attacker can only execute
code within sgx.code, preventing code reuse attacks involving
the remaining enclave code (i.e., SecureLayer and others), not
located in sgx.code.

Furthermore, CHANCEL protects instrumentation-critical
registers, i.e., r14, r15, rbp, and rsp. In particular, the target
program is not allowed to contain instructions to modify r14 or
r15, while all explicit updates to rbp and rsp are instrumented
to ensure they remain within the thread’s region (Figure 6).
Finally, while some pre-loaded enclave code (e.g., asm_oret)
can also modify these registers [37], all such code is part of
SecureLayer, and is not executable by the program.

Prevent instrumentation bypass using injected code. The
attacker might try to inject malicious code into either of
the two executable regions, i.e., SecureLayer or sgx.code.
However, CHANCEL instruments memory writes (Figure 5),
which ensures that the program cannot modify these regions.
Furthermore, CHANCEL prevents stack operations (e.g., push)
from overflowing to code regions using guard pages. Finally,
the attacker might use SGX2 instructions (e.g., EACCEPT and
EMODPE) to add additional executable pages, during execution,
and inject their malicious code. Such instructions are caught
during validation since they are forbidden.

Prevent extraction of confidential client data. The previous
sections explain how CHANCEL ensures that its instrumentation
is not bypassed. This section explains how CHANCEL’s instru-
mentation prevents the extraction of confidential data from the
enclave.

CHANCEL prevents the program from leaking sensitive
client data by ensuring that all memory writes target each
thread’s private region (Figure 5). CHANCEL also prevents
malicious writes using stack operations (e.g., push) through
guard pages (Figure 3a) and instrumentation of explicit updates
to stack registers (Figure 6), ensuring all stack operations
are in the thread’s private region. Furthermore, to prevent the

9

Attack goal Detailed attack method Defence

Instr. bypass using existing code
Jump after checks jmp, call, or ret using register Aligned (32-bytes) indirect branch transfers (Figure 7)
Jump outside sgx.code jmp, call using register Mask branch target and redirect to sgx.code (Figure 7)

An invalid return (ret) Instrument pop, mask target, and redirect to sgx.code (Figure 7)
Modify r14 or r15 Assembly instructions in target binary Caught during validation (§V-B)

Use SecureLayer code (e.g., asm_oret [37]) Not located in sgx.code; therefore, not executable

Instr. bypass using injected code
Modify SecureLayer or sgx.code Write using register Instrumented to target thread region only (Figure 5)

Update rsp, rbp and push Ensure rbp, rsp point to thread region (Figure 6);
Guard page before thread regions

Add new code pages Use SGX2 instructions (EACCEPT) Caught during validation (§V-B)

Extract confidential client data
Read from other threads Read using register Instrumented to target thread region and sgx.shared (Figure 4)

Update rsp, rbp and pop Instrumented to ensure rbp, rsp point to thread region (Figure 6);
Guard page after thread regions

Write outside the enclave Write using register Instrumented to target thread region only (Figure 5)
EEXIT and leak values in registers EEXIT is caught during validation (§V-B)

Others Save thread data and leak it later Clear thread region after servicing each user (§V-B)
Absolute or PC-relative access Caught during validation (§V-B)

TABLE III: CHANCEL’s defenses against various attack vectors. Instr. means instrumentation.

program from disclosing memory outside the enclave through
SGX system calls (i.e., OCALLs), CHANCEL validates that the
program binary does not contain EEXIT instructions. Hence, all
outside communication is through CHANCEL’s shielded service
(§V-E), which ensures confidentiality through encryption using
a shared key with the concerned client.

Furthermore, CHANCEL instruments load instructions (Fig-
ure 4) to prevent a thread from directly reading another thread’s
private memory region and leaking the sensitive client data
belonging to that thread. Finally, guard pages between thread
regions and instrumented updates to stack pointers prevent the
abuse of pop instructions to read data from other threads.

Defense validation. To confirm that CHANCEL can stop these
attacks, we implemented and attempted the attacks mentioned
in Table III. Our results indicate that all specified attacks
are prevented either because (a) SecureLayer detects incor-
rect instrumentation during program validation; (b) hardware
permissions prevent exploitation (e.g., overflows on guard pages,
jumps to non-executable pages etc.); or (c) clearing of thread-
specific data during cleanup.

VIII. PERFORMANCE EVALUATION

In this section, we provide a performance evaluation of
CHANCEL with the goal of answering the following questions:

• How does CHANCEL compare to a multi-process sand-
box (§VIII-A)?

• What is the overhead of CHANCEL on benchmarking
applications (§VIII-B)?

• How does CHANCEL perform for real-world target scenar-
ios (§VIII-C)?

Experimental setup. All experiments were conducted on an
Intel (R) Core (TM) i7-6700K CPU 3.40GHz (4 cores and 8
threads) and 64GB RAM (128 MB for EPC). The machine ran
a 64-bit Ubuntu 16.04.5 LTS with Linux version 4.4.207. We
ran our SGX enclaves using Intel SGX SDK v2.2 [61] and
Intel SGX driver v2.6 [63].

16 32 48 64 80
Shared Memory (MB)

101

103

105

Ti
m

e
Ta

ke
n

(m
s)

Native
Chancel-MP
Chancel

16 32 48 64 80
Shared Memory (MB)

102

104

106

108

1010

Pa
ge

 F
au

lts

Fig. 9: (a) Average completion time and (b) the total number of EPC
page faults when the amount of memory shared increases linearly.
CHANCEL is 4.06− 53.70× faster than CHANCEL-MP and incurs a
slowdown of only 0.8− 7.5% over NATIVE.

2 4 6 8
Threads/Processes

101

103

105

Ti
m

e
Ta

ke
n

(m
s)

 Native
Chancel-MP
Chancel

2 4 6 8
Threads/Processes

102

104

106

108

1010
Pa

ge
 F

au
lts

Fig. 10: (a) Average completion time and (b) the total number of EPC
page faults when the number of processes/threads increases linearly.
CHANCEL is 13.59− 41.73× faster than CHANCEL-MP and incurs
an overhead of only 0.2− 1.0% over NATIVE.

Terminology. For each experiment, we compare (a) NATIVE,
referring to an enclave running the target application in multiple
threads, without CHANCEL’s instrumentation, (b) CHANCEL,
which refers to an enclave running CHANCEL’s multi-client
sandbox using multiple threads, and (c) CHANCEL-MP, which
refers to enclaves running CHANCEL but with different enclave
processes rather than threads.

A. Improvement over Multi-Process Sandbox

This section analyzes the performance of CHANCEL in
comparison with a traditional multi-process sandbox approach

10

16 32 48 64 80
Number of Access

101

103

105
Ti

m
e

Ta
ke

n
(m

s)
Native
Chancel-MP
Chancel

16 32 48 64 80
Number of Access

102

104

106

108

1010

Pa
ge

 F
au

lts

Fig. 11: (a) Average completion time and (b) the total number of
EPC page faults when the number of memory accesses to each EPC
page increases linearly. CHANCEL is 37.88 − 48.08× faster than
CHANCEL-MP and incurs an overhead of only 0.1− 0.8% compared
to NATIVE.

Benchmark NATIVE CHANCEL

Slowdown Additional instr.
(iterations/sec) (%) (%)

NUMERIC SORT 906.28 17.09 39.07
BITFIELD 4.55× 108 24.89 40.23
STRING SORT 669.77 22.76 39.99
FP EMULATION 94.72 16.28 38.18
FOURIER 53470.00 2.39 4.21
ASSIGNMENT 23.52 3.44 11.72
IDEA 2962.20 0.63 7.45
HUFFMAN 2535.40 23.40 22.60
NEURAL NET 36.94 12.54 24.78
LU DECOMPOSITION 1066.50 0.91 6.99

Average - 12.43 23.52

TABLE IV: Nbench [22] running inside CHANCEL. The table shows
slowdown incurred and additional instructions executed.

such as Ryoan [4]. Unfortunately, Ryoan [4] used QEMU full-
system emulation because SGX2 CPUs were unavailable at the
time of its publication; hence, its implementation cannot run on
real SGX CPUs. Given these limitations, this section employs
CHANCEL-MP, a variant of CHANCEL that isolates clients in
different enclave processes like Ryoan, for comparison. The
main difference between CHANCEL-MP and Ryoan is that the
former uses CHANCEL’s SFI while the latter employs Native
Client [7]. Nevertheless, CHANCEL’s SFI out-performs Ryoan’s
reported Native Client performance, as we discuss in §VIII-B.
Hence, CHANCEL-MP is a suitable alternative multi-process
sandbox for comparison purposes.

Settings. Our benchmark application allocated a large in-
enclave memory region and sequentially accessed the memory
region. For enclaves running NATIVE and CHANCEL, the
memory was allocated once in sgx.shared and was read by
different enclave threads. However, the memory was cloned
to each enclave process with CHANCEL-MP. The benchmark
application executed as follows: read 8 bytes k times in each
512 KB region of the m MB memory chunk from each thread
or process. Furthermore, we also measured the number of EPC
page faults by hooking the SGX page fault handler. Finally,
we ran each experiment 50 times and report the average.

Results. Figure 9 shows the impact on completion time and
number of page faults while varying the amount of memory
accessed (m). We configured all runs as n = 8 processes/threads
and k = 16. The figure shows that CHANCEL out-performs
CHANCEL-MP by 4.06 − 53.70×. As far as CHANCEL-MP
is concerned, the memory chunk is cloned to each process.

Therefore, it exerts a high memory pressure on the limited
EPC, evident from the considerable increase in page faults, as
we increase m. On the other hand, NATIVE and CHANCEL scale
nicely, incurring no page faults for smaller memory chunks
and fewer page faults otherwise. Note that we observe page
faults starting from 48 MB since some memory is allocated for
SecureLayer components and runtime services (refer to §VI-B).

Furthermore, we show how the performance scales while
increasing the number of enclave threads versus enclave
processes. Figure 10 shows the results while increasing the
process/thread count (n) from 2 to 8 while keeping m = 48 MB
and k = 16. Despite increasing the number of processes,
CHANCEL shows very similar completion times (i.e., less
than 5% overhead for 8 threads compared to 2 threads) and a
similar number of page faults due to the sharing of memory.
Note that our benchmark application uses negligible per-thread
memory; therefore, there is no noticeable increase in page faults
when increasing the number of threads. In contrast, each new
enclave process incurs additional page faults and degrades the
performance of CHANCEL-MP.

Figure 11 depicts the average completion time and number
of EPC page faults when the number of memory accesses
(k) increases with n = 8 processes/threads and m = 48 MB.
In particular, as we increase the number of memory accesses
for CHANCEL-MP, each enclave process accesses an enclave
page for a longer duration, resulting in more contention on the
EPC memory, more page faults, and longer completion time.
In contrast, CHANCEL shares the shared memory page with
other threads; therefore, there is no noticeable increase in page
faults even as we increase k. However, we observe a longer
completion time for CHANCEL and NATIVE as we increase k
because each additional memory access adds latency.

Our experiments show that CHANCEL outperforms a multi-
process sandbox by 4.06−53.70× when increasing the amount
of shared memory, number of accesses, or number of threads.

B. Overhead of CHANCEL

We calculate the overhead of CHANCEL using a popular
benchmarking application, nbench [22]. The application exe-
cutes various CPU and memory-intensive tasks including sorting
algorithms, bit manipulation, and floating point emulation. Each
task is executed for a fixed amount of time and nbench outputs
the average number of iterations it executed per-second (i.e.,
throughput). Nbench has previously been used in the evaluation
of similar SGX systems [10, 64].

Settings. We ran nbench in a non-enclave setting but using
CHANCEL’s program loader and validator, i.e., the setting was
the same as it would be in an enclave. A non-enclave execution
allows us to ascertain the actual cost of CHANCEL without
amortization due to EPC page faults. We ran each test 50 times
and report the average.

Results. Table IV reports both the throughput slowdown and
the number of additional instructions executed (determined
using perf [65]). The performance overhead was 0.91−24.89%,
averaging at 12.43%.

CHANCEL adds overhead due to two reasons: (a) reserving
r14 and r15, which results in more memory-spills due to fewer

11

Application Code CHANCEL Binary

NATIVE CHANCEL Size Load time
(KB) (+%) (MB) (ms)

OSSEC (IDS) 26.17 49.66 123.51 529.94
DrugBank (PIR) 15.22 23.40 2.12 82.12
Recommender (PRS) 55.35 89.23 2.29 84.17
ShieldStore (PIR) 11.65 76.62 2.07 81.23
Snort (IDS) 40.12 100.57 2.04 80.89

TABLE V: Real-world evaluated program statistics. The table shows
each program’s NATIVE code (.text section) size and its increase
due to CHANCEL’s instrumentation. The table also shows the total
instrumented binary size (including code and static data) and its
loading time.

available registers and (b) executing additional instructions
to enforce Multi-Client SFI, which increases overall computa-
tional cycles. Concerning the latter reason, since data accesses
generally outnumber control-flow transfers, CHANCEL’s major
overhead is by the instrumentation checks on data accesses.
Therefore, memory-intensive benchmarks (e.g., NUMSORT and
STRINGSORT) are more affected by CHANCEL and exhibit a
higher overhead.

Note that for some applications (e.g., IDEA and FOURIER),
the number of additional instructions executed by CHANCEL
is minimal; therefore, they exhibit negligible overheads. Such
scenarios happen for two reasons. First, the application is CPU-
intensive; i.e., executes fewer instrumentation checks for data
access. Second, the application mostly performs stack-based
data access (e.g., allocate an array on the stack and perform
computation on the array). In the latter case, CHANCEL has
to execute fewer checks since data access targeting the stack
is protected by ensuring that rsp and rbp always point to a
thread’s private memory region (refer to §V-C).

Therefore, under many scenarios, CHANCEL’s overhead is
low. Importantly, CHANCEL’s performance overhead is compa-
rable or superior to existing SGX SFI implementations [4, 10].
In particular, MPTEE [10] reported an overhead of 0.4− 34%
on nbench, while Ryoan [4] reported an (emulated) overhead of
12− 100% on its evaluated real-world applications. In contrast,
even in highly memory-intensive scenarios, CHANCEL exhibits
a worst-case overhead of less than 25%. Hence, we expect that
CHANCEL is applicable to a wide range of scenarios.

C. Performance with Real-world Programs

Based on CHANCEL’s target scenarios (§III-B), we evaluate
five real-world programs—DrugBank [18, 19], OSSEC [16],
Recommender [21]), ShieldStore [20], and Snort [17].

Common settings. We ran the real-world experiments using
both four and eight clients. The four client setting exhibits
CHANCEL’s realistic performance on our machine when hyper-
threading (HT) is disabled to defeat SGX micro-architectural
defects, as recommended by Intel [51]. In contrast, the eight
client setting shows CHANCEL’s performance with more
capable current SGX CPUs that support eight processor cores
even when hyper-threading is disabled.

Moreover, we ran each program under two workload types,
light (less than 128 MB) and heavy (greater than 128 MB).
This distinction considers whether the workloads are small

sgx.shared NATIVE CHANCEL-MP CHANCEL Improv.

Four clients (HT off)
Light workloads
18 MB 29.48 ms 38.04 ms 31.41 ms 0.21×

(130K) (718 K) (130 K)
36 MB 53.51 ms 169.38 ms 58.13 ms 1.90×

(136K) (1668 K) (136 K)
72 MB 92.11 ms 650.86 ms 100.77 ms 6.45×

(146K) (4442 K) (146 K)
Heavy workloads
144 MB 724.70 ms 1437.23 ms 769.02 ms 0.87×

(2655 K) (11463 K) (2655K)
288 MB 1314.70 ms 2713.26 ms 1335.82 ms 1.03×

(4794 K) (19415 K) (4797K)
576 MB 2625.10 ms 6169.55 ms 2653.58 ms 1.32×

(9106 K) (35752 K) (9112K)

Eight clients (HT on)
Light workloads
18 MB 34.80 ms 178.55 ms 38.10 ms 3.69×

(497 K) (7185 K) (501K)
36 MB 66.07 ms 418.51 ms 69.56 ms 5.02×

(503 K) (8705 K) (508K)
72 MB 111.34 ms 1090.45 ms 125.94 ms 7.66×

(514 K) (13072 K) (538K)
Heavy workloads
144 MB 934.70 ms 2560.97 ms 961.69 ms 1.66×

(2655 K) (24211 K) (2696K)
288 MB 1794.70 ms 6192.66 ms 1948.20 ms 2.18×

(4794 K) (46837 K) (4815K)
576 MB 2925.10 ms 12656.20 ms 3185.80 ms 2.97×

(9106 K) (89373 K) (9948K)

TABLE VI: Average delay (and the number of page faults in the
parenthesis) for inspecting a payload with regex matching in OSSEC.
The overhead imposed by CHANCEL over NATIVE is 2.7− 13.1%.

enough to fit within our machine’s EPC memory (128 MB)
entirely or not. Each thread was allocated 8 MB of private
memory for the NATIVE and CHANCEL experiments. Finally,
we ran each experiment 50 times and report the average.

Table V shows the overall statistics, including code size
and its increase, instrumented binary size and loading time, for
each application.

OSSEC (intrusion detection system). We evaluate OS-
SEC [16], which is a famous and widely-used IDS, using
CHANCEL. OSSEC analyzes packet payloads to detect trojans
and viruses, based on a dictionary of pre-defined signatures.

Settings. We initialized OSSEC using a database of virus
signatures from ClamAV [66]. In the case of NATIVE and
CHANCEL, OSSEC initialized its internal dictionary on the
shared heap. Throughout the experiments, we gradually inserted
a different number of signatures to increase the size of its
dictionary. Then, we analyzed 100 packets (60 bytes each)
from each thread or process, to check for malicious content.

Results. Table VI shows the results obtained on dictionaries
of size 18− 576 MB. In particular, CHANCEL shows a perfor-
mance improvement of 0.21− 7.66× over CHANCEL-MP.

Since OSSEC performs regular expression (regex) matching
to compare a query (packet) with each signature in its dictionary,
a query’s working set and analysis time should increase
proportionally to the dictionary size. We observe that CHANCEL
and NATIVE incur few page faults under light workloads;
hence, they show proportional analysis time increase relative
to the dictionary size. However, CHANCEL-MP shows a
disproportional increase in analysis time due to a significant
number of page faults.

12

sgx.shared NATIVE CHANCEL-MP CHANCEL Improv.

Four clients (HT off)
Light workloads
30MB 411.64 ms 420.79 ms 412.51 ms 0.02×

(82K) (556K) (82K)
60MB 414.80 ms 526.95 ms 419.81 ms 0.12×

(90K) (651K) (90K)
90MB 414.90 ms 564.49 ms 422.92 ms 0.27×

(99K) (670K) (99K)
Heavy workloads
180 MB 413.02 ms 805.98 ms 423.44 ms 0.90×

(322 K) (3227 K) (324K)
360 MB 416.39 ms 2422.80 ms 424.09 ms 4.71×

(346 K) (10073 K) (350K)
480 MB 418.39 ms 3150.80 ms 425.82 ms 6.41×

(429 K) (25389 K) (429K)

Eight clients (HT on)
Light workloads
30 MB 571.12 ms 861.18 ms 616.08 ms 0.38×

(299 K) (5940 K) (299K)
60 MB 569.15 ms 943.80 ms 621.50 ms 0.52×

(309 K) (6015 K) (312K)
90 MB 558.84 ms 1094.59 ms 622.36 ms 0.76×

(309 K) (5706 K) (316K)
Heavy workloads
180 MB 580.53 ms 2579.74 ms 627.95 ms 3.11×

(343 K) (18894 K) (345K)
360 MB 581.87 ms 5666.67 ms 628.47 ms 8.02×

(408 K) (40650 K) (418K)
480 MB 582.75 ms 6960.90 ms 631.71 ms 10.01×

(447 K) (45338 K) (451K)

TABLE VII: Average delay (and the number of page faults in the
parenthesis) to search 2, 000, 000 queries in DrugBank. The overhead
imposed by CHANCEL over NATIVE is 0.2− 11.4%.

Interestingly, under heavy workloads, CHANCEL’s improve-
ment against CHANCEL-MP reduces (0.87− 1.32× with four
clients). In particular, even multi-threaded execution over the
EPC limit incurs many page faults because OSSEC must
access a large amount of memory for reach request. Hence, we
see a significant jump in analysis time even for NATIVE and
CHANCEL. Nevertheless, CHANCEL’s improvement increases
with the increase in dictionary size of heavy workloads and
the number of clients (up to 1.32× and 2.97× with four and
eight clients, respectively). Judging by the observed trend, we
expect more improvement with additional clients and heavier
workloads. Hence, CHANCEL suits IDS applications such as
OSSEC in both light and heavy workloads.

DrugBank (private information retrieval). We use a C hash
map application [19] to act as a secure database for a company
providing drug recommendations. The application uses CRC32-
based hashing to insert and retrieve entries.

Settings. We populated the hash map using a drug database
obtained from the famous DrugBank website [67]. For NATIVE
and CHANCEL, the program used the shared heap to allocate
its backing store. During the experiment, we inserted a varying
number of entries from the database into the hash map. Then,
we searched 2, 000, 000 drug-related queries from the hash map
using each thread or process.

Results. Table VII shows the results obtained while in-
creasing the hash map size from 30− 480 MB. The DrugBank
program has a minimal working set for each query. In particular,
due to hashing, the application retrieves a small set of enclave
pages for each query.

Under light workloads, due to DrugBank’s minimal query
working set, CHANCEL-MP shows reasonable performance—

CHANCEL improves only up to 0.76×. However, under heavy
workloads, the competition for EPC memory increases due to
larger per-enclave hash maps; hence, CHANCEL-MP naturally
incurs more page faults. In contrast, the shared hash map
alongside the minimal query working set ensures that even under
heavy workloads, CHANCEL incurs few additional page faults.
Therefore, CHANCEL further improves over CHANCEL-MP
under heavy workloads (up to 6.41× for four clients). Finally,
like OSSEC, increasing the clients emphasizes CHANCEL’s
improvement (up to 10.01× for eight clients).

Hence, applications like DrugBank, with a minimal query
working set, benefit modestly from CHANCEL under light
workloads but considerably under heavy workloads.

Recommender (product recommendation service). Recom-
mender [21] is an open-source tool that uses Collaborative
Filtering (CF) to suggest products. The tool builds a model
based on a user’s past behavior and the behavior extrapolated
from other users to provide highly accurate suggestions.

Settings. We retrofit an included benchmark that creates a
set of clients and populates their history of product purchases.
Similar to other experiments, the benchmark used the shared
heap to allocate a product catalog under CHANCEL. Then, each
thread/process used the randomly populated client information
to search through and recommend products from the catalog.

Results. Table VIII shows the results as we increase the
product catalog size from 28 MB to 504 MB. We notice a
pattern similar to OSSEC but with CHANCEL having even more
significant performance improvement over CHANCEL-MP (up
to 17.20×) under light workloads. We expect these results
since recommender uses CF on each product in the catalog;
hence, its query working set depends on the catalog size, like
OSSEC. Furthermore, under heavier workloads, CHANCEL’s
performance improvement reduces but remains significant and
shows an upwards trend with increasing catalog size (up to
2.01×). Finally, with eight clients, CHANCEL’s performance
improvement expands to 21.18× and 4.02×, under light and
heavy recommender workloads, respectively.

ShieldStore (private information retrieval). ShieldStore [20]
is an optimized key-value store that reports up to 20× better
performance than memcached [68] in SGX enclaves, through
various key-based optimizations.

Settings. We populated the store using a provided benchmark
that inserts random 16B key-value pairs. Then, we implemented
a custom benchmark to retrieve 100, 000 keys at fixed offsets
relative to the number of populated keys—if 1, 000, 000 keys
were populated initially, the test retrieved every tenth key.

Results. Table IX shows the results obtained with vari-
ous stores ranging from 16 to 384 MB in size. CHANCEL
exhibits a performance improvement over CHANCEL-MP of
0.68− 16.32×. The observed trend is similar to OSSEC and
Recommender—CHANCEL’s performance improvement, with
four clients, in light workloads (up to 11.44×) is better than
on heavy workloads (up to 1.20×). We believe that is because
our benchmark deliberately accesses keys at fixed intervals;
therefore, it retrieves a large portion of the store. Consequently,
CHANCEL and NATIVE also incur many page faults on heavy
workloads, which reduces performance.

13

sgx.shared NATIVE CHANCEL-MP CHANCEL Improv.

Four clients (HT off)
Light workloads
28 MB 1.46 ms 2.22 ms 1.56 ms 0.41×

(94 K) (204 K) (94 K)
56 MB 3.94 ms 13.03 ms 4.19 ms 2.11×

(100 K) (619 K) (100 K)
112 MB 8.45 ms 157.98 ms 8.68 ms 17.20×

(114 K) (2472 K) (114 K)
Heavy workloads
252 MB 420.17 ms 945.41 ms 429.54 ms 1.20×

(2063 K) (12884 K) (2064 K)
378 MB 621.21 ms 1645.87 ms 639.23 ms 1.56×

(2765 K) (17324 K) (2778 K)
504 MB 838.54 ms 2545.92 ms 842.78 ms 2.01×

(3787 K) (21400 K) (3793 K)

Eight clients (HT on)
Light workloads
28 MB 2.17 ms 4.24 ms 2.37 ms 0.78×

(351 K) (2980 K) (353K)
56 MB 4.66 ms 41.57 ms 5.11 ms 7.13×

(357 K) (3926 K) (358K)
112 MB 9.67 ms 217.56 ms 9.78 ms 21.18×

(364 K) (4412 K) (370 K)
Heavy workloads
252 MB 460.49 ms 1879.63 ms 465.40 ms 3.04×

(2081 K) (24200 K) (2092K)
378 MB 682.28 ms 3137.23 ms 702.36 ms 3.47×

(2784 K) (35619 K) (2891K)
504 MB 916.97 ms 4699.94 ms 936.38 ms 4.02×

(3820 K) (52573 K) (3836K)

TABLE VIII: Average delay (and the number of page faults in the
parenthesis) to access a recommendation result. The overhead imposed
by CHANCEL over NATIVE is 1.3− 13.1%.

Nevertheless, like previous programs, eight clients
further improves CHANCEL’s performance, compared to
CHANCEL-MP, by up to 16.32× and 2.92× for light and heavy
workloads, respectively. Furthermore, CHANCEL exhibits an
upward improvement trend, against CHANCEL-MP, in heavy
workloads and servicing more clients. Hence, in real-world
settings, where many clients and heavier workloads are normal,
CHANCEL should significantly outperform CHANCEL-MP for
applications like ShieldStore.

Snort (intrusion detection system). Snort [17] is a widely-
deployed and open-source network intrusion detection system
that is capable of real-time traffic analysis and logging. Snort
routinely publishes its set of rules that aid its detection of
malicious network activity.

Settings. We divided Snort’s official published rules into
different sizes and populated the rules in Snort’s internal
malware database. Then, we examined 3, 000 randomly-created
network packets using snort.

Results. Table X shows the results obtained while using
various databases of sizes 32 to 1047 MB. In general, CHANCEL
exhibits a performance improvement over CHANCEL-MP of
up to 4.14× and 5.24× on four and eight clients, respectively.
The Snort experiment closely resembles DrugBank—minor
performance improvement on light workloads due to a minimal
query working set and a significant improvement on heavy
workloads. Based on the observed trend, we expect CHANCEL’s
performance to improve over CHANCEL-MP as heavier work-
loads are employed or more clients are serviced. Hence, these
results further emphasize our previous finding that minimal
query working set applications, like Snort, greatly benefit from
CHANCEL, especially under heavy workloads and many clients.

sgx.shared NATIVE CHANCEL-MP CHANCEL Improv.

Four clients (HT off)
Light workloads
16 MB 57.11 ms 99.42 ms 59.11 ms 0.68×

(419 K) (1144 K) (419K)
32 MB 61.15 ms 343.02 ms 62.15 ms 4.52×

(420 K) (5868 K) (420K)
64 MB 64.21 ms 823.34 ms 66.21 ms 11.44×

(429 K) (15003 K) (429K)
Heavy workloads
128 MB 508.74 ms 976.25 ms 518.74 ms 0.88×

(3648 K) (33595 K) (3648K)
256 MB 967.50 ms 1930.33 ms 997.06 ms 0.94×

(13222 K) (76968 K) (13275K)
384 MB 1107.10 ms 2465.58 ms 1118.93 ms 1.20×

(22406 K) (108189 K) (22431K)

Eight clients (HT on)
Light workloads
16 MB 90.47 ms 434.33 ms 94.71 ms 3.59×

(595 K) (7401 K) (298K)
32 MB 95.45 ms 488.47 ms 97.80 ms 3.99×

(304 K) (11739 K) (305K)
64 MB 99.31 ms 1739.63 ms 100.44 ms 16.32×

(311 K) (32121 K) (314K)
Heavy workloads
128 MB 696.67 ms 2029.59 ms 719.84 ms 1.82×

(3204 K) (81130 K) (3230K)
256 MB 1245.70 ms 3891.65 ms 1261.72 ms 2.09×

(12325 K) (196678 K) (12434K)
384 MB 1383.82 ms 5664.49 ms 1446.32 ms 2.92×

(21536 K) (303476 K) (21542K)

TABLE IX: Average delay (and the number of page faults in the
parenthesis) to search 100, 000 queries using ShieldStore [20]. The
overhead imposed by CHANCEL over NATIVE is 1.1− 8.4%.

Key takeaways. In realistic scenarios and with a modest num-
ber of clients (4− 8), CHANCEL outperforms CHANCEL-MP
by 0.02−21.18× while only incurring a performance overhead
of 0.2− 13.1% over NATIVE. Importantly, we observe that a
query working set and the number of clients factor considerably
in CHANCEL’s performance improvement over CHANCEL-MP.
We summarize our findings below.

• Programs with a robust query working set (e.g., OSSEC,
ShieldStore, and Recommder) show substantial performance
improvements for CHANCEL over CHANCEL-MP (up to
21.18×) with a light workload due to fewer page faults.
However, such programs under heavy workloads incur high
slowdown even for NATIVE due to many page faults. Hence,
CHANCEL yields lesser yet significant improvements under
heavy workloads (up to 4.02×).

• Programs with a minimal query working set (e.g., DrugBank
and Snort) show modest performance improvements for
CHANCEL over CHANCEL-MP on light workloads. However,
the minimal query working set ensures few page faults even
under heavy workloads. Hence, CHANCEL exhibits huge
improvement over CHANCEL-MP under heavy workloads
and a minimal query working set (up to 10.01×).

• Regardless of the type of query working set and workload,
servicing more clients increases CHANCEL’s performance
improvement over CHANCEL-MP, because the latter adds
enclave processes that incur more page faults.

IX. DISCUSSION

Improvement detection. CHANCEL’s performance improve-
ment over a multi-process sandbox is significant under heavy
workloads. However, the performance gain can be modest

14

sgx.shared NATIVE CHANCEL-MP CHANCEL Improv.

Four clients (HT off)
Light workloads
32 MB 1.23 ms 1.64 ms 1.32 ms 0.24×

(589 K) (2764 K) (688K)
57 MB 1.46 ms 2.05 ms 1.47 ms 0.39×

(688 K) (2876 K) (694K)
92 MB 1.63 ms 2.46 ms 1.67 ms 0.47×

(705 K) (2985 K) (706K)
Heavy workloads
572 MB 1.85 ms 4.93 ms 1.97 ms 1.50×

(857 K) (3694 K) (857K)
868 MB 1.94 ms 8.75 ms 2.17 ms 3.03×

(950 K) (3952 K) (950K)
1047 MB 2.25 ms 12.00 ms 2.34 ms 4.14×

(1011 K) (4176 K) (1013K)

Eight clients (HT on)
Light workloads
32 MB 2.08 ms 2.73 ms 2.15 ms 0.27×

(701 K) (5623 K) (702K)
57 MB 2.21 ms 3.36 ms 2.30 ms 0.46×

(705 K) (5703 K) (710K)
92 MB 2.24 ms 4.20 ms 2.40 ms 0.75×

(714 K) (5776 K) (716K)
Heavy workloads
572 MB 2.95 ms 8.10 ms 3.11 ms 1.61×

(870 K) (6991 K) (872K)
868 MB 3.19 ms 13.19 ms 3.48 ms 2.79×

(968 K) (8453 K) (979K)
1047 MB 3.28 ms 22.57 ms 3.62 ms 5.24×

(1026 K) (10738 K) (1032K)

TABLE X: Average delay (and the number of page faults in the
parenthesis) to inspect 3, 000 packets using Snort [17]. The overhead
imposed by CHANCEL over NATIVE is 0.5− 11.8%.

(less than 0.5×) under light workloads given a minimal
program query working set (refer to §VIII-C). Therefore, to
automatically determine CHANCEL’s utility, a developer could
establish their program’s query working set. Alternatively, a
developer could manually compare CHANCEL’s performance
against CHANCEL-MP without much effort.

A developer can automatically establish their program’s
query working set using tools that can monitor the page
tables [69, 70] during a program’s execution. Such tools log and
periodically reset a page table entry’s referenced (or access)
bit to determine what and how many pages were accessed
by the program. Using such tools, a developer can execute
their program (even a non-SGX version) under representative
workloads to determine its query working set.

Alternatively, a developer can empirically analyze the per-
formance of CHANCEL-MP and CHANCEL without significant
porting efforts. In particular, CHANCEL-MP (like CHANCEL)
supports many native Linux applications, including OSSEC [16],
Snort [17], and Recommender [21], with no existing code
changes and minimal code additions (refer to §VI-A). Hence,
a developer can trivially run many applications with CHANCEL
and CHANCEL-MP to establish performance.

Importantly, even when a developer establishes that a multi-
process sandbox provides good performance for their use-cases,
they might prefer to employ CHANCEL-MP over Ryoan [4]. In
particular, compared to Ryoan, CHANCEL-MP provides higher
performance (refer to §VIII-B), is compatible with all SGX
CPUs, and can even be extended to other TEE implementations
that, like SGX1, lack mechanisms to enforce memory protection
dynamically (as we discuss later in this section).

Defects and side-channels. Although digital side-channels

and micro-architectural defects are out of this work’s scope
(as described in §IV), it is nevertheless helpful to discuss their
potential impact and mitigation.

Micro-architectural defects. Micro-architectural defect-
based attacks (e.g., Foreshadow [44]) are defended by mi-
crocode patches and Intel’s latest hardware [51]. Since SGX
remote attestation can verify that CHANCEL executes on a
patched machine, CHANCEL is secure against these defects.

Cross-thread side-channels. Exploiting side-channels inter-
nally to CHANCEL’s enclave, i.e., from another concurrently
executing thread, is non-trivial, under CHANCEL’s sandboxing.
Specifically, an enclave thread can only perform non-privileged
side-channel attacks, involving resource contention (e.g., cache
attacks) and, to be practical, a reliable, fine-grained timer source.
However, such timer sources are unavailable within the enclave
since CHANCEL (a) does not permit hardware timers, which
are unsupported in SGX1 and caught during validation in
SGX2, (b) does not allow collaboration between threads, which
would otherwise allow relative measurement of time [41], and
(c) controls (and normalizes) a thread’s network interactions.
Therefore, CHANCEL should not be worse than a multi-process
sandbox regarding such attacks.

Host-based side-channels. CHANCEL requires appropri-
ate counter-measures to defeat side-channel attacks that are
launched externally from the host. Such attacks might involve
collusion between the host OS and the untrusted enclave
program to extract information. The known host-based side-
channel attacks against SGX enclaves are page-table [38, 39],
cache [40, 41, 71], branch-prediction [42, 72], port [73] and
TLB [74] attacks. However, port and TLB attacks require
hyper-threading; since a user can ensure that hyper-threading
is disabled using SGX remote attestation, also needed to defeat
Foreshadow [51], these attacks are defeated.

Existing SGX research has extensively analyzed and
implemented defenses [25, 42, 46, 47, 52, 75–78] against
the remaining host-based side-channel attacks. In particular,
Varys [46] prevents page-table and cache attacks by intercepting
enclave exits to obfuscate the page and cache-set access patterns
leaked to the OS. Additionally, to defend branch prediction
side-channels, Lee et. al proposed zigzagger [42], a trampoline
solution that obfuscates all branches taken by the enclave
program. Both defenses are compiler-enforced and report
modest overheads (15% on average). In the future, CHANCEL
can be extended to automatically enable these defenses.

Non-x86 TEE extension. CHANCEL can be extended to other
Trusted Execution Environments (TEEs) since it does not
require architecture-specific features, unlike other SGX SFI
implementations (e.g., Occlum [9] requires MPX). In particular,
MCSFI only requires general-purpose registers; hence it can be
extended to TEEs based on RISC-V CPUs, e.g., Sanctum [79]
or Keystone [80]. Furthermore, CHANCEL can also be extended
to ARM CPUs, like Native Client’s extension [81], but existing
ARM TEEs lack hardware memory encryption [82], crucial to
ensure client data confidentiality on cloud machines.

Importantly, CHANCEL’s extension to RISC-V TEEs like
Sanctum or Keystone would benefit both parties. On the one
hand, CHANCEL would benefit from the robust and high-
performance side-channel defenses implemented by Sanctum

15

and Keystone. On the other hand, these TEEs would benefit
from CHANCEL in adversarial scenarios since they also provide
limited trusted memory, like SGX. For example, Sanctum builds
on an SGX-like memory encryption engine that provides hard-
ware integrity; hence, it can only support 128−256 MB trusted
memory. Similarly, Keystone provides full confidentiality and
integrity protection only to enclaves that reside on the caches—
only a few MBs in current machines.

Multiple services. CHANCEL can handle scenarios where the
program must send client data or intermediate computational
results to other services. For instance, a recommendation system
needs to retrieve a product’s image file from a backend database.
To handle such scenarios, all services must execute in different
CHANCEL instances, attest each other using SGX remote (if
different machines) or local attestation, and then share secret
keys and encrypted client data or intermediate results.

Client endpoints. Service providers that employ CHANCEL
but require an application installed on the client’s machine
to access the service should publicly release the application’s
source code, like Signal [2]. Hence, the client (or third-parties)
can inspect the application to ensure data confidentiality. Note
that this is not an issue in many instances where the client
endpoint is trusted (e.g., web-browser-based services).

X. RELATED WORK

Other SGX permission enforcement schemes. This section
discusses other SGX permission enforcement schemes aside
from those already discussed in §III-C.

VC3 [5] aims to securely process data under the
Hadoop [83] framework by providing software-based self-
integrity mechanisms. It also offers a compiler invariant to
prevent data leakage through unsafe memory accesses but
only addresses benign mistakes rather than intentional memory
leakage since it does not consider adversarial programs. Also,
unlike CHANCEL, it is not designed for multi-client scenarios
in a single enclave. Furthermore, Rohit et al. [84] introduce a
runtime library that offers an interface to communicate outside
the enclave securely. They provide a framework to automatically
verify applications and ensure that they meet confidentiality
guarantees. However, their model does not cater to covert
channels or consider multi-client scenarios.

SGX-SHIELD [64] enables in-enclave Address Space
Layout Randomization (ASLR) using executable data pages
and a software data execution prevention technique (using r15).
However, SGX-SHIELD is concerned with a different threat
model (i.e., memory vulnerabilities). Therefore, it does not
prevent data leakage from adversarial programs, and does not
support thread isolation or shared memory enforcement.

General-purpose SGX research. Library OS schemes [9, 85–
88] allow running unmodified applications in an enclave.
CHANCEL is compatible with the library OS model. In
particular, a library OS can be installed within SecureLayer to
provide more generic functionality to the enclave. Furthermore,
some library OS [86, 87] use program loaders, similar to
CHANCEL, but do not enforce W⊕X on executable data pages,
making them vulnerable to code-injection attacks. Such schemes
can benefit from CHANCEL’s MCSFI enforcement.

Iago attacks. SGX is vulnerable to Iago attacks [89] since
it relies on the OS for ring-0 operations. CHANCEL prevents
filesystem-related Iago attacks by providing in-memory filesys-
tem functionality at runtime. In the future, it can be integrated
with LibOS schemes [85, 87, 88] to provide full protection.

General SFI research. Wahbe et al. [90] suggested a novel
way to isolate faults in a software-based manner. XFI, BGI,
and LXFI [91–93] design further SFI mechanisms to isolate
Windows kernel modules. Among SFI research, the design of
CHANCEL is inspired by Native Client (NaCl) [7, 94]. However,
CHANCEL identifies and overcomes various challenges to
propose an SFI scheme that is both SGX-compatible and
supports multi-client isolation in a single principle, without
relying on strict hardware requirements (e.g., Intel MPX).

Computation on encrypted data. Homomorphic encryp-
tion [95, 96] and order-preserving encryption [97] can protect
client data on untrusted machines. Various systems [98, 99]
allow secure computation using such techniques but suffer from
high overheads and limited scenarios, unlike CHANCEL.

XI. CONCLUSION

This paper presents CHANCEL, a system ensuring efficient
multi-client isolation under adversarial programs. CHANCEL
uses Multi-Client SFI (MCSFI), which supports thread isolation
and shared memory enforcement, thereby ensuring secure
servicing of multiple clients in different threads of an enclave
while permitting the secure sharing of non-sensitive data. Our
evaluation showed that CHANCEL outperforms a multi-process
sandbox by 4.06 − 53.70× while providing strong security
guarantees.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable comments and suggestions. This work was partly
supported by a National Research Foundation (NRF) of Korea
grant funded by the Korea government MSIT (No. NRF-
2019R1C1C1006095) and an Institute for Information and
communications Technology Promotion (IITP) grant funded by
the Korea government (MSIT) (No. 2020-0-01840, Analysis on
technique of accessing and acquiring user data in smartphone).
The Institute of Engineering Research at Seoul National
University provided research facilities for this work.

REFERENCES

[1] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we
remember: cold-boot attacks on encryption keys,” in Proceedings of the
17th USENIX Security Symposium (Security), San Jose, CA, Jul.–Aug.
2008.

[2] “Signal » home,” 2019. [Online]. Available: {https://signal.org}
[3] “Technology preview: Private contact discovery for signal,” 2019.

[Online]. Available: {https://signal.org/blog/private-contact-discovery/}
[4] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed

sandbox for untrusted computation on secret data,” in Proceedings
of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Savannah, GA, Nov. 2016.

[5] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “Vc3: Trustworthy data analytics in the cloud
using sgx,” in Proceedings of the 36th IEEE Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2015.

16

{https://signal.org}
{https://signal.org/blog/private-contact-discovery/}

[6] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos: Exitless
os services for sgx enclaves.” in Proceedings of the 11th European
Conference on Computer Systems (EuroSys), Belgrade, Serbia, Apr. 2017.

[7] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar, “Native client: A sandbox for portable,
untrusted x86 native code,” in Proceedings of the 30th IEEE Symposium
on Security and Privacy (Oakland), Oakland, CA, May 2009.

[8] N. Boucher, “Multi-domain sfi.” [Online]. Avail-
able: {https://github.com/nickboucher/Multi-Domain-SFI/blob/master/
paper/Multi%20Domain%20SFI.pdf}

[9] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and S. Yan,
“Occlum: Secure and efficient multitasking inside a single enclave of
intel sgx,” in Proceedings of the 23th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Lausanne, Switzerland, Apr. 2020.

[10] W. Zhao, K. Lu, Y. Qi, and S. Qi, “Mptee: Bringing flexible and efficient
memory protection to intel sgx,” in Proceedings of 12th European
Conference on Computer Systems (EuroSys), Heraklion, Greece, 2020.

[11] “Sgx-hardware.” [Online]. Available: {https://github.com/ayeks/SGX-
hardware}

[12] “Intel mpx support removed from gcc 9,” https://www.phoronix.com/
scan.php?page=news_item&px=MPX-Removed-From-GCC9.

[13] “Intel mpx support is dead with linux 5.6,” https://www.phoronix.com/
scan.php?page=news_item&px=Intel-MPX-Is-Dead.

[14] “The llvm compiler infrastructure,” 2016. [Online]. Available:
http://llvm.org/

[15] “Capstone. the ultimate disassembler,” 2017, http://www.capstone-engine.
org.

[16] “Ossec hids,” 2017, http://ossec.github.io.
[17] “Snort ids,” 2016. [Online]. Available: https://www.snort.org/
[18] D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali,

P. Stothard, Z. Chang, and J. Woolsey, “Drugbank: A comprehensive
resource for in silico drug discovery and exploration,” Nucleic acids
research, vol. 34, no. suppl 1, pp. D668–D672, 2006.

[19] “petewarden/c_hashmap.” [Online]. Available: {https://github.com/
petewarden/c_hashmap}

[20] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh, “Shieldstore: Shielded in-
memory key-value storage with sgx,” in Proceedings of the 11th European
Conference on Computer Systems (EuroSys), Dresden, Germany, Apr.
2019.

[21] Ghamrouni, “Recommender is a c library for product
recommendations/suggestions using collaborative filtering (cf),” 2016.
[Online]. Available: http://ghamrouni.github.io/Recommender/index.html

[22] “Linux/unix nbench.” [Online]. Available: http://www.tux.org/~mayer/
linux/bmark.html

[23] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.” in HASP@ ISCA, 2013, p. 10.

[24] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptology ePrint
Archive, vol. 2016, p. 86, 2016.

[25] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “Obliviate: A data
oblivious file system for intel sgx,” in Proceedings of the 2018 Annual
Network and Distributed System Security Symposium (NDSS), San Diego,
CA, Feb. 2018.

[26] “General data protection regulation.” [Online]. Available: {https://gdpr-
info.eu/}

[27] M. Azure, “Azure confidential computing,” https://azure.microsoft.com/en-
us/blog/azure-confidential-computing/, 2018.

[28] “Metadefender cloud.” [Online]. Available: {https://metadefender.opswat.
com/?lang=en}

[29] “virustotal.” [Online]. Available: {https://www.virustotal.com/gui/home/
upload}

[30] “Jotti virus scan.” [Online]. Available: {https://virusscan.jotti.org/en-
US/scan-file}

[31] “Amazon personalize.” [Online]. Available: {https://aws.amazon.com/
personalize/}

[32] P. Karnati, “Data-in-use protection on ibm cloud using intel
sgx,” https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-
using-intel-sgx.

[33] “Packet platform features,” https://www.packet.com/cloud/features/.
[34] “Ecs bare metal instances,” https://www.alibabacloud.com/product/ebm.
[35] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “libmpk: Software

abstraction for intel memory protection keys (intel mpk),” in Proceedings
of the 2019 USENIX Annual Technical Conference (ATC), Renton, WA,
Jun. 2019.

[36] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,

“Hacking blind,” in Proceedings of the 35th IEEE Symposium on Security
and Privacy (Oakland), San Jose, CA, May 2014.

[37] A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R. Sadeghi, “The
guard’s dilemma: Efficient code-reuse attacks against intel SGX,” in Pro-
ceedings of the 27th USENIX Security Symposium (Security), Baltimore,
MD, Aug. 2018.

[38] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-based attacks
on enclaved execution,” in Proceedings of the 26th USENIX Security
Symposium (Security), Vancouver, BC, Aug. 2017.

[39] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems,” in Proceedings of
the 36th IEEE Symposium on Security and Privacy (Oakland), San Jose,
CA, May 2015.

[40] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R.
Sadeghi, “Software grand exposure: SGX cache attacks are practical,” in
11th USENIX Workshop on Offensive Technologies (WOOT), Vancouver,
BC, 2017.

[41] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, “Malware
guard extension: Using sgx to conceal cache attacks,” in Proceedings of
the Conference on Detection of Intrusions and Malware Vulnerability
Assessment (DIMVA), 2017.

[42] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside SGX enclaves with branch shadowing,”
in Proceedings of the 26th USENIX Security Symposium (Security), Balti-
more, MD, Aug. 2017.

[43] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in Proceedings of the 40th
IEEE Symposium on Security and Privacy (Oakland), San Jose, CA, May
2019.

[44] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in Proceedings of the 27th USENIX Security Symposium
(Security), Balti-more, MD, Aug. 2018.

[45] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre
attacks: Leaking enclave secrets via speculative execution,” CoRR, vol.
abs/1802.09085, 2018.

[46] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer,
“Varys: Protecting SGX enclaves from practical side-channel attacks,”
in Proceedings of the 2018 USENIX Annual Technical Conference (ATC),
Boston, MA, Jun. 2018.

[47] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating
controlled-channel attacks against enclave programs,” in Proceedings
of the 2017 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2017.

[48] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing your
faults from telling your secrets: Defenses against pigeonhole attacks,”
arXiv preprint arXiv:1506.04832, 2015.

[49] A. Rane, C. Lin, and M. Tiwari, “Raccoon: closing digital side-channels
through obfuscated execution,” in Proceedings of the 24th USENIX
Security Symposium (Security), Washington, DC, Aug. 2015.

[50] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Thwarting
cache side-channel attacks through dynamic software diversity,” in
Proceedings of the 2015 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2015.

[51] “Engineering new protections into hardware.” [Online].
Available: {https://www.intel.com/content/www/us/en/architecture-and-
technology/engineering-new-protections-into-hardware.html}

[52] A. Ahmad, B. Joe, Y. Xiao, Y. Zhang, I. Shin, and B. Lee, “Obfuscuro: A
commodity obfuscation engine for intel sgx,” in Proceedings of the 2019
Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, Feb. 2019.

[53] “Intel R⃝ coreTM i9-10900k processor.” [Online]. Avail-
able: {https://www.intel.com/content/www/us/en/products/processors/
core/core-vpro/i9-10900k.html}

[54] N. Burow, X. Zhang, and M. Payer, “Sok: Shining light on shadow
stacks,” IEEE Symposium on Security and Privacy (SP), May 2019.

[55] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L. Aublin,
F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza, C. Fetzer,
and P. Pietzuch, “Glamdring: Automatic application partitioning for intel
SGX,” in Proceedings of the 2017 USENIX Annual Technical Conference
(ATC), Santa Clara, CA, 2017.

[56] Z. Gu, B. Saltaformaggio, X. Zhang, and D. Xu, “Face-change:

17

{https://github.com/nickboucher/Multi-Domain-SFI/blob/master/paper/Multi%20Domain%20SFI.pdf}
{https://github.com/nickboucher/Multi-Domain-SFI/blob/master/paper/Multi%20Domain%20SFI.pdf}
{https://github.com/ayeks/SGX-hardware}
{https://github.com/ayeks/SGX-hardware}
https://www.phoronix.com/scan.php?page=news_item&px=MPX-Removed-From-GCC9
https://www.phoronix.com/scan.php?page=news_item&px=MPX-Removed-From-GCC9
https://www.phoronix.com/scan.php?page=news_item&px=Intel-MPX-Is-Dead
https://www.phoronix.com/scan.php?page=news_item&px=Intel-MPX-Is-Dead
http://llvm.org/
http://www.capstone-engine.org
http://www.capstone-engine.org
http://ossec.github.io
https://www.snort.org/
{https://github.com/petewarden/c_hashmap}
{https://github.com/petewarden/c_hashmap}
http://ghamrouni.github.io/Recommender/index.html
http://www.tux.org/~mayer/linux/bmark.html
http://www.tux.org/~mayer/linux/bmark.html
{https://gdpr-info.eu/}
{https://gdpr-info.eu/}
https://azure.microsoft.com/en-us/blog/azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/azure-confidential-computing/
{https://metadefender.opswat.com/?lang=en}
{https://metadefender.opswat.com/?lang=en}
{https://www.virustotal.com/gui/home/upload}
{https://www.virustotal.com/gui/home/upload}
{https://virusscan.jotti.org/en-US/scan-file}
{https://virusscan.jotti.org/en-US/scan-file}
{https://aws.amazon.com/personalize/}
{https://aws.amazon.com/personalize/}
https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx
https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx
https://www.packet.com/cloud/features/
https://www.alibabacloud.com/product/ebm
{https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html}
{https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html}
{https://www.intel.com/content/www/us/en/products/processors/core/core-vpro/i9-10900k.html}
{https://www.intel.com/content/www/us/en/products/processors/core/core-vpro/i9-10900k.html}

Application-driven dynamic kernel view switching in a virtual machine,”
in Proceedings of 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2014.

[57] M. Abubakar, A. Ahmad, P. Fonseca, and D. Xu, “Shard: Fine-grained
kernel specialization with context-aware hardening,” in Proceedings of
the 30th USENIX Security Symposium (Security), Vancouver, BC, Aug.
2021.

[58] “Writing an llvm backend,” 2017, http://llvm.org/docs/
WritingAnLLVMBackend.html.

[59] “linux-sgx/sdk/tlibc/.” [Online]. Available: {https://github.com/intel/linux-
sgx/tree/master/sdk/tlibc}

[60] “musl-libc,” 2017, https://www.musl-libc.org.
[61] 01org, “Intel(r) software guard extensions for linux* os (source code),”

2016, https://github.com/01org/linux-sgx.
[62] “linux-sgx/sdk/tlibcrypto/.” [Online]. Available: {https://github.com/intel/

linux-sgx/tree/master/sdk/tlibcrypto}
[63] 01org, “Intel(r) software guard extensions for linux* os (linux sgx driver),”

2016, https://github.com/01org/linux-sgx-driver.
[64] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim, “Sgx-

shield: Enabling address space layout randomization for sgx programs,”
in Proceedings of the 2017 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2017.

[65] “Perf wiki.” [Online]. Available: {https://perf.wiki.kernel.org/index.php/
Main_Page}

[66] ClamAV, “ClamAV,” https://www.clamav.net/, 2018.
[67] “Drugbank,” 2017. [Online]. Available: http://www.drugbank.ca
[68] “memcached - a distributed memory object caching system.” [Online].

Available: {https://memcached.org/}
[69] “How to measure the working set size on linux.” [Online]. Available:

{http://www.brendangregg.com/blog/2018-01-17/measure-working-
set-size.html#:~:text=The%20Working%20Set%20Size%20(WSS,
capacity%20planning%20and%20scalability%20analysis.}

[70] “Dynamorio.” [Online]. Available: {https://dynamorio.org/}
[71] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, “Malware

guard extension: Using sgx to conceal cache attacks,” arXiv preprint
arXiv:1702.08719, 2017.

[72] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev,
“Branchscope: A new side-channel attack on directional branch predictor,”
in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2018.

[73] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. García, and N. Tuveri,
“Port contention for fun and profit,” in Proceedings of the 40th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May 2019.

[74] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside
buffer: Defeating cache side-channel protections with {TLB} attacks,”
in Proceedings of the 27th USENIX Security Symposium (Security),
Baltimore, MD, Aug. 2018.

[75] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa,
“Strong and efficient cache side-channel protection using hardware
transactional memory,” in Proceedings of the 27th USENIX Security
Symposium (Security), Vancouver, BC, 2016.

[76] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani,
and M. Costa, “Oblivious multi-party machine learning on trusted
processors,” in Proceedings of the 25th USENIX Security Symposium
(Security), Austin, TX, Aug. 2016.

[77] S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zerotrace: Oblivious memory
primitives from intel sgx,” in Proceedings of the 2018 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2018.

[78] H. Oh, A. Ahmad, S. Park, B. Lee, and Y. Paek, “Trustore: Side-channel
resistant storage for sgx using intel hybrid cpu-fpga,” in Proceedings of
the 2020 ACM Conference on Computer and Communications Security
(CCS), Virtual Event, USA, Oct. 2020.

[79] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” Cryptology ePrint Archive,
Report 2015/564, 201 5. http://eprint. iacr. org, Tech. Rep.

[80] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Keystone:
An open framework for architecting trusted execution environments,” in

Proceedings of the 12th European Conference on Computer Systems
(EuroSys), Heraklion, Greece, Apr. 2020.

[81] “Native client on arm.” [Online]. Available: {NativeClientsupportonARM}
[82] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “Sok: Understanding

the prevailing security vulnerabilities in trustzone-assisted tee systems,”
in Proceedings of the 41st IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2020.

[83] “Apache hadoop project,” 2017. [Online]. Available: http://hadoop.
apache.org

[84] R. Sinha, M. Costa, A. Lal, N. Lopes, S. Seshia, S. Rajamani, and
K. Vaswani, “A design and verification methodology for secure isolated
regions,” in Proceedings of the 2016 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Jun. 2016.

[85] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from
an untrusted cloud with haven,” in Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
Broomfield, Colorado, Oct. 2014.

[86] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.
Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter, “Cooperation
and security isolation of library oses for multi-process applications,”
in Proceedings of the 9th European Conference on Computer Systems
(EuroSys), Amsterdam, The Netherlands, Apr. 2014.

[87] C. che Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library
os for unmodified applications on sgx,” in Proceedings of the 2017
USENIX Annual Technical Conference (ATC), Santa Clara, CA, Jun.
2017.

[88] S. Shinde, D. Le Tien, S. Tople, and P. Saxena, “Panoply: Low-tcb
linux applications with sgx enclaves,” in Proceedings of the 2017 Annual
Network and Distributed System Security Symposium (NDSS), San Diego,
CA, Feb. 2017.

[89] S. Checkoway and H. Shacham, “Iago attacks: Why the system call
api is a bad untrusted rpc interface,” in Proceedings of the 18th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Houston, TX, Mar. 2013.

[90] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in ACM SIGOPS Operating Systems
Review, vol. 27, no. 5. ACM, 1994, pp. 203–216.

[91] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, “Xfi:
Software guards for system address spaces,” in Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Seattle, WA, Nov. 2006.

[92] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly,
P. Barham, and R. Black, “Fast byte-granularity software fault isolation,”
in Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP), Big Sky, MT, Oct. 2009.

[93] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F. Kaashoek,
“Software fault isolation with api integrity and multi-principal modules,”
in Proceedings of the 23rd ACM Symposium on Operating Systems
Principles (SOSP), Cascais, Portugal, Oct. 2011.

[94] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf, B. Yee,
and B. Chen, “Adapting software fault isolation to contemporary cpu
architectures.” in Proceedings of the 19th USENIX Security Symposium
(Security), Washington, DC, Aug. 2010.

[95] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption
from ring-lwe and security for key dependent messages,” in Proceedings
of the 31st Annual Conference on Advances in Cryptology (CRYPTO),
2011.

[96] C. Gentry, A fully homomorphic encryption scheme. Stanford University,
2009.

[97] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill, “Order-preserving
symmetric encryption,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2009.

[98] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb:
protecting confidentiality with encrypted query processing,” in Proceed-
ings of the 23rd ACM Symposium on Operating Systems Principles
(SOSP), Cascais, Portugal, Oct. 2011.

[99] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data.” in Proceedings of the 2015 Annual
Network and Distributed System Security Symposium (NDSS), San Diego,
CA, Feb. 2015.

18

http://llvm.org/docs/WritingAnLLVMBackend.html
http://llvm.org/docs/WritingAnLLVMBackend.html
{https://github.com/intel/linux-sgx/tree/master/sdk/tlibc}
{https://github.com/intel/linux-sgx/tree/master/sdk/tlibc}
https://www.musl-libc.org
https://github.com/01org/linux-sgx
{https://github.com/intel/linux-sgx/tree/master/sdk/tlibcrypto}
{https://github.com/intel/linux-sgx/tree/master/sdk/tlibcrypto}
https://github.com/01org/linux-sgx-driver
{https://perf.wiki.kernel.org/index.php/Main_Page}
{https://perf.wiki.kernel.org/index.php/Main_Page}
https://www.clamav.net/
http://www.drugbank.ca
{https://memcached.org/}
{http://www.brendangregg.com/blog/2018-01-17/measure-working-set-size.html#:~:text=The%20Working%20Set%20Size%20(WSS,capacity%20planning%20and%20scalability%20analysis.}
{http://www.brendangregg.com/blog/2018-01-17/measure-working-set-size.html#:~:text=The%20Working%20Set%20Size%20(WSS,capacity%20planning%20and%20scalability%20analysis.}
{http://www.brendangregg.com/blog/2018-01-17/measure-working-set-size.html#:~:text=The%20Working%20Set%20Size%20(WSS,capacity%20planning%20and%20scalability%20analysis.}
{https://dynamorio.org/}
{Native Client support on ARM}
http://hadoop.apache.org
http://hadoop.apache.org

	Introduction
	Background on Intel SGX
	Motivation
	System Model
	Examples of Target Scenarios
	Limitations of Existing Approaches

	Threat Model
	Design
	Overview
	Workflow
	Multi-Client SFI (MCSFI)
	Shared Data Initialization
	Runtime Services

	Implementation
	Program Development Toolchain
	SecureLayer Components

	Security Analysis
	Performance Evaluation
	Improvement over Multi-Process Sandbox
	Overhead of Chancel
	Performance with Real-world Programs

	Discussion
	Related work
	Conclusion

