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Abstract—There has been interest in mechanisms that enable
the secure use of legacy code to implement trusted code in
a Trusted Execution Environment (TEE), such as Intel SGX.
However, because legacy code generally assumes the presence of
an operating system, this naturally raises the spectre of Iago
attacks on the legacy code. We observe that not all legacy code
is vulnerable to Iago attacks and that legacy code must use
return values from system calls in an unsafe way to have Iago
vulnerabilities.

Based on this observation, we develop Emilia, which automat-
ically detects Iago vulnerabilities in legacy applications by fuzzing
applications using system call return values. We use Emilia to
discover 51 Iago vulnerabilities in 17 applications, and find that
Iago vulnerabilities are widespread and common. We conduct an
in-depth analysis of the vulnerabilities we found and conclude
that while common, the majority (82.4%) can be mitigated with
simple, stateless checks in the system call forwarding layer, while
the rest are best fixed by finding and patching them in the legacy
code. Finally, we study and evaluate different trade-offs in the
design of Emilia.

I. INTRODUCTION

To protect security-sensitive code from the large trusted
computing base (TCB) of commodity systems, many
hardware-based [15], [10], [1] and hypervisor-based [6], [5],
[38] trusted execution environments (TEEs) have been pro-
posed. User-level TEEs, such as SGX, isolate “trusted” appli-
cations from the large, legacy TCB of commodity systems,
which includes the OS, drivers as well as all privileged
applications on a system. In general, there are two ways these
trusted applications can be implemented—they can either be
implemented from scratch, or one can port a legacy application
that runs on a normal OS into the TEE. While the former
is more secure, it also requires more effort. In contrast, the
latter requires less effort, but faces a significant drawback—
legacy code assumes the presence of an operating system (OS),
but the TEE isolates the trusted application from the OS. To
service system calls (abbreviated to syscall hereinafter) to the
OS, legacy applications running in TEEs may use an OS-
forwarding layer (OFL) that intercepts syscalls made by the
legacy application and forwards them to an untrusted OS run-
ning outside the TEE. Unfortunately, while the TEE provides
isolation for the application’s runtime state and memory, this
syscall interface still represents a significant attack surface for
the trusted application.

Legacy code inherently trusts the OS that it makes syscalls
to. However, if the legacy code is inside a TEE, and the
commodity OS is outside the TEE, this makes the commodity
OS untrusted, which raises the possibility of the OS executing
an Iago attack. An Iago attack is one where the untrusted OS
abuses the trust the legacy application places in the syscall
interface to return maliciously crafted syscall return values.
Such attacks were first identified in [5] and [32], and then
eventually named Iago attacks in [4]. While most legacy code
implicitly trusts the OS, this does not automatically mean that
all legacy code is vulnerable to Iago attacks—for code to be
vulnerable, it must a) neglect to sanitize the return values of
a syscall and b) use the return values in an unsafe way. Thus,
for legacy code to be vulnerable to an Iago attack, it must have
an Iago vulnerability that meets these two criteria.

Many trusted applications use a custom OFL to enable
legacy code to run in TEEs such as SGX by forwarding
syscalls to the untrusted OS, as exemplified by TaLoS [26],
SGX SQLite [31] and Intel-SGX-SSL [17]. In addition, legacy
code can also be ported to work with general-purpose TEE-
secured containers with OFL, e.g., TensorSCONE [24] inte-
grates TensorFlow with SCONE [2] (Intel SGX) to enable
secure execution of machine learning computations, or TEE-
secured language interpreters like ScriptShield [43]. A number
of OFLs try to mitigate Iago vulnerabilities by performing
syscall return value sanitization, as exemplified by Panoply[35]
and Glamdring[28], or by narrowing the syscall interface as
proposed in Graphene-SGX[40] and SCONE[2]. However,
such sanitization is often ad-hoc and may be incomplete,
leaving applications still vulnerable to Iago attacks.

In this paper, we 1) attempt to measure the base rate of Iago
vulnerabilities in a wide range of legacy code; and 2) analyze
how well a sample of current OFLs can shield legacy code
from Iago vulnerabilities. To do this, we design and implement
Emilia1, a syscall fuzzer that finds Iago vulnerabilities in
legacy code. Compared to regular syscall fuzzers, Emilia
fuzzes applications from the syscall interface, by replacing
legitimate OS syscall return values with fuzz values, designed
to find and trigger Iago vulnerabilities. Previous work [13]
has used binary-level symbolic execution and taint-tracking
to detect unsafe information flows from syscalls to sensitive
uses, but their approach suffers from path explosion, whereas
fuzzing does not. We run Emilia on 17 popular applications
and find a total of 51 Iago vulnerabilities, which we categorize
into 5 basic types. We also found two Iago vulnerabilities in
Google’s Asylo [9] system, an OFL that has been specially de-
signed to protect applications against Iago vulnerabilities. Both

1Emilia was the wife of Iago who eventually reveals Iago’s treachery in
Shakespeare’s tragedy, Othello.
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vulnerabilities have been confirmed and fixed by the Asylo
team. Our main result is that Iago vulnerabilities are wide-
spread—nearly every application we examined had at least
one vulnerability. Moreover, we find that many vulnerabilities
are stateless, which should be possible for OFLs to mitigate
efficiently, but a number of current OFLs and SGX applications
actually only partially mitigate these vulnerabilities or do not
mitigate them at all.

In summary, this paper makes the following contributions:

• We present Emilia, a tool that finds and detects Iago
vulnerabilities by fuzzing syscall return values.

• We use Emilia to measure the frequency of the Iago
vulnerabilities in real-world applications, and have iden-
tified a total of 51 vulnerabilities involving memory
corruption in 17 popular legacy applications and glibc.
We find that while Iago vulnerabilities are widespread,
the vast majority are easily-mitigatable Local or Static
vulnerabilities.

• We perform an analysis of 6 OFLs and SGX applications
and find that the majority neglect to mitigate some or all
Iago vulnerabilities. Only one, Graphene-SGX, catches
all Local and Stateful Iago vulnerabilities. While Emilia
is intended to fuzz unmodified legacy applications, we
ported it to fuzz Google Asylo [9] and discovered two
Iago vulnerabilities which have been reported and fixed.

• We identify some of the underlying causes of the Iago
vulnerabilities by characterizing the syscall return values.
Our analytics sheds some light on how legacy applications
can be better ported to the OFL’s protection.

We begin by providing background and describing our Iago
vulnerability model in Section II. We then describe the design
and implementation of our Iago fuzzer, Emilia in Section III,
followed by an analysis of the Iago vulnerabilities found in a
corpus of legacy applications in Section IV, where we catego-
rize the vulnerabilities into Static, Local, Stateful, External and
Channel. We analyze the security and Iago mitigation ability
of current OFLs in Section V and then evaluate the different
Emilia fuzzing strategies in Section VI. Finally, we discuss
limitations, related work and conclude in Sections VII, VIII
and IX.

II. BACKGROUND AND VULNERABILITY MODEL

For legacy applications running in a TEE with an OFL, the
syscall interface represents the attack surface for a malicious
OS. A malicious OS kernel can cause unexpected and undesir-
able application behavior by generating unexpected or illegal
inputs to applications. Applications generally interact with the
OS kernel via the syscall interface. A benign OS adheres to
a well-known set of behavior when generating responses for
sysalls, which may be specified in documentation such as that
found in a syscall’s “man pages”. However, in this work, we
model a malicious OS that is free to arbitrarily deviate from the
specification and return any values it wishes in its responses.

The possibility of syscall manipulation by a malicious OS
was identified by Ports and Garfinkel in their Overshadow
system [32]. However, it was not until the analysis performed
by Checkoway and Shacham that these attacks were
formally named Iago attacks [4]. Their proposed Iago

attacks consisted of only scalar syscall return values, and
two attacks were identified in their work: one caused
replay attacks on Apache servers with mod ssl, due to
the syscall getpid being used in part for randomness;
and the other one even achieved arbitrary code execution
because malloc (wrapped in glibc) could be tricked
to modify arbitrary memory by malicious return values of
brk and mmap. However, a malicious OS is free to return
both corrupted scalar and buffer values. For example, in the
syscall getsockopt(int sockfd, int level, int
optname, void *optval, socklen_t *optlen)
the OS may fill optval with arbitrary values. We do note
that in general, the contents of such buffers are copied from
the OS’ address space into SGX enclave memory by the OFL,
which will only copy as much data as it has allocated space
for. Thus, while a malicious OS can return a longer buffer,
the entire buffer may not necessarily be passed to the trusted
application depending on the implementation of the OFL.
For example, in the getsockopt syscall, a proper OFL
will only copy at most the number of bytes specified by the
application in the optlen argument. We exclude arguments
that could be set by a malicious party outside of the OS from
the Iago attack surface. For example, the value returned in
the buf argument of the read(int fd, void *buf,
size_t count) syscall could have been set by a malicious
attacker with access to the file being read from. We restrict
Iago attacks to only modify values that are exclusively under
the control of the OS.

Iago attacks require an exploitable Iago vulnerability to be
successful. We define an Iago vulnerability in an application
as a section of code in the application that uses a syscall
return value in an unsafe way, which leads to unexpected or
undesirable behavior in the application. These vulnerabilities
occur because legacy applications inherently trust the OS and
thus do not perform validation on the syscall values returned
by the OS.

In this paper, we focus on Iago vulnerabilities that can
result in pointer corruption. While malicious syscall return
values can be used in a variety of unsafe ways, e.g., the
return value of getpid can be used as an entropy source,
or the time provided by the untrusted OS can be relied on
as timestamps to generate system logs, the most egregious
misuse of untrusted data is when it can result in code or data
pointer corruption [37]. Data pointer corruption can lead to
memory safety errors, which can lead to information leakage or
further memory corruption. Code pointer corruption can result
in arbitrary code execution. For certain pointer corruptions,
the attacker may be unable to retrieve the information directly,
but there are possibilities that the illegally accessed data can be
revealed to the attacker through other channels. For example,
a buffer containing data from out-of-bounds memory read may
be later written to a file, network socket or side-channel.

III. DESIGN AND IMPLEMENTATION OF EMILIA

A. Objective

Since Iago vulnerabilities result from the misuse or im-
proper handling of syscall-returned results, Emilia’s objective
is to trigger as many syscalls and as much code that executes
after a syscall as possible to search for vulnerabilities. When
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1 /* after fuzzing the return value of fstat with
value other than 0, new write() syscall will
be triggered */

2 if (0 != fstat(fd, &st)) { // 0 for success
3 log_error_write("..."); // invoke write()
4 ...
5 }

Listing 1: An example of a new syscall invocation introduced
by fuzzing

searching this code, we must take two aspects into account:
1) Static code locations. Naturally, we wish to find and execute
as many syscall invocations as possible. 2) Context. Even the
same static location may be executed under different contexts
(i.e. different local/global variables values), which may lead
to different arguments being passed to the syscall, as well as
different code paths after the syscall.

While Emilia is technically a fuzzer, as it dynamically
generates test cases in an effort to find vulnerabilities, it
differs from standard fuzzers in two key aspects. First, standard
fuzzers generally aim to maximize path coverage by fuzzing
program inputs. In contrast, Emilia aims to maximize syscall
coverage, which is to maximize both the number of static
syscall invocations and the contexts under which they are
executed by fuzzing syscall return values.

It is possible to increase syscall coverage by only mu-
tating syscall return values and not program inputs. To see
why, consider Listing 1, which is taken from Lighttpd [23].
If Emilia injects a non-zero return value for fstat, then
log_error_write in the error handling path will be in-
voked and will subsequently invoke the write syscall, which
does not occur in the vanilla execution of the program (i.e.,
the execution with no fuzzed return values). From this we see
that fuzzing some syscall return values may cause new syscall
invocations, which subsequently can also be iteratively fuzzed
(and which may go on to cause more syscall invocations).
Although mutating both program inputs and syscall return
values is required to find as many Iago vulnerabilities as
possible, our current implementation of Emilia focuses only on
the latter—trying to maximize syscall coverage while covering
only a single path—Emilia does not fuzz inputs, only syscall
return values. We envision that Emilia can be combined with
standard application fuzzers in a straightforward way—each
input that triggers a new path can be given to Emilia as a
starting point for achieving syscall coverage. We leave the
exploration of this for future work.

The other key difference compared to standard fuzzers is
that as opposed to generating and invoking an application with
the fuzz inputs, Emilia responds to syscall invocations from
the application with fuzz return values. As a result, Emilia is
necessarily passive, i.e., the fuzzer can only respond to syscalls
that the application has made, because the goal is to fuzz the
application from the point of view of a malicious kernel. This
is the reverse of kernel fuzzers [19], [30], which attempt to fuzz
the kernel from the point of view of a malicious application.
Emilia bears some similarity with network protocol fuzzing [8]
in that it sends fuzz inputs inside responses to requests.

Measuring syscall coverage: Since Emilia’s objective is to

attain syscall coverage, we first define here, how we intend to
measure syscall coverage. Simply counting static invocation
of syscalls is insufficient as it doesn’t take into account the
path or context leading up to and following the syscall—
syscalls are often located in libraries (such as libc and whose
functions may have many incoming and outgoing code paths).
Moreover, since Iago vulnerabilities are necessarily a result of
unsafe syscall result handling after the syscall invocation, it
is important that our measurement take into account different
code paths after a syscall invocation.

To effectively identify all execution paths leading to and
following from syscalls, one way is to directly collect the
application’s control flow (e.g., conditional/unconditional di-
rect/indirect branches). One can envision employing applica-
tion tracing, using efficient hardware such as Intel Processor
Trace (PT) [16], which collects such information that can be
later retrieved in the form of data packets. An alternative
that does not require specialized hardware is to instrument
the application. However, because many applications invoke
syscalls via libraries, this would necessitate instrumenting not
only the application but all libraries as well.

In light of these drawbacks for hardware-tracing or instru-
mentation, we observe that a proxy for the path after a syscall
is the path leading up to a syscall, which can be approximated
by the call path (i.e., functions in the call stack) leading up
to the syscall—if two syscall invocations have different call
paths, they must necessarily have different code paths both
before and after the syscall, owing to the different caller and
callees that must exist if the call paths are different. Moreover,
the call stack, which gives us the call path, is easily accessible
from the OFL without needing to instrument the application
or special tracing hardware. Thus, we formally define a syscall
invocation in Emilia as a tuple of syscall name (i.e., read,
write) and its call stack at the point the syscall is invoked,
and measure syscall coverage as the number of unique syscall
invocations that are executed.

B. Design of Emilia

An overview of Emilia’s architecture is shown in Figure 1.
Emilia consists of Interceptor, Controller and Value Extractor,
with the application’s source code, binary and optionally a
client binary as inputs. Core dumps generated from crashes
are the output.

Figure 1: Components and workflow of Emilia

Interceptor: Rather than replacing the kernel, Emilia in-
tercepts system calls made between the application being
fuzzed and a standard OS kernel. Interception is performed
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using an interceptor adapted from strace [36] to capture and
handle the syscalls made by the application. We use strace to
intercept syscalls instead of a libc wrapper to intercept libc
calls to enable Emilia to also detect Iago vulnerabilities in
libc implementations. Isolation techniques such as Graphene-
SGX [40] and SCONE [2] place the C library inside the trusted
world, and in many cases, this code is ported from a legacy
C library to maximize compatibility and minimize engineering
effort.

When a syscall is trapped, the interceptor will replace
values in the return fields/buffers in the application’s address
space and registers (e.g., $rax) with fuzz values and continue
execution. In the case of buffers (i.e., pointer arguments passed
to the syscall), the interceptor determines the buffer size either
based on its type or from other arguments. For example,
int getsockopt(int sockfd, int level, int
optname,void *optval, socklen_t *optlen)
has three return fields: the return value (ret), optval and
optlen. The sizes of ret and optlen are sizeof(int)
and sizeof(socklen_t). For optval, the maximum
length is given by the original optlen passed to the syscall.
By filling the buffer with the known max length, strace
would not directly overflow the buffer during writeback if
the application properly allocates the pointer and provides a
correct length argument. The interceptor would also calculate
a hash of stack trace for each syscall encountered to help
identify them for syscall coverage. The stack trace is produced
by libunwind embedded in strace.

Controller: The entire fuzzing process is coordinated by a
python script, which invokes and feeds the other components
with instructions. We define one iteration as the cycle from
when the controller starts the application for fuzzing to when
it crashes due to fuzzing or terminates normally.

The role of the controller is threefold: 1) Target selec-
tion. The controller regulates the fuzzing loop and selects
the syscalls to be fuzzed, called targets, for the interceptor.
The return values of syscalls that are not targets are passed
on without modification. 2) Satisfying external conditions.
Sometimes, the application may have external dependencies
for continuous execution. In particular, if the application is a
server, the interceptor will send a signal to the controller when
the accept syscall (a syscall indicating the server is ready to
handle client connections, which could be accept, select,
epoll_wait, etc.) is reached. Upon receipt of the signal,
the controller will launch the corresponding client to connect
to the server application so that fuzzing can continue. 3) Core
dump analysis. If a core dump is produced after the application
crashes, the controller would also briefly analyze them for
deduplication and filter out the ones that are not caused by
memory corruptions (e.g., assertion error).

Value extractor: The fuzz values used by Emilia can also
affect syscall coverage. Similar to the approach by Shastry
et al. [34], we also perform a coarse-grained static analysis
on the application’s source code to generate values that may
help increase syscall coverage, which is done by the value
extractor. The value extractor extracts constant values against
which syscall return values are compared in branch conditions
and adds values that will exercise both sides of the branch
to the valid value set of corresponding syscall’s output (see

Section III-C2). For example, if we find if (ret < 10)
and ret is the return value of read, we will add both 10
and 9 to the valid value set for read. We call them valid
values because the application assumes they are possible return
values of the syscall and may take different actions based on
them. The extractor also checks the usage of errno in the
application since it is likely set by libc based on the negative
part of the original syscall return values. If we can not associate
an errno with a specific syscall, we add this value to the valid
value set for all syscalls.

The output of Emilia is core dumps with unique call stacks
after deduplication by the controller. However, further manual
analysis is still needed to understand the exact cause of each
crash. Note that multiple core dumps with different call stacks
could be caused by the same Iago vulnerability. For example,
we detected a crash in fprintf in glibc when fuzzing
the write syscall. The application could call fprintf in
different locations with different call stacks, but they are
essentially the same Iago bug. Also, we could not simply look
at the exact crash location (last frame of the call stack). For
example, a buffer overflow caused by memcpy would always
dump a core with the last frame in glibc. But the memcpy
could be used differently in different parts of the application.
So we resort to manual analysis to determine the actual Iago
bugs.

For Emilia to work, the user should first provide the source
code of the application to Emilia’s value extractor, which
extracts the valid value set. The user should then provide the
application’s binary, a set of command-line arguments and the
valid value set to Emilia, which then fuzzes the binary and
produces a set of deduplicated core dumps and corresponding
fuzzing logs. Finally, the user needs to analyze the core dumps
and logs to determine the root cause of the crash. In the case
where the application is a server that needs a client to send
requests for it to continue execution, Emilia needs both a client
to send the request and a signal to indicate when the client
should be invoked. This is done by running the interceptor
provided by Emilia on the server, which exports a list of unique
syscall+stackhash pairs, of which the user must identify the
one that indicates the server is ready for the client request.
Most often, this is an accept call which causes the server to
block or wait for a client request.

C. Fuzzing Strategies

Our fuzzing strategies with Emilia are driven by three
important aspects that affect syscall coverage: target selection
(whether an encountered syscall should be fuzzed), fuzzing
value sets (what fuzz values to inject) and return fields (which
return fields of a syscall to fuzz).

1) Target Selection: During execution, an application may
make a number of syscalls. Rather than fuzz all of them, Emilia
selectively fuzzes a subset to elicit different responses from the
application. We refer to the set of invocations to be fuzzed as
targets. Syscalls that are not selected as targets, and hence are
not fuzzed, are still executed and the OS-provided return values
are passed directly to the application without modification by
Emilia.

There are several strategies Emilia could use in selecting
which syscall invocations to target to maximize syscall cover-

4



age. We begin by defining the sequence of syscalls made by the
application when no syscalls are targeted as the vanilla syscall
sequence. A naı̈ve strategy would be to target one syscall at
a time (e.g., the first syscall in the vanilla syscall sequence,
then the second, etc.). However, as demonstrated in Listing 1,
fuzzing a syscall can modify the sequence of syscalls that
the application makes subsequently. If Emilia only targets one
syscall at a time, it would miss these newly discovered syscalls.
Thus, maximizing syscall coverage requires strategies where
Emilia targets more than one syscall at a time. As a result,
Emilia uses two strategies to attain syscall coverage:

Fuzz-all: Instead of targeting one syscall at a time, an alter-
native is to target all syscalls encountered during execution.
This will thus capture any new syscalls generated by fuzzed
inputs. However, by doing this, the application would usually
terminate early after fuzzing the first few syscalls due to an
error. To keep going and fuzz syscalls afterwards, a variable
skip_count is introduced to “skip” fuzzing (i.e., not target)
the first skip_count syscall invocations. The skip_count
will be incremented by one on each iteration.

While this approach is simple, a disadvantage is that it
cannot systematically target every syscall that the application
can generate. For example, if Emilia targets s1, which results
in a new syscall s2, Fuzz-all will cause Emilia to also target
syscall s2. If Emilia had only targeted s1 and not targeted
s2, it is possible that a new syscall s3, might have been
found, but because Fuzz-all is stateless, it can only target all
syscalls after skip_count. Fuzz-all can also fail to trigger
vulnerabilities if there’s an extra syscall between the vulnerable
syscall invocation and the use of its return values. If the
application terminates due to the extra syscall being fuzzed,
the vulnerable syscall’s return value will not have a chance
to be used in an unsafe way. To address these shortcomings,
Emilia also supports a more complex, Stateful fuzzing strategy.

Stateful: Emilia can target syscall invocations statefully and
recursively. When a new syscall invocation is identified, Emilia
saves the current fuzzing state (syscalls already fuzzed and
which fields with what values) and targets the newly found
syscall invocations. Once the iteration is finished, it will go
back and continue from the saved state. Algorithm 1 shows
the pseudo-code of the fuzzing loop.

In every iteration, the controller provides the interceptor
with a reference list (references). Each element of the
list contains a target syscall name, syscall stack hash and a
value reference. The value reference describes which return
field should be fuzzed and with what value for the target syscall
invocation. The interceptor will fuzz all the syscall invocations
with matching syscall name and stack hash in the reference list.
A syscall invocation with a unique stack hash could be invoked
multiple times in a loop. In some cases, an application may
have a loop that will keep retrying a syscall until it succeeds.
Because Stateful fuzzing tracks each syscall by its call stack, it
is able to identify these and will terminate the fuzzing iteration
if it seems a syscall invocation occur more than 10 times in
one iteration.

The Stateful strategy first extracts a list of unique
syscall invocations from the vanilla sequence and updates the
overall_syscall set with vanilla_syscalls. Then
for every syscall invocation in the vanilla_syscalls,

Algorithm 1 Stateful fuzzing loop

1: overall set← ∅
2: procedure MAIN LOOP()
3: vanilla syscalls← extract vanilla syscalls()
4: overall set.add(vanilla syscalls)
5: for syscall in vanilla syscalls do
6: target← (syscall, hash, init ref)
7: references← [target]
8: recursive fuzz(references, 0)

9: procedure RECURSIVE FUZZ(references, depth)
10: if depth > max depth then
11: return
12: current target← references[depth]
13: do
14: new syscalls← run interceptor(references)
15: overall set.add(new syscalls)
16: for (syscall, hash) in new syscalls do
17: next target← (syscall, hash, init ref)
18: references.append(next target)
19: recursive fuzz(references, depth+ 1)

20: while current target.update target()

it runs the recursive analysis. The init_ref is the ini-
tial value reference of the target syscall invocation, and the
content of the value reference will be updated in the do-
while block in recursive_fuzz each time until it can
not be updated further (values exhausted). We will describe
the update mechanism in the Sections III-C2 and III-C3.
run_interceptor will launch the interceptor with the
reference list and connect the client if the target application
is a server. If there exist new syscall invocations which are
not found in the overall_syscall set, the controller
will update overall_syscall set, append the new syscall
invocations to the reference list and go to the next level of
recursion. As a result, a syscall in the reference list is a new
syscall invoked in the new execution path caused by fuzzing its
previous syscalls. In most cases, the reference list as a stored
state will help replay the previous execution by filling the
fuzzed syscall return fields with the same values. However, the
application could also be affected by the OS-returned values
to the unfuzzed syscalls. As future work, we could record the
whole execution state or take a snapshot of the execution.

Stateful fuzzing is still not comprehensive. Due to limited
resources, we only fuzz syscall invocations with this “fuzz-
then-appear” (syscalls in the reference list) relationship to-
gether. With more resources, it may be possible to also fuzz
every possible combination of syscall invocations at the same
time.

2) Fuzzing Value Sets: Once Emilia targets a syscall, it
will need to modify the return values with fuzz values. There
are three possibilities of how the fuzz values can be set:
random values, invalid values and valid values. Random values
are drawn randomly from the range defined by the type of
return value (i.e., a random 32-bit value for a returned long).
Invalid values are values known to be invalid for the returned
value. Currently, this is set to the MAX and MIN values for
the returned type. With more effort, one could also examine
the semantics of each syscall and create syscall-specific sets
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of invalid values, but currently Emilia does not do this. For
example, many syscalls will only return a limited set of
negative-valued error codes, so any negative value not in the
set would be a potentially invalid value. Finally, valid values
are those derived by the Emilia’s value extractor, described in
Section III-B. Both invalid and random values aim to trigger
crashes if the syscall return value is used for pointer arithmetic.
For random values, Emilia not only randomizes the bytes
of the output but also the number of bytes to overwrite. In
this way, Emilia has a higher possibility of generating values
with different orders of magnitude. This helps detect more
vulnerabilities because some memory corruptions can not be
triggered with too large a value. For example, in OpenSSH,
the read return value will be used first to reallocate a buffer
then perform pointer arithmetic on another buffer. If the value
is too large, the reallocation will fail, and the program will not
go further.

3) Return Fields: A syscall could have multiple return
fields. In which order should we fuzz them? For example,
stat has 14 return fields when broken down (i.e., the return
value + 13 fields in struct stat). A systematic, but
expensive strategy would be to try every combination of the
return fields and values. The number of combinations increases
exponentially with the number of return fields. Assume we
have num values for each field to try including an option to
not fuzz this return field. There will be num values14 combi-
nations for one stat syscall invocation. To make the fuzzing
finish in a reasonable amount of time, we instead design Emilia
to fuzz one field at a time, so that the time grows linearly with
the number of fields (i.e., O(num fields × num values)).
As a result, update_target method will try every value
only once on every return field.

D. OS-specific optimizations

The efficiency of Emilia is largely determined by the
number of syscall invocations processed. Therefore, if we can
eliminate certain syscalls from consideration, it will speed
up the analysis. To this end, one can apply domain-specific
analysis to eliminate syscalls. Since we will evaluate Emilia
on Linux, we conducted a manual audit of the Linux syscall
interface, and narrow down the scope of syscalls that Emilia
will consider as targets.

Linux syscalls can be categorized based on the purpose and
how they are handled by the OFL:

I. Special-purpose syscalls that are discouraged for
regular applications such as kexec_load and
query_module, syscalls that have no corresponding
libc wrapper (e.g., io_getevents) and those that do
not exist for certain Linux versions (e.g., getcpu).
40 syscalls fall in this category. They are unlikely to
be invoked by regular applications protected by the
isolation technique.

II. Syscalls that are usually specially handled by the isolation
technique and unlikely to be directly forwarded to the
untrusted OS. 74 syscalls fall in this category. They are
related to threads, memory management, and signals.
The untrusted OS is usually not allowed by the isolation
technique to directly manage threads and signals because
those operations involve manipulating the application’s

App Ver. Description LOC
openSSH 7.9p1 SSH server and client 91,607
Lighttpd 1.4.51 light-weight web server 49,688
Apache 2.4.37 HTTP Server 184,033
MongoDB r4.2.4 document-based, distributed

database
1,957,478

Redis 5.0.5 key-value database 115,034
Nginx 1.17.0 web server 132,911
Memcached 1.5.20 memory object caching sys-

tem
18,414

Evolver 2.70 liquid surfaces modelling sys-
tem

130,104

Charybdis 3.5.5 IRCv3 server 191,478
BOINC 7.14.2 volunteer grid computing sys-

tem
222,388

Chromium 74.0 web browser 21,140,796
Git 2.18.0 version control system 210,732
wolfSSH v1.4.3 lightweight SSHv2 server li-

brary
22,533

Coreutils 8.31 GNU operating system utili-
ties

62,466

zlib 1.2.11 data compression library 18,334
libreadline 7.0 command lines editing library 21,728
curl 7.72.0 command lines web client 130,833

Table 1: Legacy applications analyzed

address space. After the publication of the Iago attack,
almost all isolation techniques implement their own mem-
ory management handlers to address the mmap-based
attack. Since they are handled separately, the interfaces
might be changed, and careful checks might have already
been applied to the interfaces.

III. 194 remaining syscalls including but not limited to file,
network and time operations such as read, epoll and
gettimeofday. Syscalls in this category are common
in applications and are more likely to be forwarded by
the OFL.

Based on the categorization, Emilia currently only targets
the 194 syscalls that we expect to be vulnerable to Iago attacks.

IV. VULNERABILITY ANALYSIS

In this section, we begin by classifying the vulnerabilities
found by Emilia and provide examples of each. We then quan-
titatively examine the results of our measurement to describe
how frequently the Iago vulnerabilities arise in legacy code.
Then we discuss our insights into why Iago vulnerabilities
arise, and at the same time, why they don’t arise more often.
Finally, we summarize some lessons-learned that will provide
directions for avoiding Iago vulnerabilities for legacy code in
applications.

A. Applications examined

One of the primary motivations for developing Emilia was
to measure the base rate of Iago vulnerabilities in a wide
range of legacy applications. To this end, we applied Emilia
to 17 applications and libraries, including servers, clients,
and utilities, which are summarized in Table 1. Since we
intercepted the actual syscall layer instead of libc wrappers,
we also analyzed the C library code invoked during fuzzing.
Our system was running glibc-2.27.
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Naturally, some applications are more likely to be ported to
SGX than others. As a result, we also classify our applications
into groups based on their functionality and how likely they
are to be used in SGX, as shown in Table 2. The first group
consists of basic Utility programs, and also includes common
libraries. We believe these are the most likely to find their way
into SGX enclaves, and some already have implementations in
SGX2. The next group consists of programs that are largely
Computational and perform little I/O. These programs have
a low attack surface and we envision that users may wish
to use SGX to protect these computations and any private
data they operate on when run on the public cloud. The third
class consists of Server & Network applications that we may
wish to secure from a malicious OS, but represent a greater
challenge due to the amount of I/O they conduct as well as
their larger code bases. Finally, we include Chromium, an
Interactive application for completeness, though we think it
is unlikely that large and highly interactive applications such
as web browsers will be ported into SGX.

B. Classification of vulnerabilities

We classify the Iago vulnerabilities found by the nature of
the assumptions they violate. Every syscall has semantics that
a correct OS adheres to, so naturally, programs will assume the
OS will obey such semantics. We categorize these semantics
into five types:

Static: Semantics are independent of syscall arguments and
history. For example, certain syscalls return a negative value
as the error code, which can be checked against a predefined
list, such as the negative value returned by accept.
Local: Semantics are only dependent on the arguments that
are local to the syscall. For example, the returned number of
bytes processed (read/written) needs to be less than or equal
to the specified buffer length as an argument, as in read and
getsockopt.
Stateful: Semantics are dependent on the history of previous
syscalls. Certain states can only be affected by the application
itself, in the case of a well-behaved OS. A representative ex-
ample is the current read/write pointer of an open file, which
is only determined by the previous syscalls the application
has invoked. Example: the return values of epoll_wait
depend on previous invocations and returns.
Unauthenticated channel: In the case of a multi-component
trusted application, sometimes inter-component communica-
tion uses syscalls, e.g., read/write to transmit data via
pipes between processes/threads. When no authentication is
performed, an Iago may result. Notice that this is to be
distinguished with untrusted payload as both endpoints of
the communication here are part of the trusted application.
External: Semantics depend on information external to the
application. Examples include randomness from the Iago pa-
per and time. In theory, without duplicating the corresponding
functions within the OFL, it would be infeasible or impossible
to verify such semantics.

C. Vulnerabilities found

We now describe the vulnerabilities we found by running
Emilia on our corpus of 17 applications. We ran Emilia using

2For OpenSSH see https://github.com/mfriedl/sk-sgx.
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OpenSSH

Utility

4 4

21

WolfSSH 0
zlib 2 2
libreadline 6 6
glibc 6 1 7
Coreutils 2 2
BOINC Computa-

tional
1 1 2Evolver 1 1

Lightthpd

Network

1 1 2

26

Apache 6 1 7
MongoDB 1 1 2
Redis 1 7 1 9
Nginx 1 1
Memcached 1 1 2
git 1 1
curl 1 1
Charybdis 1 1
Chromium Interactive 1 1 2 2
Total 51

Table 2: Classification of tested applications by functionality
and type of vulnerabilities found

the Stateful fuzzing strategy and random, invalid and valid val-
ues. In total, we ran Emilia for 80 hours across all applications.
We focus on the vulnerabilities found by Emilia here first, and
give more detailed measurements of Emilia’s performance at
generating syscall coverage and finding vulnerabilities under
constrained resources in Section VI.

In total, Emilia discovered 51 memory corruption Iago vul-
nerabilities in our application corpus (including glibc). Every
application had at least one vulnerability except WolfSSH, and
vulnerabilities were also found in every class of applications.
Table 2 breaks down the vulnerabilities by type and application
class. We can see that the largest density of vulnerabilities
(21 in 6 applications) was in the Utility class of applications,
which we felt are also the most likely to be ported into SGX.
In particular, many vulnerabilities were found in key libraries,
such as glibc and libreadline, which are likely to be compiled
into many programs. The next class with the highest density
of vulnerabilities were the Network applications. These results
serve also as a word of caution as simply porting networking
applications directly into SGX is likely very risky, even though
there exist frameworks designed to do just that.3

Table 3 lists the vulnerabilities by syscall and vulnerability
type. We see that the majority of vulnerabilities are Local
(80.39%), followed by Stateful (11.76%). Static and local
vulnerabilities, which, as discussed in Section IV-D can be
easily mitigated by an OFL, account for 82.4% of vulnera-
bilities, suggesting that good design of OFLs will be critical
to allowing easier porting of legacy applications into SGX.
On the other hand, the fair number of Stateful vulnerabilities
suggests that some amount of porting is needed, particularly
in complex network and interactive applications. Our results

3For example https://github.com/lsds/sgx-lkl.
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App Syscall Count Type

Redis accept 1 Static
(1, 1.96%)

openSSH

read
(27)

2

Local
(41, 80.39%)

Apache-httpd 6
MongoDB 1
Redis 5
Nginx 1
Evolver 1
BOINC 1
Chromium 1
Coreutils 2
zlib 1
curl 1
libreadline 2
glibc 3
openSSH readlink

(7)

1
Redis 1
libreadline 4
glibc 1
openSSH getsockopt 1
Lighttpd getsockname 1
zlib write 1
Redis epoll wait 1
Memcached recvfrom 1
glibc recvmsg 1
glibc getdents 1
Lighttpd

epoll wait
(6)

1

Stateful
(6, 11.76%)

Apache-httpd 1
MongoDB 1
Redis 1
Charybdis 1
Chromium 1
Git lseek 1 External

(2, 3.92%)glibc fstat 1

Memcached read 1 Channel
(1, 1.96%)

Total 51

Table 3: Detected Iago vulnerabilities

suggest that fuzzers such as Emilia can be valuable in helping
developers find and fix Iago vulnerabilities in such code.

We describe in detail some of the vulnerabilities that Emilia
discovered:

Static: Many of the syscalls will return a positive value on
success. The negative return value will be interpreted as an
error code, and the C library will move it to errno and set the
return value of the syscall wrapper function to -1. However,
glibc will not perform this translation if the negative value
is less than -4095 because all valid error codes should fit
into this range. In Redis, we found a piece of code that uses a
file descriptor returned from accept to index a pre-allocated
file descriptor array. Before performing indexing, Redis checks
the returned file descriptor with -1, and compares it against
the max size of the array. Usually, those checks are sufficient
to prevent buffer overflow since Redis assumes the negative
value returned from the syscall should be a valid error code
and be moved to errno correctly, -1 should be the only
negative return value from the glibc syscall wrapper. Thus, a

crafted negative return value less than -4095 will skip the
translation of glibc, pass all those checks and cause out-of-
bounds indexing. For the syscalls that are not allowed to return
any negative values except error codes, the OFL could check
the negative part against a predefined valid value list to prevent
such vulnerabilities.
Local: Syscalls such as read and getsockopt will fill

1 char buf[PATH_MAX];
2 if ((len = readlink(path, buf, sizeof(buf) - 1))

== -1)
3 ...
4 /* error handling */
5 else {
6 ...
7 buf[len] = ’\0’;
8 ...
9 }

Listing 2: An example (readlink) of the local semantics in
OpenSSH

a buffer provided by the caller. There always exists an input
value to specify the max length of the buffer so the OS will not
overwrite the buffer. Upon completion, the syscall sometimes
returns a value to indicate the actual size it has written into
the buffer. In most cases, a benign OS should never return a
value larger than the specified max length. Listing 2 shows a
vulnerability caused by an unbounded readlink return value
in OpenSSH.

After reading the content of the symbolic link into the buf,
the program tries to form a zero-terminated string by adding
a zero at the end of the string. Normally, the returned len
should be equal to or less than the input length (PATH_MAX
- 1 in this case) based on the specification of the readlink
syscall. So the application feels safe to index buf with len
in line 7. However, a large len which breaks the assumption
will let the attacker set any byte beyond buf to zero.

Stateful: Some state information involved in syscalls is sup-
posed to be exclusively controlled by the application. The
application may make assumptions on return values regarding
such state information based on the syscalls it has invoked
previously. To verify this type of return values, a stateful
OFL that can keep track of all related syscalls is necessary.
Syscalls like epoll_wait and epoll_pwait will return
user data corresponding to the polled file descriptor. The user
data should contain the same data as was stored in the most
recent call to epoll_ctl. This user data usually specifies
a file descriptor or a pointer. If the application dereferences
the pointer returned by a malicious OS, the vulnerability will
occur. The common usage of epoll will also use the returned
file descriptor to index a pre-allocated array to extract the
data regarding this file descriptor. Listing 3 shows an Iago
vulnerability caused by epoll_wait in Lighttpd.

ev->epoll_events is an output buffer of
epoll_wait. The malicious OS controls its content
after the syscall returns. fd is an integer value returned in this
buffer (line 6). Lighttpd retrieves the corresponding handler
function pointer by indexing (fdnode)ev->fdarray
with the returned fd in fdevent_get_handler (line 14).
Then the function pointer gets called in line 8.
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1 n = epoll_wait(ev->epoll_fd, ev->epoll_events, ev
->maxfds, timeout_ms);

2 ...
3 ndx = 0;
4 do {
5 ...
6 fd = ev->epoll_events[ndx].data.fd
7 handler = fdevent_get_handler(ev, fd);
8 (*handler)(srv, context, revents);
9 } while (++ndx < n)

10
11 fdevent_handler fdevent_get_handler(fdevents *ev,

int fd) {
12 if (ev->fdarray[fd] == NULL) ERROR();
13 if (ev->fdarray[fd]->fd != fd) ERROR();
14 return ev->fdarray[fd]->handler;
15 }

Listing 3: An example (epoll wait) of the stateful semantics
in Lighttpd

1 ret = read(fd, &timeout_fd, sizeof(timeout_fd);
2 ...
3 conn_close_idle(conns[timeout_fd]);

Listing 4: An example (read) of unauthenticated channels in
Memcached

We will show that the attacker could fully con-
trol the function pointer if he knows the memory lay-
out. ev->fdarray is placed at a lower address of
ev->epoll_events. By setting fd = 4100, the at-
tacker could make fdarray[fd] point to the re-
gion inside ev->epoll_events buffer (&fdarray[fd]
== &epoll_events[1].data.ptr). Since the con-
tent of epoll_events buffer is controlled by the at-
tacker, he can then set epoll_events[1].data.ptr =
&(epoll_events[2]) and craft a valid fdnode struc-
ture there (set (fdnode)epoll_events[2].fd = fd to
pass the check in line 12 and 13). Finally, the attacker can
set (fdnode)epoll_events[2].handler to any code
address he wants and gain control of the execution.

A similar vulnerability was found in Charybdis. The data
field of epoll_event stores a pointer to a structure which
contains a function pointer. If the attacker lets the pointer point
to a controlled buffer and writes a function pointer there, he
can make the application call arbitrary functions.

Unauthenticated channel: In our threat model, we exclude
payloads from an untrusted source such as network content.
However, a legacy application which trusts the OS may as-
sume the communication channel established among different
component of the application is reliable. Listing 4 shows an
Iago bug we found in Memcached. It reads a timeout_fd
from the libevent wakeup pipe. Since the timeout_fd is
written by another thread of the application, Memcached feels
safe to use it to index an array in line 3. A malicious OS could
change the timeout_fd to cause invalid memory access.

External: Some syscall return values describe a state that
can not be maintained by the application, and they do not
have clear invariant as Static or Local semantics do. Examples
include local protected files and state in the exclusive control
of the OS such as time received from gettimeofday and

1 #define _dl_cache_verify_ptr(ptr) (ptr <
cache_data_size)

2 if (fstat(fd, &st) >= 0)
3 {
4 sizep = st.st_size;
5 result = mmap(NULL, sizep, prot, MAP_FILE, fd

, 0);
6 }
7 cachesize = sizep;
8 struct cache_file* cache = result;
9 cache_data = &cache->libs[cache->nlibs];

10 uint32_t cache_data_size = (const char *) cache +
cachesize - cache_data

11 ...

Listing 5: An example (fstat) of the external semantics in glibc

file size received from stat. The application may have the
ability to affect those values by performing operations like
writing to a file, but the external world could also change it.

We found one such example in glibc’s code of parsing
ld.so.cache (Listing 5). It uses the file size retrieved from
fstat to mmap the same file in line 5. Then it assumes the
file content is written in a specific format and casts the buffer
to struct cache_file in line 8. If the malicious OS
returns a small file size (cachesize), glibc would mmap less
pages to cache, and the following parsing based on the file
format would eventually access unmapped memory. Although
glibc verifies pointers with the macro defined in line 1 before
using, the cache_data_size itself could be miscalculated.
In line 10, if the cachesize is smaller than the offset of
cache_data, cache_data_size would be a very large
number since it is unsigned.

In git_config_set_multivar_in_file_gently
of Git, it tries to modify key-value pairs in the config file by
copying file contents to a temporary lock file part by part. It
first parses the config file and records each parsed element’s
position by calling lseek(fd, 0, SEEK_CUR). Then
it mmap the config file to a buffer named contents with
the file size read from fstat. During this procedure, Git
assumes the config file is owned exclusively by itself and
uses the lock file to prevent access from other Git processes.
Therefore, Git expects the recorded file offset to be smaller
than or equal to the file size they read from the fstat and
uses the recorded file offset to index the content buffer. In
this case, both file size and file offset describe a state that
cannot be maintained by the application alone (lseek with
SEEK_END will set the file offset based on file size).

A malicious OS could also compromise the application
through those return values in other ways. For example,
Apache used getpid and time as a random source, which
was mentioned in the original Iago paper. Those vulnerabilities
are ad-hoc and hard to detect automatically. Extra work such
as modifying the application logic or adding a trusted random
and time source is necessary to mitigate those vulnerabilities.

In summary, from Table 3, we can see that 80% of the vul-
nerabilities are caused by a returned size, which goes beyond
the local upper bound (e.g., the epoll_wait vulnerability
in category Local is caused by a returned number of file de-
scriptors which is larger than the specified maxevents). This
is not entirely unexpected since it is a common programming
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practice to use the returned length of a syscall to access the
buffer used in the syscall. Examples include iterating a buffer
using the returned number of items, adding a zero to the end
of the received data to terminate a string, and copying the
buffer using a “smaller” size to save space. Similarly, we also
found it a common practice to store a file descriptor in the
epoll_data field of epoll_event struct returned by the
epoll_wait syscall and use it to index into a file descriptor
array. The applications that did these often failed to check the
validity of the syscall returned value because they assume the
OS is trustworthy and correct.

D. Mitigating Iago vulnerabilities

An obvious way of mitigating the Iago vulnerabilities is to
check if the semantics of syscalls have been violated. This
could be done by either the application itself or the OFL.
Also, for each type of the syscall semantics, the implications
and difficulty might be different, which we will discuss in the
following.

Local and Static: As these types of semantics can be
checked against predefined ranges or other constraints without
maintaining a state, the checks can be simply performed by the
OFL and they are straightforward and relatively cheap to do.
For example, the OFL can check if the returned size is smaller
or equal to the maximum length specified in the parameter. The
high number of Local vulnerabilities in Table 3 suggests that
the majority of Iago vulnerabilities can be mitigated in this
way, and this would eliminate 82.4% of the vulnerabilities for
Static and Local. The semantics might need to be manually
derived from the OS code or syscall specifications for the OFL
to check, but this would only be a one-time effort for each OS
version.

Stateful: In contrast to Static and Local, while also straight-
forward to check, Stateful Iago vulnerabilities require more
complex logic to maintain parallel state with the untrusted
OS (e.g., keeping track of the syscall history). However, we
note that the main motivation of many user-TEEs is to reduce
the TCB of security-sensitive code and since the OFL is in
the TCB, it must also remain small as well. Implementing a
stateful OFL will thus increase the TCB, which is antithetical
to the philosophy of TEEs. Therefore, instead of purely relying
on the OFL, an alternative is to patch the application so that
it is no longer vulnerable. We found that all 6 applications
we examined that contain an epoll_wait vulnerability can
be easily fixed by replacing epoll_wait with other polling
syscalls such as poll and select for compatibility reasons.

Unauthenticated channel: As with any network communica-
tion assuming an insecure channel, the unauthorized channel
vulnerabilities may be solved using cryptography to secure cer-
tain trusted channel within the trusted application components.
We also consider this type as straightforward to address.

External: As we have argued that the application should
not make assumptions on resources that it does not control
or keep track of. The root cause of the fstat and lseek
bugs in Git and glibc is the assumption that it owns the file
exclusively, which is not true even in a common threat model
(the OS is not malicious but with other applications running
in parallel). External metadata, such as file size, should also
be crypto-protected to prevent those vulnerabilities. Ad-hoc

vulnerabilities such as mistrusted random sources (causing
other application failures) can be mitigated through improved
application development.

V. OFL ANALYSIS

Further to the Iago vulnerabilities identified by Emilia
from legacy code, we are also interested to see to what
extent state-of-the-art OFLs and SGX applications mitigate
Iago vulnerabilities. However, we note that Emilia is not suited
to fuzzing OFLs the way it fuzzes legacy applications. There
are two reasons for this. First, OFLs typically have a trusted
portion that runs in the SGX enclave and an untrusted portion
that runs as a process on the untrusted OS, which makes the
actual syscalls. Fuzzing the syscall return values is likely to
find Iago vulnerabilities in the untrusted portion, which is of
no consequence to the trusted portion. Second, to properly fuzz
the trusted portion, Emilia needs to be ported to each OFL to
fuzz the return values that each OFLs untrusted component
returns to the trusted component. As a result, we port Emilia
to fuzz one particular OFL, the Google Asylo project, and
perform a manual analysis of several other popular OFLs
and SGX applications by examining their documentation and
performing code reviews.

A. Documentation-based Analysis

We survey 17 recent OFLs and SGX applications to exam-
ine the types of Iago vulnerabilities they defend against.

Mmap and randomness Iago vulnerabilities: Mmap and
randomness Iago vulnerabilities were first identified in the
original Iago paper [4] and thus the most well-known. Almost
all OFLs have included checks to ensure that the returned
address of memory management syscalls does not overlap
with previously allocated memory. Virtual Ghost [7] also
introduces a random number generator to defend against an
OS that provides bad randomness. Other isolation techniques
that have also addressed these two vulnerabilities include:
Trustshadow [11], AppShield [6], Sego [25], ShieldBox [39]
and HiddenApp [42].

Other Iago vulnerabilities: Section IV-A identifies several
other types of Iago vulnerabilities, which have not been
systematically documented in the literature. As a result, only
some OFLs make explicit mention of mitigating these other
vulnerabilities, while many do not mention them at all. Most
OFLs make some effort to narrow the syscall interface by only
implementing certain syscalls. Minibox [27], SGX-Tor [21]
and InkTag [12] handle part of system services with spe-
cial care. InkTag has an application-level library to translate
read/write syscalls into operations on memory mapped files.
Minibox divides all syscalls into sensitive and non-sensitive
calls. Memory management, thread local storage management,
multi-threading management, and file I/O are handled by Mini-
box internally. Both Minibox and InkTag leave network I/O
directly forwarded to the OS for the reason that network was
originally considered as an untrusted communication channel
by the application and cryptographic protocols may be applied
to help secure the channel. However, we have shown that in
addition to the content of network traffic, metadata like size,
descriptors or pointers returned by network syscalls can also
be attack vectors.
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Ryoan [14], SeCage [29] and Glamdring [28] claim that
they would apply some checks in the OFL to validate the return
value of syscalls, but no information is disclosed about what
exactly those checks are. Panoply [35] studied the types of
syscall return values and categorized them into zero/error, inte-
ger value and structures. Their OFL will validate the returned
error code as well as ranges of some integer return values.
OpenSGX [18] also carefully considers the potential attack
surface on their OS interface and has a list of corresponding
checks they could apply on the OFL. However, none of them
perform experiments on real applications to prove the existence
of such vulnerabilities. Moreover, the Stateful and External ex-
amples we have presented indicate that without implementing
some part of the OS functionality, such as epoll, to get a
global view of the managed content, a stateless OFL check
alone is insufficient to detect the inconsistency between actual
syscalls’ behavior and the application’s assumptions.

As a strong form of mitigation, Haven [3], Graphene-
SGX [40], and SCONE [2] place a library OS inside the iso-
lated environment. This method replaces the complex syscall
interface with a carefully designed small interface, which
makes validation of values returned by the untrusted OS more
realistic. For example, in Graphene-SGX, the library OS can
track the offset of opened files and all epoll event data.
In other words, the library OS acts as a stateful OFL to
address the Stateful type of vulnerabilities we have identified.
However, Van Bulck et al. [41] found the return value from
read was used to copy the return buffer in the Graphene-
SGX OFL itself, which lead to memory corruption. This
vulnerability was patched in April 2019 (hence rated as No
for OFL vulnerable in Table 4).

B. Code-based Analysis

To further delve into the state of OFL defenses against
Iago attacks, we conduct an analysis of 6 OFLs through code
review, in addition to examining publicized information. Our
analysis includes both general-purpose isolation frameworks
(Graphene-SGX, Asylo and Virtual Ghost) and TEE-secured
applications that use their own custom OFL (SGX-SQLite,
SGX-Tor and mbedtls-SGX). We selected these code-bases
based on the type of OFL (3 general and 3 application-
specific) and based on the availability, apparent maturity and
completeness of their code bases. We note that because the
following findings are made via manual code review, they are
lower bound on the true number of Iago vulnerabilities in these
OFLs. We analyze whether the OFL mitigates Static, Local
and Stateful vulnerabilities in legacy applications, and as well
as whether the OFL itself is vulnerable to Iago attacks. The
results are tabulated in Table 4.

The main purpose of our analysis is to find out what
countermeasures the OFLs take to mitigate Iago vulnerabilities
when forwarding syscall return values to the application, based
on the Static, Local and Stateful vulnerability types that can
be mitigated by OFLs. For each of the vulnerability types, we
classify the level of mitigation into three levels: The worst case
is an OFL that forwards syscalls and does not have mitigations
on any of the syscalls. Next, an OFL may forward syscalls and
have mitigations on some of the syscalls but not others, making
it incomplete. Finally, in the ideal case, the OFL either doesn’t
forward any syscalls (and is thus not vulnerable), or it has

OFL Mitigation for apps Application OFL Vuln.
Static Local Stateful Vuln.

Graphene-SGX - No

Google Asylo - Yes (patched)

Virtual Ghost - Yes

SGX-SQLite Yes No

SGX-Tor Yes No

mbedtls-SGX No No
: Syscalls forwarded and no mitigations for legacy applications
: Syscalls forwarded and incomplete mitigations for legacy applications
: Either no syscalls forwarded or complete mitigations for all forwaded

syscalls

Table 4: OFLs analyzed for Iago attack mitigation. The
columns of Static, Local and Stateful indicate whether the OFL
code has checks for violation of the corresponding semantics.
The last column is used to note if we have found the OFL
itself to contain Iago vulnerabilities, as opposed to just not
checking for the protected application code

mitigations for all forwarded syscalls, allowing it to provide
complete protection for that class of Iago vulnerability to a
legacy application.

Table 4 shows that most OFLs do not provide com-
plete mitigation for Iago vulnerabilities, and many provide
no mitigation at all for the most numerous class of Local
vulnerabilities. We also list whether the lack of mitigation
resulted in Iago vulnerabilities in the underlying applications
(only applicable to the SGX applications), as well as whether
there were any vulnerabilities a malicious OS could trigger in
the OFL code itself. We detail our analysis below.

Static: We were unable to find any checks in the six OFLs
for syscall return values that can be statically verified, e.g.,
we did not see any verification for negative error codes.
That means the accept vulnerability (Static) in the legacy
Redis may still be exposed to the attacker. Fortunately, our
findings in Section IV-C also show that the frequency of Static
vulnerabilities in legacy code tends to be low (though non-
zero).

Local: With the help of the library OS, Graphene-SGX
narrows the untrusted interface to only 37 OCALLs, and is thus
able to secure that narrow interface with comprehensive ver-
ification. They define an sgx_copy_to_enclave(ptr,
maxsize, uptr, usize) function which compares the
trusted and untrusted buffer lengths before copying any un-
trusted buffer. It also ensures both trusted and untrusted buffers
completely reside in the corresponding memory region (insid-
e/outside enclave). Even though Virtual Ghost instruments the
protected application to ensure pointers passed into or returned
by the untrusted OS do not point into the protected memory
region, we did not find any verification in its OFL. In particular,
we were unable to find any checks applied on the syscall return
values from read, even though it is described as an example
in the paper.

SGX-SQLite, SGX-Tor and mbedtls-SGX are three SGX-
secured applications ported from legacy code. Instead of using
an existing isolation framework such as Asylo or Graphene-
SGX, they develop custom OCALL interfaces to only forward
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necessary syscalls. However, they still forward the syscalls
that involve the local Iago semantics. The lack of mitigation
allowed us to find two unmitigated Local Iago vulnerabilities
in SQLite’s handling of read and readlink syscall return
values in SGX-SQLite.

Stateful: Due to the peculiarity of this type, such vul-
nerabilities are often mitigated by just not forwarding the
corresponding syscalls. As mentioned above, Graphene-SGX
forwards no syscalls whose return values involve stateful
semantics. Therefore, Graphene-SGX can successfully defend
legacy code against both stateful (by not forwarding) and local
vulnerabilities. Virtual Ghost, SGX-SQLite and mbedtls-SGX
are the same case. However, we found one unmitigated Stateful
vulnerability caused by epoll_wait (which is forwarded) in
SGX-Tor.

Vulnerable OFLs: Compared to the threat model inconsis-
tency faced by legacy code, Iago vulnerabilities have been
included in the threat model of the OFL development. Still,
we see Iago vulnerabilities in the code of certain OFLs. For
example, the Virtual Ghost OFL is vulnerable to the local
semantic violation (e.g., in read and readlink). It uses the
untrusted buffer length to memcpy content from the shared
memory to the private memory for almost all syscalls that
return the number of bytes processed. We separate vulnera-
bilities inside the OFL from insufficient mitigations because
those vulnerabilities can be exploited without having Iago
vulnerabilities in the protected code. We also found confirmed
vulnerabilities in the OFL of Asylo, which we discuss next.

C. Google Asylo

Motivated by the identified vulnerable OFLs through code
review, we take Google Asylo as a typical example of commer-
cial OFL implementations, and fuzz its OFL for Iago vulnera-
bilities. Google Asylo [9] is a recent (first commit on GitHub
was May 3, 2018) enclave application development framework
with 32 contributors on Github (101,131 LOC). It aims to
help developers take advantage of a range of emerging TEEs,
including both software and hardware isolation technologies.

In Asylo, a subset of POSIX calls made in the enclave will
be forwarded to the untrusted side by the OFL. The forwarding
is performed by wrappers in the enclave which send syscall
parameters and copy back outputs, and handler functions that
make actual calls in the untrusted world. For some of the calls,
outputs are copied based on predefined rules. For other calls,
specific codes are used to parse and copy the returned value.

We modify Emilia to intercept Asylo’s untrusted syscall
handler, which handles and replies syscall requests forwarded
by the OFL. The fuzzing loop algorithm we used in Emilia
that enumerates all target syscalls is unnecessary when fuzzing
OFL since we know the target syscall will only be invoked
once by the forwarding interface. The other reason why we do
not use strace to intercept target syscalls is that the untrusted
handler will also invoke syscalls, of which the ones forwarded
by the OFL are only a subset, e.g., when doing initialization,
logging and sending syscall output back to the enclave, the
untrusted handler would also need to rely on syscalls. To be
able to use strace, we need to modify the untrusted handler
code in a way to tell strace which syscalls should be fuzzed,
which might be redundant work as we are already modifying

the code of the untrusted handler. Therefore, we decided to
fuzz the return values directly in the untrusted handler. Since
both the untrusted handler and the OS are under the attacker’s
control in the threat model, altering the syscall return values in
the handler before sending them to the trusted part is a valid
fuzzing method.

Two vulnerabilities discovered, reported and fixed: We
found two memory corruption vulnerabilities involving the
getsockopt and recvmsg syscalls. Asylo uses serialized
data to transfer syscall parameters and return values. Most
of the syscalls have a pre-defined forwarding rule and are
forwarded together (all handled by a set of functions instead
of handled separately). For example, the forwarding rule
SYSCALL_DEFINE3(read, unsigned int, fd,
\out void * [bound:count], buf, size_t,
count) means that the buf parameter is an output of the
read syscall and its size is bounded by count parameter.
So the forwarding function will only copy count bytes
from buf to the application. Asylo also handles some
syscalls specifically. In enc_untrusted_getsockopt,
it copies data to the internal optval with the length of
opt_received:

memcpy(optval, opt_received.data(),
opt_received.size());

If the untrusted handler sets the opt_received with a
size larger than the original size (the original optlen)
which is used to allocate optval inside the enclave, the
attacker could overflow optval. A similar vulnerability was
found in enc_untrusted_recvmsg when it tries to copy
msg→ msg_name. In this case, the same could happen to
msg.msg_namelen. Following the practice of responsible
disclosure, we contacted Google and these two vulnerabili-
ties were confirmed. They have been patched by comparing
the received size with the input parameter optlen and
msg_namelen.

In Section II, we assume the OFL will only copy as much
data as it has allocated space for. If the OFL fails to do
this, some vulnerabilities could have more severe consequences
than we originally expected. Consider the following applica-
tion code:
1 optlen = 200;
2 char* opts = malloc(optlen);
3 char* buf = malloc(optlen);
4 getsockopt(fd, level, name, opts, &optlen);
5 memcpy(buf, opts, optlen);

In getsockopt, both opts and optlen are untrusted
return values provided by the malicious OS. If we assume the
OFL copies at most 200 bytes to opts, then the malicious OS
can only overwrite buf with uncertain data. However, Asylo
does not truncate the opts buffer based on the allocated size
of 200 in this case, causing the memcpy to copy all of the
malicious payload provided by the OS instead of just the first
200 bytes.

Lack of Iago mitigation for applications: The patches
Google Asylo added to fix the two vulnerabilities prevent the
malicious value-result argument from being further returned to
the application. However, in addition to the above mitigation,
there remain other missing Iago mitigations. While Asylo
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developers also added the check for the read syscall in
September 2020, Ayslo currently still misses checks for other
syscalls such as readlink and write. In addition, Asylo
does not perform any stateful check for the epoll_wait
syscall to protect code that is vulnerable to the epoll attack.
Because these are missing mitigations, they are only vulner-
abilities if the legacy application using Asylo misuses the
return values, so they are not considered vulnerabilities in
Asylo. However, we still plan to report them to developers
after properly documenting them.

VI. EVALUATION

We evaluate Emilia’s performance and efficiency at finding
Iago vulnerabilities under the different target- and value-
search strategies outlined in Section III-C across different
applications. We are not aware of any other fuzzers that will
fuzz syscall return values to find Iago vulnerabilities. Thus,
as a Baseline, we use Emilia in its simplest configuration,
which uses the Fuzz-all target selection strategy and a value
set composed of only random and invalid values (i.e., without
valid values from the value extractor). We compare this against
Emilia using the Stateful target-selection strategy but still
without valid values, and finally Stateful with valid values
included to evaluate the benefits of the Value Extractor.

Metrics: We measure the number of unique core dumps
produced (Table 5) and syscall coverage (Table 6) and use
these as the basis for comparison.

Unique core dumps, defined as a core dump with a unique
program counter and unique call stack. We note that under
the Iago vulnerability model, any sequence of fuzzed return
values that Emilia uses to trigger a core dump is a legitimate
sequence that could be returned by a malicious OS to generate
the same core dump. Thus, in principle all core dumps counted
here are real crashes with no false positives. However, we
also point out that the number of core dumps listed in this
section does not match the vulnerabilities found in Table 3, as
those have been manually analyzed and deduplicated, while a
program counter invocation and call stack do not necessarily
mean the root cause of the crash is unique. In addition, some
of the core dumps attributed here to applications may actually
occur in libraries (like glibc), which we don’t attribute to the
application itself in Table 3. As recommended by [22], we run
each experiment 30 times and apply the Mann Whitney U-test
for statistical hypothesis testing to verify the significance of
the results.

Experimental Setup: We tested with 5 applications from our
analyzed application list in section IV-A: OpenSSH, Lighttpd,
Memcached, Redis and Curl. All experiments were run on
a machine equipped with 8 Intel 2.20GHz Xeon cores and
4GB RAM. The software environment was Ubuntu-18.04 with
glibc-2.27.

A. Evaluation of Fuzzing Strategies

One property of the Stateful strategy is that it is able to
selectively target syscalls that depend on a preceding syscall. In
general, this allows the Stateful strategy to target more syscalls
than the Fuzz-all strategy, which can only target syscalls (and
all following syscalls) that appear in the vanilla sequence. As
a result, the Fuzz-all strategy may run out of targets before

the Stateful strategy does. To make the strategies comparable,
we execute the Stateful strategy until it exhausts all targets,
and then execute the Fuzz-all strategy for the same amount of
time by resetting skip_count so that it will return to the
beginning of the vanilla sequence. While this causes it to fuzz
previously fuzzed targets, we note it fuzzes them with different
random values. Since the number of targets is application
dependent, each application is fuzzed for a different length
of time.

We tabulate both the number of core dumps and syscalls
generated by Emilia’s different fuzzing strategies in Tables 5
and 6 respectively. We also show the number of core dumps
found as a function of time in Figure 2. The tables report the
Min, Max, Median, Mean, 95% upper and lower confidence
intervals, Variance and p-values over 30 runs. Table 5 gives
the length of time the application was executed for in all
configurations and Table 6 gives the number of syscall invo-
cations in the vanilla sequence. All p-values are calculated by
comparing the configuration against the Stateful (without valid
values) configuration. All p-values in our experiments were
small, indicating that the results are statistically significant and
conclusions can be drawn.

We first compare the Stateful target-selection strategy
against the Fuzz-all strategy used in the Baseline. We find that
the Stateful (w/o valid) strategy always achieves more syscall
coverage and produces more core dumps than the Baseline.
This is because Stateful method is able to explicitly target
newly found syscalls by replaying the previously fuzzed syscall
return values that the new syscall depends on. This is partially
attributed to the fact that the Fuzz-all strategy used in the
baseline is unable to trigger some crashes due to the limitations
discussed in Section III-C1. For example, in Memcached,
it fails to trigger memory corruption in fprintf, because
an “extra” syscall between the target syscall and the unsafe
use of the fuzzed return values causes the application to
terminate prematurely. The Stateful strategy is able to target
the appropriate syscall but leave the extra syscall unfuzzed and
thus find the vulnerability.

We also observe that the Fuzz-all strategy wastes time as
it is more likely to trigger infinite loops in the application, as
explained in Section III-C1. To see why, consider a sequence
of syscalls S1, S2, ...Sn, where Sn causes an infinite loop and
timeout when fuzzed. Since Stateful targets individual syscalls
for fuzzing and can detect which ones cause an infinite loop, it
identifies Sn as generating an infinite loop after 10 invocations
and exits. Fuzz-all on the other hand can’t detect the infinite
loop and must wait for a timeout to expire. This is further
compounded by the fact that Sn will generate an infinite loop
any time Fuzz-all targets a syscall < Sn, thus causing multiple
timeouts.

However, we find that for short runs, the Stateful strategy
may find fewer vulnerabilities than the baseline method. As
demonstrated by Openssh, Redis and Lighttpd in Figure 2, the
Fuzz-all strategy is initially able to find more vulnerabilities
than the Stateful strategy because it is able to quickly target
all syscalls in the vanilla sequence. However, once the Stateful
strategy is able to discover and fuzz new syscalls that the
simpler Fuzz-all is not able to, it will catch up and overtake
Fuzz-all. This demonstrates a trade-off in fuzzing speed and
completeness between the two strategies.
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Application Method Min Max Median Mean 95% CI lower 95% CI upper Var p-value

OpenSSH
(20 hours)

Baseline 13 26 17 17.50 15 19 9.98 1.70E-06
Stateful (w/o valid) 17 25 21 21.30 20 22 3.61 N/A
Stateful 22 30 26 26.07 25 27 3.26 2.09E-10

Redis
(4 hours)

Baseline 7 11 9 9.13 9 9 0.65 5.22E-12
Stateful (w/o valid) 15 20 17 17.26 17 18 1.13 N/A
Stateful 16 24 20 19.80 19 21 3.69 2.13E-07

Curl
(4 hours)

Baseline 2 4 3 3.23 3 4 0.38 2.40E-09
Stateful (w/o valid) 4 6 4 4.60 4 5 0.44 N/A
Stateful 3 7 5 4.90 4 5 1.36 1.26E-01

Lighttpd
(6 hours)

Baseline 16 25 18 18.73 18 19 4.06 1.63E-08
Stateful (w/o valid) 19 25 22 22.60 22 24 2.97 N/A
Stateful 20 26 24 23.67 23 24 2.02 9.13E-03

Memcached
(4 hours)

Baseline 4 7 6 5.56 5 6 0.65 9.24E-12
Stateful (w/o valid) 36 51 40 41.20 38 43 13.89 N/A
Stateful 47 60 55 54.80 54 57 11.03 2.31E-11

Table 5: Number of core dumps. p-values are calculated by comparing with the Stateful (w/o valid) setting. We also tabulate the
range, averages, confidence intervals and variance

Application Method Min Max Median Mean 95% CI lower 95% CI upper Var p-value

OpenSSH
(389)

Baseline 772 1156 790 843.40 786 797 13490.17 1.42E-11
Stateful (w/o valid) 1482 1559 1527 1525.93 1515 1536 361.13 N/A
Stateful 2400 2671 2447 2468.70 2436 2464 4813.61 1.42E-11

Redis
(94)

Baseline 500 590 540 539.87 532 548 334.12 1.42E-11
Stateful (w/o valid) 822 929 846 847.90 842 853 368.76 N/A
Stateful 899 1024 925 930.60 917 937 633.91 6.26E-11

Curl
(59)

Baseline 165 178 170 179.53 169 171 8.50 1.26E-11
Stateful (w/o valid) 189 205 193 194.17 190 198 23.50 N/A
Stateful 210 230 225 223.86 222 225 16.44 1.27E-11

Lighttpd
(194)

Baseline 543 803 580 617.70 563 646 5687.81 1.43E-11
Stateful (w/o valid) 1344 1562 1371 1381.80 1364 1382 1549.76 N/A
Stateful 1978 2080 2037 2034.90 2019 2056 807.22 1.42E-11

Memcached
(152)

Baseline 589 627 614 611.93 608 618 104.86 1.42E-11
Stateful (w/o valid) 759 829 798 797.93 794 806 226.66 N/A
Stateful 1003 1040 1026 1024.10 1021 1028 93.76 1.41E-11

Table 6: Syscall coverage. The number of unique syscalls in the vanilla sequence are given in the “Application” column. p-values
are calculated by comparing with the Stateful (w/o valid) setting. We tabulate the range, averages, confidence intervals and
variance

B. Effects of Valid Values

Here, we compare the Stateful strategy with and without
valid values from the Value Extractor. Our experiments show
that the inclusion of values in the value set also leads to greater
syscall coverage and core dumps, though in general not to
the extent that using Stateful as opposed to Fuzz-all target
selection does. For example, in OpenSSH, a poll syscall
will never be reached unless the previous read syscall returns
EAGAIN or EWOULDBLOCK. The EAGAIN in the valid set of
read’s return value will help trigger this syscall.

In summary, our evaluation shows that both Value Ex-
traction and Stateful target-selection contribute to increased
syscall coverage and more core dumps being found. While
they require a longer time to achieve results due to the larger
number of targets, they are better able to make use of additional
computational resources, on average increasing the syscall
coverage by 2.1× and number of core dumps found by 2.4×.

VII. LIMITATIONS

As a fuzzing tool, Emilia has some limitations. First,
it only fuzzes the syscall return values but not inputs to
the application, which limits the code Emilia can cover. We
believe it would be straightforward to combine Emilia with a
standard input fuzzer to achieve both code coverage and syscall
coverage. Second, Emilia requires source code to generate the
valid value sets, and the number of unique crashes found does
not increase a lot by adding valid values (Table 5). This is
because not all values in the valid set are useful for finding
new syscall invocations due to our coarse-grained static value
extractor. Emilia currently also does not associate values from
the Value Extractor with specific invocations, but only with the
syscall type (i.e., syscall number). When we cannot associate
a value with a specific syscall type, Emilia adds the value to
the valid set of all syscalls. Third, Emilia only uses the stack
hash to identify syscall invocations but not the arguments. As
a result, if return value handling is different based on different
syscall arguments, Emilia may miss some Iago vulnerabilities.
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(a) Openssh (b) Redis

(c) Curl (d) Lighttpd

(e) Memcached

Figure 2: Crashes found over time. Solid lines are medians; dashed lines are max/min; Yellow and cyan lines are confidence
intervals for stateful (w/o valid) and baseline settings
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VIII. RELATED WORK

A review of previous OFLs is given in Section V. Here,
we focus on prior work in detecting and analyzing systems for
Iago vulnerabilities.

Hong Hu et al. [13] studied the memory access vulner-
abilities leading to arbitrary code execution despite privilege
separation mechanisms that divide software into trusted and
untrusted partitions. If the OS kernel is considered as the
untrusted one, then it matches the Iago attack model. They
use binary level symbolic execution and dynamic taint analysis
to detect invalid memory access introduced by data received
through the untrusted interface. Their fine-grained analysis
could also analyze the capability of the attacker for each
vulnerability found. However, symbolic execution suffers from
path explosion, and their work was only evaluated on simple
programs or function level. In 2019, Jo Van Bulck et al. [41]
analyzed responsibilities and attack vectors of a TEE shielding
runtime. They generalized Iago attacks from the OS syscall
interface to OCALLS in general, and detected Iago vulner-
abilities in Graphene-SGX [40] and SGX-LKL [33] similar
to the one we found in Google Asylo. Their work is more
like a guideline, and all the analysis was done manually.
COIN attacks [20] describe Iago attacks as a subset of input
manipulation against the SGX enclave’s untrusted interfaces.
They use symbolic execution and several policies to identify
vulnerabilities caused by OCALL return values. Their work
aims to detect errors in existing SGX projects, which are
aware of the malicious OS. In contrast, we focus on legacy
applications, and seek to provide guidelines for porting them.
Moreover, we are the first to use fuzzing to detect Iago attacks,
which can apply to large applications.

IX. CONCLUSION

Using Emilia, developed as part of this work, we were able
to ascertain a base rate of Iago vulnerabilities over a set of 17
diverse legacy applications and libraries. We find and detect 51
Iago vulnerabilities, and note that they are widespread, with
nearly every application or library having at least one vul-
nerability. Categorizing the vulnerabilities into Static, Local,
Stateful, Unauthenticated Channel and External classes, we
find that 82.4% are Static and Local vulnerabilities, which
can be easily mitigated by an OFL using simple, stateless
checks. Our analysis of current, state-of-the-art OFLs and SGX
applications shows that the majority do not completely mitigate
all Static and Local vulnerabilities in legacy applications,
suggesting that OFLs may benefit from research into how
to systematically check for and detect attacks against these
vulnerabilities. Finally, our results show that using Stateful
target-selection and Value Extraction Emilia is able to achieve
syscall coverage significantly better than a baseline fuzzer that
does not use these features.
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