
CV-INSPECTOR: Towards Automating Detection
of Adblock Circumvention

Hieu Le
University of California, Irvine

hieul@uci.edu

Athina Markopoulou
University of California, Irvine

athina@uci.edu

Zubair Shafiq
University of California, Davis

zubair@ucdavis.edu

Abstract—The adblocking arms race has escalated over the
last few years. An entire new ecosystem of circumvention (CV)
services has recently emerged that aims to bypass adblockers
by obfuscating site content, making it difficult for adblocking
filter lists to distinguish between ads and functional content. In
this paper, we investigate recent anti-circumvention efforts by
the adblocking community that leverage custom filter lists. In
particular, we analyze the anti-circumvention filter list (ACVL),
which supports advanced filter rules with enriched syntax and
capabilities designed specifically to counter circumvention. We
show that keeping ACVL rules up-to-date requires expert list
curators to continuously monitor sites known to employ CV
services and to discover new such sites in the wild — both
tasks require considerable manual effort. To help automate
and scale ACVL curation, we develop CV-INSPECTOR, a ma-
chine learning approach for automatically detecting adblock
circumvention using differential execution analysis. We show that
CV-INSPECTOR achieves 93% accuracy in detecting sites that
successfully circumvent adblockers. We deploy CV-INSPECTOR
on top-20K sites to discover the sites that employ circumvention
in the wild. We further apply CV-INSPECTOR to a list of sites that
are known to utilize circumvention and are closely monitored by
ACVL authors. We demonstrate that CV-INSPECTOR reduces the
human labeling effort by 98%, which removes a major bottleneck
for ACVL authors. Our work is the first large-scale study of the
state of the adblock circumvention arms race, and makes an
important step towards automating anti-CV efforts.

I. INTRODUCTION

sneak ads without giving users any notice or choice [44], [61],
[62]. More specifically, CV services re-insert ads by evading
filter lists [35], such as the community-driven EasyList (EL)
[68], used by adblockers to block ads [13], [22], [26], [53].

The adblocking community has taken notice of the ag-
gressive circumvention tactics used by CV services. Most
notably, Adblock Plus (ABP) [5] established a dedicated anti-
circumvention (anti-CV) effort that is centered around a new
dedicated filter list, the anti-circumvention list (ACVL), to
counter these CV services [4], [36], [45]. ACVL supports an
extended syntax with advanced capabilities, such as to hide
DOM elements based on a combination of CSS styles and text,
beyond the simpler rules supported by EL [47]. Concurrently
with ABP, other adblockers, such as uBlock Origin [71] and
AdGuard [9], also incorporate similar advanced anti-CV filter
rules [8], [10], [39], [69]. Similar to other adblocking filter
lists [31], [68], anti-CV filter rules are curated manually based
on crowdsourced user feedback. However, ACVL is curated
primarily by a small set of expert list authors instead of the
broader community that supports EL. Thus, a key challenge
faced by the ACVL curators is keeping up with the fast paced
nature of CV services [30]. Our measurements show that the
updates to ACVL are made 8.7 times more frequently as
compared to EL. Another challenge is that anti-CV efforts
are in the public domain, which gives CV providers the
opportunity to monitor anti-CV efforts and adapt their evasive
tactics accordingly.

To address these challenges, we introduce CV-INSPECTOR,
an automated approach to detect whether a site employs ad-
block CV services. CV-INSPECTOR includes (i) an automated
data collection and differential execution analysis for a list of
sites of interest; (ii) an algorithm for prioritizing and expediting
ground truth labeling; and (iii) a supervised machine learn-
ing classifier using features that capture obfuscation of web
requests and HTML DOM by CV services. We evaluate CV-
INSPECTOR using two real-world data sets. First, we consider
the top-20K sites and show that CV-INSPECTOR is able to
accurately detect whether or not a site employs circumvention.
In the process, we uncover several new sites (including news
publishers, adult sites, and niche lower-ranked sites) that
successfully employ third-party CV services. Second, we apply
CV-INSPECTOR, with ACVL loaded, on a set of sites that
are continuously monitored by ABP, and find that some of
them successfully evade anti-CV filters. More importantly, our
results show that CV-INSPECTOR can reduce human labeling
efforts by 98%, which is a major step in scaling the effort
to combat circumvention. To the best of our knowledge,

The widespread adoption of adblocking has threatened the 
advertising-based business model of many online publishers 
[20]. In response, publishers have deployed anti-adblockers 
that detect adblockers and force users to either disable their 
adblockers or sign up for paid subscriptions [11], [55], [67]. 
However, anti-adblocking has not proven very successful: 
adblockers can often hide anti-adblocking popups [42], [50],
[78] or users mostly choose to navigate away [20], [56].
Some publishers have resorted to outright circumvention of
adblockers. There are now dedicated third-party circumvention
(CV) services that help publishers re-insert ads by bypassing
adblockers. Examples include AdThrive [12], AdDefend [7],
and Publica [59]. These CV services are different, and more
advanced, than anti-adblockers. While anti-adblockers gener-
ally initiate a dialogue with users [66], CV providers try to

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021,Virtual 
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24055
www.ndss-symposium.org



this work presents the first large-scale systematic analysis
of adblock circumvention on the web. It provides tools [72]
that can significantly automate circumvention detection and
monitoring, thus helping to prioritize the efforts of expert
ACVL curators, which is a major bottleneck in this arms race.

The outline of the rest of the paper is the following.
Sec. II provides background of adblock circumvention and
related work. Sec. III provides a longitudinal characterization
of the anti-CV filter list and highlights pain-points and bot-
tlenecks. Sec. IV presents the design and evaluation of the
CV-INSPECTOR methodology, including the description of the
automated web crawling, the differential analysis, the machine
learning classifier and feature engineering. Sec. V applies CV-
INSPECTOR for two different applications: discovering sites
that employ CV services in the wild and monitoring sites that
are known to employ circumvention to reduce human labeling
efforts. Sec. VI concludes with a discussion of potential
impact, limitations, and future directions.

II. BACKGROUND & RELATED WORK

Adblockers rely on filter lists to detect and counter ads.
Rules in these filter lists are manually curated by volunteers
based on crowdsourced user feedback [13], [73]. Filter rules
can block network requests to fetch ads using hostname or
path information. In addition, they can hide HTML elements
of ads using class names or IDs. As adblocking has gone
mainstream [20], publishers have undertaken various counter-
measures that can be divided into three categories.

A. Whitelisting

Some adblockers allow whitelisting of ads if they con-
form to certain standards. The Acceptable Ads program [1]
whitelists ads if they are not intrusive based on their placement,
distinction, and size. ABP and a few other adblockers currently
implement the Acceptable Ads based whitelist. The Better Ads
Standard [18], by the Coalition for Better Ads, prohibits a
narrower set of intrusive ad types such as pop-up ads and large
sticky ads. Google’s Chrome browser blocks ads on sites that
do not comply with the Better Ads Standard, and whitelists
ads on the remaining sites [25]. However, whilelisting is not
a silver bullet for publishers. First, it is not supported by
many popular adblockers such as uBlock Origin and the Brave
Browser. Second, some adblockers, such as ABP, require large
publishers to pay a fee to be whitelisted. Publishers may also
have to pay a fee to ad exchanges, such as the Acceptable Ads
Exchange, to serve acceptable ads.

Prior work has investigated the evolution and impact of
ad whitelisting. Walls et al. [74] studied the growth of the
Acceptable Ads whitelist over the years and showed that it
covers a majority of the popular sites. They also reported
that the whiltelisting process is flawed because “acceptable”
ads are often disliked by users due to their intrusiveness
and misleading resemblance to page content. In fact, the
whitelisting of deceptive ads from content recommendation
networks such as Taboola and Outbrain [17] has been quite
controversial [3]. Pujol et al. [60] showed that most ABP users
do not opt-out of the Acceptable Ads whitelist despite these
issues. Merzdovnik et al. [46] showed that ABP blocked the
least amount of ads as compared to other adblocking tools
because of whitelisting.

B. Anti-adblocking

Many publishers deploy anti-adblockers that use client-
side JavaScript (JS) to detect adblockers based on whether
ads are missing. Fig. 1(a) illustrates the workflow of anti-
adblocking. The logic is implemented by a client-side JS that
first detects whether an ad is missing by measuring the ad’s
display properties or other dimensions. Then, it displays a
popup either warning users to disable their adblockers or a
paywall asking them to sign-up for paid subscriptions.

Third-party anti-adblocking services [19], [41], [56] are
used by many news publishers such as the Washington Post and
Forbes. Nithyanand et al. [52] manually analyzed JS snippets
to characterize anti-adblockers. Mughees et al. [50] trained
a machine learning classifier to detect anti-adblockers based
on HTML DOM changes. These early studies showed that
hundreds of sites had started deploying anti-adblockers.

Adblockers counter anti-adblockers using specialized filter
lists that use the same syntax as the standard EL. These filter
rules either trick the detection logic of anti-adblockers by
allowing baits or hiding the warning message shown by anti-
adblockers after detection. Iqbal et al. [42] studied the coverage
of these filter lists (e.g., Adblock Warning Removal List)
against anti-adblocking. They showed that these filter lists are
often slow in adding suitable rules by several weeks or some-
times even months. They further trained a machine learning
classifier to detect anti-adblocking JS using static analysis. Zhu
et al. [78] proposed a dynamic differential analysis approach
to detect and disrupt anti-adblockers. The aforementioned
countermeasures have proven reasonably successful against
anti-adblockers. Moreover, the warning messages shown by
anti-adblockers have proven to be of limited benefit [23], [63].
About three-quarters of surveyed users said that they would
simply leave the site instead of disabling their adblocker [56].

C. Circumvention

Publishers have recently started to manipulate the delivery
of ads on their site to outright circumvent adblockers. Circum-
vention techniques can be broadly divided into two categories:

Cloaking-based Circumvention. Publishers route ads through
channels that adblockers do not have visibility into due to bugs
or other limitations. For instance, advertisers used WebSockets
to circumvent adblocking extensions in Chrome because of a
bug in the WebRequest API that is used by extensions to in-
tercept network requests [16]. More recently, advertisers have
used DNS CNAME to disguise HTTP requests to advertising
and tracking domains as first-party requests [27], [28]. How-
ever, cloaking-based circumvention is not long-lasting because
it is neutralized once the bug is fixed. For example, Bashir et
al. [16] showed that WebSockets-based cloaking was rendered
ineffective when Chrome patched the WebRequest bug [57].
Moreover, cloaking is typically not effective against browsers
with built-in adblocking because they are not constrained by
the extension API used by adblocking extensions. Thus, we
do not focus on cloaking-based circumvention in our work.

Obfuscation-based Circumvention. Publishers obfuscate
their web content (e.g., domain, URL path, element ID) to
evade filter rules used by adblockers [75]. In contrast to
cloaking-based approaches, obfuscation-based circumvention

2



Filter Types EL ACVL Example Purpose
Web Request
Blocking

3 3 ||a.com/ads/*/images$script Blocks web requests matching domain, path
and script type

Element Hiding 3 3 ||a.com##.ad-container Hides all elements matching class name
Advanced
JavaScript Abortion

7 3 ||a.com#$#abort-on-property-read EX,
||a.com#$#abort-on-property-write EX

Stops JS execution from reading or writing to
window.EX

Advanced
Element Hiding

7 3 ||a.com#$#hide-if-contains-visible-text /Spon-
sor/

Hides all elements containing Sponsor text

TABLE I. OVERVIEW OF SIMPLE (USED BY EASYLIST OR “EL”) AND ADVANCED (USED BY EL AND ACVL) FILTER RULES. ONLY THE ADVANCED
FILTER RULES CAN STOP THE EXECUTION OF JS AND TAKE INTO ACCOUNT THE VISIBILITY OF CONTENT WHEN BLOCKING ELEMENTS.

is powerful because it exploits the inherent weaknesses of
filter rules — namely that filter rules must be precise when
targeting what to block (i.e., to avoid false positives) and that
they are slow to adapt (i.e., filter rule updates). Furthermore,
obfuscation-based circumvention can allow publishers to seam-
lessly continue programmatic advertising that is financially
more lucrative for publishers than anti-adblocking.

In this work, we focus on obfuscation-based circumvention.
Fig. 1(b) illustrates its general workflow: (1) JS detects whether
an ad is missing; (2) if an ad is found to be missing, then
an obfuscated web request is sent to a CV server; (3) the
CV server de-obfuscates the request and relays it to the
corresponding third-party ad servers or the publisher’s ad
server to attain the new ad; (4) the CV server obfuscates the
ad content and sends it back to the browser; (5) JS rebuilds
the ad content into DOM elements; and (6) it re-injects the
new ad at a desired location.

Alrizah et al. [13] anecdotally showed that EL is ineffective
at countering obfuscation-based circumvention. More recently,
Chen el at. [22] found that about one-third of advertising and
tracking scripts are able to evade adblocking filter rules due
to URL and other types of obfuscation. To the best of our
knowledge, prior work does not provide large-scale character-
ization of adblock circumvention or automated circumvention
detection in the wild.

Anti-Adblocking vs. Circumvention. Fig. 1 compares anti-
adblocking and adblock circumvention. Both approaches share
the first step, detecting whether an ad is missing. Patently, this
is necessary for anti-adblocking. However, for circumvention,
it is not a required step but rather a choice that publishers
select to minimize the cost of using CV services.

After the first step, their subsequent steps differ. As shown
in Fig. 1, different from anti-adblocking, circumvention in-
volves a series of additional steps at the server-side to bypass
filter rules and re-inject ads in the client-side browser. Thus,
circumvention is a more intricate process. It must deal with the
process of attaining new ad content and where to place them on
the page. Recall that it must do this without disrupting the user
experience while also evading filter rules. The complexity of
circumvention is further denoted by adblockers implementing
new advanced filter rules, such as aborting JS execution, to
adequately combat it. This is further explored in Sec. III.

As noted before, anti-adblocking and circumvention both
aim to affect adblock users only: thus, making differential anal-
ysis a suitable technique to detect them. Intuitively, differential
analysis endeavors to capture fundamental characteristics of
anti-adblocking or circumvention. For instance, with regards

Ad

Anti-
Adblocking
JavaScript

Shows Warning
Mesage

Detects Ad
Missing

Adblock Detected!

Please Disable Your Adblocker

(a) Anti-Adblocking

Ad

JavaScript Circumvention
Server

Ad Content
Obfuscation

Ad Request
Obfuscation

Detects Ad
Missing

Re-injects 
Ad

Ad 
Servers

Rebuilds 
Ad Content

Ad Content
Ad

(b) Obfuscation-based Circumvention

Fig. 1. (a) (1) If JS detects that an ad is missing; (2) it shows a popup
window asking the user to disable the adblocker, pay for a subscription, or
whitelist the site. (b) (1) If JS detects that an ad is missing; (2) it sends an
obfuscated ad request through a CV server; (3) the server retrieves the new
ad from an ad server; (4) the server obfuscates it before sending it back to the
browser; (5) JS rebuilds the ad content into DOM elements; and (6) re-injects
the ad back onto the page.

to Fig. 1(a), prior work [50], [78] sought to detect the action
of step 1 and whether the popup of step 2 was displayed to the
user. Note that the outcome of anti-adblocking does not involve
ads. On the other hand, our work identifies characteristics of
circumvention, described in Fig. 1(b), within actions of steps
2 and 4, and whether ads were displayed as a result of step 6.

However, the differential analysis method proposed in prior
work to detect anti-adblockers cannot be directly used to
detect adblock circumvention. For example, Zhu et al. [78]
conducted differential analysis of JS execution to find branch
divergences due to anti-adblocking. This technique, if used as
is, would incur false positives when a site is able to re-insert
ads but unsuccessfully displays them due to filter rules hiding
the ad element. More specifically, the circumvention approach
illustrated in Fig. 1(b) would exhibit a branch divergence at the
first step of detecting missing ads, which would be incorrectly
considered a positive label (successful circumvention). While
CV-INSPECTOR also uses a differential analysis approach that
involves loading a page with and without adblocker, it does
not aim to capture branch divergences due to anti-adblocking.
As we discuss later, CV-INSPECTOR conducts differential
analysis of web requests, DOM mutations, and other features
to be able to distinguish between successful and unsuccessful
circumvention of adblockers.

3



Fig. 2. Anti-circumvention List Over Time. This shows how filter rules
from ABP’s ACVL have evolved from May 2018 to May 2020 and categorizes
them by filter types.

III. STATE OF ANTI-CIRCUMVENTION

The adblocking community is increasingly wary of circum-
vention. Most notably, ABP recently started a dedicated filter
list, ACVL, to combat circumvention [43]. The filter list is
enabled by default in ABP to help block “circumvention ads.”
This anti-CV list has two key advantages over the standard
EL. First, it allows ABP to have full control over filter rule
design and management, including pushing the updated rules
at a higher frequency (e.g., every hour as opposed to every
four days for EL) and without community consensus. Second,
it supports advanced filter rules with enriched syntax and
capabilities, which are not supported by the standard EL,
specifically to counter CV services [38].

A. Filter Rules Overview

Filter rules can be either simple or advanced. Table I
provides examples and their compatibility with EL and ACVL.
We refer to EL types of rules as simple filter rules: they can
block web requests by matching domains and paths or hide
DOM elements by targeting CSS styles or content.

ACVL deploys additional advanced rules to combat cir-
cumvention: these can abort the execution of JS or hide
DOM elements based on computed styles and visibility of
content [33]. For example, if “EX” is an JS object that holds
circumvention code, then “||a.com#$#abort-on-property-read
EX” can block any JS that accesses it. Creating the rule often
involves reverse engineering the code to identify that “EX”
holds circumvention related code. Furthermore, a filter rule like
“||a.com#$#hide-if-contains-visible-text /Sponsor/” can hide
any element containing the visible text “Sponsor.” Notably,
this differs from simple element hiding because the simple
rule only takes into account the existence of text content and
not whether it is displayed to the user.

B. Analysis of the Anti-circumvention List (ACVL)

Evolution of Anti-circumvention Rules. We consider the
commit history of ACVL by using its GitHub repository and
rebuild the list’s filter rules for each day from May 2018 to
May 2020 [4]. Fig. 2 shows the evolution of the list since its
inception in May 2018. The list grows rapidly near the end

Web Request 
Blocking

Element 
Hiding

Advanced 
 JS Aborting

Advanced 
 Element Hiding

0

20

40

60

C
ha

ng
es

 P
er

 D
ay

 
(In

se
rts

/D
el

et
io

ns
)

Fig. 3. Commits by Filter Type. A boxplot of commit changes from 2018
to 2020 and categorized by filter types for ACVL. The horizontal lines within
the boxes represent the median, while the white circles represent the mean.

of September 2018 and peaks at 700 filter rules in November
2018. We see the overwhelming usage of element hiding over
other filter types such as web request blocking and advanced
element hiding. This can be attributed to the fact that advanced
element hiding has a large performance cost (with the use
of “window.getComputedStyles”), causing filter list authors to
use it sparingly. Also, element hiding may have been more
effective in 2018 because JS aborting was not introduced until
mid-November of that year [40]. Due to the over dependency
on element hiding, we see that until February 2019, ABP
could not prevent the loading of circumvented ads but rather
only hide them from the user. Moreover, we see a large
drop in element hiding rules (∼300 filter rules removed) from
November to December 2018. When inspecting the commit
changes of that drop, they appear to be cleaning up old filter
rules for Czech and German sites [64], [76]. In particular, we
find that many element hiding rules are used to target only
13 sites (e.g., novinky.cz and super.cz). This is a downside to
element hiding: it must target specific elements resulting in a
large number of rules to cover ads even for one site.

Next, we observe that the introduction of JS aborting
rules in mid-November 2018 triggers a change in the filter
type usage within ACVL. First, the popularity of JS aborting
rules denotes its effectiveness against circumvention. Second,
it reduces the ACVL’s dependency on element hiding because
JS aborting prevents ad reinsertion, which results in fewer
ad elements to hide. Consequently, this also increases the
popularity of web request blocking. This can be due to
two factors: (1) once filter list authors understand which JS
employs circumvention, they can better find a way to block the
script entirely; and (2) CV services rely more on web request
obfuscation during that period. Thus, from late 2018 to 2020,
we see that the three filter types were used almost equally.

Frequency of Updates. For 2019, which denotes ACVL’s first
complete year, Fig. 2 shows that the number of filter rules has
stabilized within the range of 400 to 500 rules. This contrasts
with EL’s constant growth, which increases at approximately
8K rules per year [73]. However, the daily modifications to
ACVL remains high. To explore this notion, we review the
changes of all commits within a day by using “git diff” and
parse each change to categorize then into filter types. Fig. 3
reveals the spread of changes per day (defined as number of
inserts and deletions) for each filter type within ACVL. We
find that the medians of changes are 12, 10, and 5 for web
request blocking, element hiding, and advanced JS aborting,

4



0 20 40 60 80 100 120
Minutes

0

500

1000

1500
O

cc
ur

re
nc

es

Fig. 4. Time between Commits. The time between commits for ACVL is
most frequently within 4 minutes while the average is 2.3 hours.

[0-
10

0k
)

[10
0k

-20
0k

)

[20
0k

-30
0k

)

[30
0k

-40
0k

)

[40
0k

-50
0k

)

[50
0k

-60
0k

)

[60
0k

-70
0k

)

[70
0k

-80
0k

)

[80
0k

-90
0k

)

[90
0k

-1M
)

[1M
+]

Tranco-Ranking

10
2

10
3

N
um

be
r o

f S
ite

s 440

133
92

64 58
40 39 31 37 33

1064

Fig. 5. Tranco-ranking of ACVL. Sites extracted from ACVL and their
corresponding Tranco-ranking. We see that there is low coverage of sites for
circumvention from ranking 100k to one million. Note that about half of the
sites do not appear in the Tranco top one million list (labeled as 1M+).

respectively. The median for advanced element hiding remains
at zero due to its infrequent changes. Moreover, the frequency
of commits persists at a high rate, as indicated by the time
between commits, reported in Fig 4: it is commonly within
4 minutes. The average time is 2.3 hours, which is about 8.7
times more frequent that EL’s 20 hours [73]. This highlights
the accelerated arms race between publishers and adblockers
within the circumvention space.

Publishers that Employ Circumvention. Upon further in-
spection, we find that commits are generally modifications to
existing rules. For web request blocking, curators typically
change URL components (e.g., subdomains and paths) or
resource type within the rule. For both simple and advanced
element hiding, they often modify class names, IDs, styles,
and DOM structure. For advanced JS aborting, they change
the name of the JS object that the rule is targeting.

To evaluate publishers that cause these frequent commits,
we identify domains that appear in both insert and deletion
lines within a commit. We discover that the top two sites,
reuters.com and quoka.de, have triggered 671 changes to rules
over a period of 17 months and 269 changes within 18 months.
Overall, the top-10 websites that give filter list authors the most
trouble have an average ranking of about 10K [58]. However,
when considering the top-30, the average ranking is 189K,
which can be explained by the fact that many of the sites are
from Germany, where most of the ACVL authors reside.

Coverage of ACVL. Next, we investigate the coverage of
ACVL on the web, which has not been previously explored.
We extract the sites that are specified in the filter rules and
map them to their corresponding Tranco-ranking [58] in Fig. 5.

First, we note that there are about 927 sites that employ
circumvention within the Tranco top one million sites, which
denotes the low prevalence of circumvention; perhaps, due to
the cost of CV providers. Second, surprisingly, we see that
ACVL covers about 1064 sites that are beyond the one million
(1M) Tranco-ranking, more than twice the amount of coverage
when compared to the top-100K.

Furthermore, we see low coverage numbers for the range of
rankings between 100K to 1M. We can deduce that the ACVL
may lack coverage in two ways. First, advanced rules must
specify which sites to target while simple rules can be website
agnostic. Second, we previously saw that ACVL’s number of
rules has stabilized — showing that ABP is more focused on
combating circumvention from a few known sites rather than
discovering new sites that employ circumvention. In addition,
while EL authors receive help from the community through
forums that have up to 23K reports over a span of nine years
[13], ACVL authors rely on submitted GitHub issues, with a
current total of 379 issues over a span of two years [4]. Thus,
significant manual work (e.g., updating rules and discovering
new circumvention sites) falls onto the filter list authors.

Takeaways. The number of ACVL filter rules has stabilized
in contrast to EL. This can be attributed to two factors: (1)
ABP’s focus on a few known CV providers; and (2) changes
within ACVL primarily being modifications to existing filter
rules. Thus, the coverage of ACVL is limited due to the focus
on modifying rules rather than discovering new circumvention
sites. Moreover, the effort to combat circumvention requires
significant effort from filter list authors. ACVL has only 14
contributors with three main contributors: wizmak, arsykan,
and Milene [6], who commit five, four, and three times on
average per day, respectively. These few filter list authors must
undertake a huge effort in keeping rules up-to-date.

This motivates our methodology in the next section, which
aims at assisting and prioritizing this effort by providing ways
to automate detecting successful circumvention in the wild, to
monitor the changes in publishers, and to be notified when a
site has successfully circumvented the adblocker.

IV. CV-INSPECTOR: DESIGN AND IMPLEMENTATION

In this section, we present CV-INSPECTOR for detecting
whether a site employs circumvention or not. Fig. 6 presents
an overview of our methodology. In Sec. IV-A, we present our
instrumentation and automated data collection. In Sec. IV-B,
we apply differential analysis to identify data that is indicative
of circumvention. Then, in Sec. IV-C to IV-F, we extract
features, train, and evaluate our CV-INSPECTOR classifier.

A. Instrumentation and Data Collection

1) How we collect data: Our crawling script takes as input
a list of websites for which we collect data. For each page load
of a site, we wait for 25 seconds: we denote this as a “page
visit.” Page load times are commonly less than a minute as
they affect the search ranking of sites. As shown in Fig. 6, we
visit each site for a total of eight times. As a result, we select
25 seconds to not significantly slow down CV-INSPECTOR,
which is inline with prior work [78].

5



Browser 
No Adblocker (A)

Browser 
With Adblocker (B)

Differential Analysis
(Sec. IV-B)

Set Difference of  
{ x ∈ B and x ∉ A }

Instrumentation and Data Collection (Sec. IV-A) Machine Learning

Crawling Script

Web Requests 
Collector

DOM Mutation 
Collector

Web
Requests 

DOM 
Mutation

Temporal 
Events

Page 
Source

Feature 
Extraction
(Sec. IV-C)

Ground Truth 
Labeling

(Sec. IV-D)

Classifier
(Sec. IV-E)

EasyList

A B

Data Collected

Fig. 6. CV-INSPECTOR Workflow. Given a list of URLs, our crawling
script will visit each site four times for: (A) “No Adblocker” and (B) “With
Adblocker.” With each visit, we collect web requests, DOM mutation events,
temporal events (e.g., timestamps and blocked events by the adblocker), and
the page source. We take the set difference between the data collected in the
two cases, (B)-(A), since websites commonly employ circumvention when
adblocker is on. We use the (B)-(A) data to extract most features, train and
evaluate our classifier.

No Adblocker vs. With Adblocker. Since websites typically
employ circumvention only when an adblocker is present,
we utilize differential analysis to obtain insights into cir-
cumvention “signals.” For each website, we collect data for
two different cases: (A) “No Adblocker” and (B) “With
Adblocker.” For “No Adblocker,” we load each site four times
and take the union of the collected data in order to capture
the dynamic nature of a site because a it can retrieve ads from
different ad servers. This is a heuristic but justified choice: we
experimented with loading the same page for a varying number
of times and found that the number of contacted domains
plateaus at four. We will refer to these “four page visits” per
case, throughout the paper. We repeat the same process for
“With Adblocker.” In addition, we use ABP and configure it
to use EL. We deselect the “Allow Acceptable Ads” option
as we want to make sure ads are shown due to circumvention
and not because it was whitelisted. Furthermore, this gives
sites the best chance to circumvent the adblocker and the best
opportunity for us to capture it.

Landing Page and Sub-pages. Our crawling considers both
landing pages and sub-pages. This is critical because sites may
not employ circumvention in their landing pages but rather wait
until the user clicks into a sub-page to show circumvented
ads (e.g., maxpark.com). To find a sub-page, we inject JS
into the landing page to retrieve all URLs from hyperlink
tags. We select the first-party link with the longest number
of path segments. We use the intuition that the deeper the user
explores the site, the more interested the user is in the content,
thus increasing the chance that the site would serve ads. We
find that this methodology works well for sites that have
articles. To further ensure that we find a sub-page with ads,
we ignore informational pages using keywords (e.g., “contact,”
“login”) within the path. To only consider pages with content,
we further ignore first-party links that have extensions (e.g.,
“.tar.gz,” “.exe”), to prevent downloading external files.

Automatic Collection. We use Selenium [51], a framework to
automate testing of websites, to implement the crawling pro-
cess. We select Chrome (version 78) [24] as the browser due
to its popularity. As depicted in Fig. 6, we create two Chrome
profiles. One profile is for the “No Adblocker” case, where
we include the web request extension and DOM mutation
extension. The second profile is for the “With Adblocker” case,

where we also include the custom ABP extension that only
loads EL. In order to have a consistent behavior with ABP,
we only use one version of EL and the ACVL from March
13, 2020. Then, we configure Selenium to disable caching
and clear cookies to have a stateless crawl. For scalability
purposes, we utilize Amazon’s Elastic Compute Cloud (EC2)
and select the “m5.2xlarge” instance that allows CPU usage
without throttling [14]. We create a snapshot out of the setup
using Amazon Machine Image (AMI) [15], which allows us
to spawn many instances of EC2 for data collection.

2) What data we collect for each page: Next, we describe
the types of information we collect for each site. We are
interested in how the site changes from “No Adblocker” to
“With Adblocker,” at four vantage points:

1) Web requests: HTTP incoming and outgoing requests.
2) DOM mutation for nodes, attributes, and text.
3) Time stamps of all events like web requests, DOM

mutations, and blocked events caused by ABP (i.e.,
when a filter rule is matched, see Table I).

4) Page source code of the site (e.g., HTML, text, inline
CSS, and inline JS).

We also collect screenshots, which are capped at 1925x3000
to deal with websites that can infinitely scroll. Screenshots
are useful as we use them to verify our ground truth in
Sec. IV-D. Next, we explain how this collected data can reveal
obfuscation-based circumvention employed by the site.

1. Collecting Web Requests. Circumvention providers often
randomize subdomains and paths as an obfuscation technique
to retrieve new ad content for reinsertion, going beyond
simply rotating domains [13], [42], as illustrated in Fig. 1(b).
Capturing web requests can help identify this behavior. Ex-
amples are provided in Sec. IV-C. We implement a Chrome
extension to collect web requests by hooking into the Chrome
Web Request API [37]. This API streamlines the flow of
web requests into various life-cycle stages that developers
can easily subscribe to. Specifically, we hook into “onSend-
Headers” to collect outgoing HTTP request headers and “on-
Completed” to collect incoming HTTP response headers of
successful requests. To collect web requests blocked by ABP,
we hook into “onErrorOccurred” and look for status code
“ERR BLOCKED BY CLIENT.”

2. Collecting DOM Mutation. Fig. 1(b) shows that re-injected
ads are often reconstructed in step 5 and may not have the
same DOM structure as the originally blocked ads. Capturing
how the DOM changes as the page loads can help uncover
these particular actions. We build a Chrome extension that
uses DOM Mutation Observers [49] to collect DOM changes.
The extension compiles events such as new nodes added (e.g.,
an ad image being added), nodes removed (e.g., a script
being removed), attribute changes (e.g., an ad element from
height 0 to 280px), and text changes (e.g., anti-adblocker
popup text). Furthermore, recall from Table I that an adblocker
can do element hiding. We capture this by instrumenting the
ABP extension (version 3.7) and hook into methods that hide
elements when a filter rule is matched to label the elements
with a custom HTML attribute “abp-blocked-element,” shown
in Listing 1. Since this causes a DOM attribute change, we
consider this as part of the DOM Mutation information.

6



Listing 1. Page Source Annotations. Highlighted in blue, attribute “abp-
blocked-element” denotes that the adblocker has blocked the element. While
attribute “anticv-hidden” means that the img is not visible (not related to the
adblocker). All visible images and iframes are labeled with their offsetwidth
and offsetheight to give a more accurate representation of the page.
0
1 <div abp−blocked−element="true">
2 <img s r c ="https://ads.com/banner.jpg" />
3 </div>
4 <div c l a s s ="mobile">
5 <img s r c ="https://b.com/logo.jpg"
6 ant icv−hidden="true" />
7 </div>
8 <iframe s r c ="https://b.com/ad" h e i g h t ="90"
9 a n t i c v − o f f s e t w i d t h ="728"

10 a n t i c v − o f f s e t h e i g h t ="90">
11 < / iframe>

3. Collecting Temporal Information. Since circumvention
is typically a reaction to ads being blocked, timestamps of
changes on the page can reveal how adblockers and cir-
cumvention code interact with each other. Thus, we record
and consider timestamps for web requests, DOM mutation,
and blocked events. For completeness, when we consider the
ACVL in Sec. V-B, we hook into methods that abort the
execution of JS to capture JS blocked events as well.

4. Collecting Page Source with Annotations. We use Sele-
nium to save the page source of the site at the end of the page
load time. It gives us information about the state of the site
such as the HTML and text, inline CSS, and inline JS. In addi-
tion, it contains the annotated elements that are hidden by the
adblocker, as shown in Listing 1. Furthermore, since the page
source does not provide the actual visibility state of images and
iframes, we inject JS to annotate these elements with a custom
attribute “anticv-hidden” detailed in Listing 1. We extract all
images and iframes and consider the following cases. First,
if the element’s “offsetParent” is null and its “offsetWidth”
and “offsetHeight” are zero: this denotes that the element is
hidden due to its parent being hidden. Second, otherwise, we
use “window.getComputedStyles,” which provides us the final
styles that are applied on the element. We consider styles such
as “display: none” and “opacity <= 0.1” to see if the element is
hidden. Third, we treat elements with width and height of less
than or equal to two as hidden. This filters out pixel elements
used for tracking. We further use these annotations for feature
extraction, as described in Sec IV-C.

3) Tools and Limitations: Using Amazon’s EC2 and AMI,
our methodology is scalable (e.g., multiple instances can be
initiated to fit the problem) and configurable (e.g., number of
sub-pages to find, which filter list to load). However, it also has
its limitations. First, some sites utilize Cloudflare’s protection
against web-crawlers where it shows a captcha, which prohibits
CV-INSPECTOR from accessing the page. Second, Selenium
may not properly produce screenshots, which depends on how
body styles are applied. We address this limitation by first
checking whether the height of the body is zero. If so, then
we check the next immediate child element of the body to see
if it has a height to capture, and so on. Third, when discovering
sub-pages, we do not consider links from non-hyperlink tags
or if the site is utilizing JS to redirect users upon a click.

Finally, recall that we wait for 25 seconds during each page
visit, which might miss some behavior on sites that need longer
to load. This is a parameter to tune: longer crawling times is
possible at the expense of slowing down CV-INSPECTOR.

4) Data sets: We apply our methodology and collect
different data sets, summarized in Table II, which we then
use for different purposes throughout the paper. For each
of these data sets, we start from a list of URLs, apply the
methodology described earlier in this section, and we collect
the four types of information, referred to as “collected data” in
Fig. 6: web requests, DOM changes, temporal information, and
page source with annotations. The top three data sets in Table
II are collected using our methodology based on a given list
of sites: ACVL sites, Tranco’s most popular sites and Adblock
Plus Monitoring. The first two are publicly available.

ACVL has been extensively discussed in Sec. III and
includes sites that currently employ, or had employed in the
past, CV services; we use this list to find positive samples. We
use Tranco ranked sites in two ways. First, since circumvention
is hard to find, we use the Tranco top-2K sites within our
ground truth data set (GT) to ensure that it covers popular
sites. Second, we use the Tranco-20K data set (which excludes
the top-2K) to test our classifier on popular sites that matter
to users. The third data set, internally maintained by ABP,
contains sites that employed circumvention at some point and
ABP continuously monitors them to see if ACVL is still
effective on them. We refer to sites that are closely monitored
by adblockers as “sites of interest.” Generally, this means that
the sites affect a large portion of adblock users (i.e., in terms
of popularity) or that the sites have caused users to submit
feedback about them.

The bottom part of Table II summarizes our three original
crawled data sets that we use for training and evaluating our
classifiers in Sections IV-D, IV-E, and V.

B. Differential Analysis

1) Set Difference: Our intuition is that behavior observed
when an adblocker is used (“With Adblocker”) is different
from the behavior observed when there is no adblocker (“No
Adblocker”). This is likely due to CV services being triggered.
Recall from “No Adblocker vs. With Adblocker” of Sec.IV-A1,
that we need to account for the dynamic nature of websites.
Therefore, first, we take the union of the data sets collected
across all four page visits in each case. Then, we take the
difference of the two union sets (“With Adblocker” minus “No
Adblocker”). Next, we elaborate on what differences we ex-
amine for each of the four types of data collected.

First, for web requests, circumvention services can serve
content behind first-party domains. Therefore, we cannot sim-
ply do a set difference on the domain level for web requests,
which would eliminate the presence of the circumvented ads.
Instead, we do a set difference based on the fully qualified
domain and its path while disregarding the query parameters.
Second, for for DOM mutations, we create a signature for each
event based on the element’s attribute names, tag name, parent
tag name, and sibling count. We do not depend on the value of
attributes because they can be randomized [13], which would
introduce more unrelated events to circumvention. Instead, we
rely on the length of the value within our event signature. For a

7



Data Set Name List of Sites Crawled # Pages &
Sub-pages

Obtained by crawling a given list of sites

ACVL sites Sites extracted from ACVL
(public [4])

3K

Tranco Most popular sites (top-20K) at
tranco-list.eu (public [58])

32K

Adblock Plus
Monitoring

Sites that ABP monitors (main-
tained and provided by ABP)

360

Derived from ACVL & Tranco, used for ML training & testing

Candidate for
labeling (CL)

ACVL ∪ Tranco top-2K 6.2K

Ground
Truth (GT)

Subset of sites from CL that are
inspected and labeled (positive
or negative) for circumvention

2.3K

Tranco-20K Tranco top 2K-20K (excluding
the top-2K used in CL)

29.3K

Ground Truth
Positives
(GTP)

Subset of GT with only positive
labels

700

TABLE II. DATA SET SUMMARIES AND TERMINOLOGY USED
THROUGHOUT THE PAPER. EACH OF THE ORIGINAL DATA SETS IS

OBTAINED BY CRAWLING THE CORRESPONDING LIST OF SITES (AND
SUB-PAGE) AND COLLECTING ALL 4 TYPES OF DATA (WEB REQUESTS,

DOM CHANGES, TEMPORAL, AND PAGE SOURCE).

simple example, if the element is “<div class=’ererke434’>,”
we would consider it as “div class9.” Third, for temporal
information, we first extract features per visit then average
them within their respective cases, then we apply the set
difference. Fourth, for page source, we do a set difference
based on words for text differences. For example, a text change
event with an old value of “Please subscribe to our content”
and a new value of “Please disable your adblocker to view our
content,” will result in a set difference of “subscribe, disable,
your, adblocker, view.”

2) Cleaning the Data: Recall that we load each site four
times to capture its dynamic content. A side effect is that we
end up with data (e.g., web requests and DOM mutations) that
is not necessarily related to circumvention, and can be due to
tracking, discernible non-ad resources, dynamic content, etc.
We filter these out before extracting features for circumvention.
First, for web requests, we identify tracking, social, and anti-
adblocking requests by applying EasyPrivacy [31], Adblock
Warning Removal List [2], Disconnect.Me [29], and uBlock
Origin’s GetAdmiral [70] filter lists. To filter out the requests,
we use Brave’s Adblock engine [21], a filter list parser that
supports EL-compatible rules. Second, we keep third-party ad
resources by looking at ones that have content-length larger
than 2 KB and have a max-age (within cache-control headers)
shorter than 40 days. We conclude on these numbers by
inspecting resources that were blocked by ABP. This gives us
a profile about what content-length and max-age ad resources
should have. Third, we only consider successful web requests
(e.g., HTTP status code 200) and discard the ones that involve
redirection, errors, or no content (e.g., HTTP status codes 304,
400, 204). This is because circumvention related web requests
should have content such as JSON (that may define ad content)
and JS (code to re-inject ads).

Web Request Features Top
Number of content-types 3

Entropy of subdomains, paths, query parameters (by
content-types and first/third-party)

3

Number of Mismatches of URL extension and content-type
Number of Mismatches of loaded resources
DOM Mutation Features Top
Number of DOM attribute changes (display, class, etc) 3

Number of DOM nodes removed (iframes, etc) 3

Number of elements blocked by EL (imgs, iframes, etc) 3

Number of DOM nodes added (a, imgs, etc)
Temporal Features Top
Number of blocked events (in first 12sec of page visit) 3

Number of blocked events (in second 12sec of page visit)
Average cluster size of DOM mutations over time
Page Source Features Top
Number of iframes and images in ad positions 3

Number of distinct words, characters, and newlines
Entropy of subdomains, paths, query parameters of visible
iframes and images contained in hyperlinks (with target or
rel attributes)

TABLE III. SOME OF THE FEATURES USED IN CV-INSPECTOR. THERE
WERE 93 FEATURES TOTAL IN THESE 4 CATEGORIES. THOSE MARKED AS
“TOP” WERE IN THE TOP-10 MOST IMPORTANT FEATURES IN SEC. IV-E.

Listing 2. Obfuscated URL Example. Taken from psychologyjunkie.com,
we compare a normal URL with an obfuscated one where subdomains & paths
are randomized. Although truncated, the path can reach up to 6K in length.
The entropy of the subdomains for the regular and obfuscated URLs are 1.58
and 2.25, respectively. Their first path segments would have entropy of 1.79
and 4.56. As expected, the obfuscated strings have higher entropy.
0
1 /* Regular URL */
2 https://cdn.convertkit.com/assets/CKJS4.js
3 /* Obfuscated URL */
4 https://h239rh.lmyiwaakn.com/qO8HqaNP1NUGrt
5 d4qtgA1agJ2JAHpqoDo9QDqqYAptl4qaoF1dZ0...

C. Feature Extraction

Next, we describe the features that we extract from the
cleaned set difference to capture circumvention. Not all fea-
tures involve set differences, e.g., blocked events only appear
in the “With Adblocker” case. Table III lists the features that
we explored and highlights those that ended up being the top-
10 most important features. Then, we evaluate those features
and explain our intuition of why they can capture the presence
of CV services.

1. Web Request Features. One widely used obfuscation
technique is to randomize URL components and other fea-
tures extracted from web requests, resulting in noticeable
differences between “No Adblocker” and “With Adblocker”
cases. Listing 2 shows a comparison between a regular URL
and an obfuscated one by circumvention. To capture this
randomization, we treat URL components, such as subdomains
and paths, as strings, and we calculate their Shannon entropy,
based on the frequency of each character occurring in the
string. The idea is that randomized strings will have higher
entropy. An illustrative example is shown in Listing 2. As
expected, the obfuscated strings have higher entropy for both

8



D
O

M
 M

ut
at

io
n

(N
o 

A
db

lo
ck

er
)

10,000

1

10

100

1,000

10,000

L0 100 25020015050

D
O

M
 M

ut
at

io
n

(W
ith

 A
db

lo
ck

er
)

10,000

1

10

100

1,000

10,000

L0 50 100 150 200 250

B
lo

ck
in

g 
O

cc
ur

re
d

(W
ith

 A
db

lo
ck

er
)

10,000

1

L0 50 100 150 200 250
Time (100 ms per Bin)

Fig. 7. Example of Temporal Features. We show the number of DOM
mutations (spikes) over time for “No Adblocker” and “With Adblocker”
(with the corresponding blocked events). We define a cluster of activity as
consecutive spikes (no more than one bin apart) and the cluster size as the
number of bins that it spans. The top figure shows the “No Adblocker” case,
which has 9 clusters with an average cluster size of 8.33. In the middle figure,
we show the “With Adblocker” case, which has 22 clusters with an average
size of 3.86. In the bottom figure, the dashed vertical lines represent whether
blocking events occurred. The majority of blocking happened within the first
12 seconds when compared to the remaining time (e.g., 11 events vs. 1 event).

subdomains and paths. We further split web requests up into
first-party and third-party sets. In addition, we count the the
number of different content-types extracted from their response
headers. Furthermore, we look at mismatch cases like when
a web request ends with a “.jpg” extension but its content-
type is “application/javascript.” Also, we look at whether
a particular path loads different numbers of resources. For
instance, when a path “a.com/images/” loads 10 images with
the “No Adblocker” case but then loads 15 images for the
“With Adblocker” case.

2. DOM Mutation Features. DOM mutation features can
uncover behavior such as when new ad-related elements are
added. For nodes being added and removed, we focus on
element types that can be associated with ads such as “<a>,”
“<imgs>,” and “<iframes>.” For attribute changes, we focus
on changes such as the class attribute, visibility styles like
display and position, and the height of the element. Moreover,
we count the number of DOM attribute changes that involve
“abp-blocked-element,” which denotes the number of elements
blocked by EL.

3. Temporal Features. We expect that a site would exhibit
different behavior (events) over time when employing circum-
vention, as depicted in Fig. 1(b). Therefore, we examine the
timing of events to extract temporal features. Fig. 7 details
how we capture differences in DOM mutations over time by
utilizing spikes, clusters, and cluster sizes. By considering the
cluster size, we can identify bursts of DOM mutations and

Listing 3. Simple Ad Structure. An example of a simple ad structure that
can be used during ad re-insertion instead of an iframe.
0
1 <a h r e f ="https://www.512xiaojin.com"
2 t a r g e t ="_blank" r e l ="nofollow">
3 <img s r c ="https://1.bp.blogspot.com/
4 -YTj2YjT6ODw.gif" />
5 </a>

how prolonged they are. For “With Adblocker,” we see fewer
DOM mutations within the first five seconds, perhaps due to
many blocked events in the beginning. However, after that, we
see more bursts of DOM activity; notably, within the 12–18
seconds that are not present in the “No Adblocker” case. This
is captured by the smaller average cluster size. Interestingly,
this turned out not to be a top feature. We deduce that this
is because not all circumvention techniques cause large DOM
mutation changes. For instance, a site can load in a static ad
and use a simple ad structure, as shown in Listing 3. We further
discuss circumvention techniques in Sec. V-A2 and Table VI.

Since blocked events (i.e., any matching of filter rules in
Table I) can happen for sites that do not employ circumvention,
we want to investigate whether the timing of blocked events
can signal circumvention. Recall that we visit each page for
25 seconds, a parameter value chosen for reasons explained in
Sec. IV-A1. We compute the number of blocked events in the
first or second 12 seconds of the page visit. We initially thought
the second half would be a differentiating feature, as the page
would exhibit the action of re-injecting ads and the adblocker
would then once again block those ads. However, we observed
that the first half was more important, as shown in Fig. 7. This
may be because loading ads is a priority, leading to the blocked
events happening in the beginning of the page load. Also, filter
rules often aim to stop circumvention at the earliest possible
point. Ultimately, adblockers are more aggressive against sites
with circumvention, and therefore, cause more blocked events.

4. Page Source Features. Page source features characterize the
state of the site at the end of our page visit time. These features
convey whether circumvention was successful by identifying
possible ads that are still visible on the page. We discover
that circumvention exhibits behavior such as altering the DOM
structure of the ad to circumvent adblockers, while re-injecting
the ads back to specific, and often the same, locations.

First, we target specific DOM structures that hold ads
such as images or iframes. For images, we select those that
are contained by hyperlink elements (“<a>”) with attributes
“target” and “rel,” as shown in Listing 3. The “target” attribute
defines how the browser behaves after a user clicks on the
link such as opening up in a new window or tab. The “rel”
attribute defines the relationship between the current page and
the outgoing link. We can use this to infer that if the outgoing
link is also third-party, then it is likely to be an ad.

Second, we identify possible ad locations that can be
utilized for re-injection. We use the “No Adblocker” page
source and extract all iframes. We then dynamically create
CSS selectors for the iframes, specifying at least three levels of
ancestors to make sure the selector is specific enough. We then
use these selectors on the page source of the “With Adblocker”

9



side and count the number of images or iframes that remain.
To deal with sites that randomly alter their element attributes,
we do a second search (when the first search does not match
any elements) with more generic selectors by looking at the
existence of attributes and not the values of them. For instance,
a selector of “div > div[opacity=’1’] > div[class=’rerejhf’]”
will turn into “div > div[opacity] > div[class].”

For both of these cases, we make sure that iframes and
images are visible and not hidden by the adblocker or pixel-
size used for tracking. This is possible by using our annotations
from Listing 1 to ignore elements that are invisible to the user.

D. Ground Truth Labeling

Let us revisit Sec. IV-A4 and discuss how we use the
original data sets, shown in the top two rows of Table II, to
create our GT data set, for training our classifier.

Why Positive Labels are Important. A major challenge
for our GT data set is that positive samples (i.e., sites that
successfully employ circumvention) are rare and hard to find.
First, there are simply not many sites that employ circumven-
tion today. For example, in Fig. 5, only 927, out of the top
one million Tranco sites, utilize circumvention. Second, we
define positive labels as not only attempting circumvention,
but also successfully circumventing adblockers, which further
reduces their number. Conversely, negative labels are easy to
discover because they correspond to sites that do not attempt
circumvention and to sites that do, but are unsuccessful at
evading the adblocker. For instance, see the imbalance in
Table V. Furthermore, human inspection and labeling of sites
is a labor-intensive process. To resolve these challenges, we
devise a methodology that reduces human labeling efforts
while finding many positive labels.

Candidates for Labeling (CL). We start from a list of URLs
that we consider candidates for labeling: this includes 2K do-
mains extracted from the ACVL, as described in Sec. III-B, and
popular Tranco top-2K sites. Domains extracted from ACVL
are not guaranteed to have positives, because compatible rules
from ACVL can be transferred to EL, thus EL can deal with
circumvention for some sites. Furthermore, since Fig. 5 reveals
that many ACVL domains are beyond the one million ranking,
we also consider the Tranco top-2K sites as candidates for
labeling, to include more popular sites of interest. We then
crawl the sites using our data collection methodology, depicted
in Fig. 6, and end up with approximately 6.2k sites (including
sub-pages) for our CL data set.

Labeling Each Site. We label each site, in our CL data
set, as either successful circumvention (positive label) or not
(negative label). We capture a screenshot each time we visit
a page and depend on them to label our sites. Our labeling
methodology is as follows. First, we open up screenshots from
“No Adblocker” case and identify where ads are shown. Then
we open up screenshots from “With Adblocker” and compare
to see if the ads are removed. If an ad is still visible, we
label the site as positive; otherwise, we label it as negative.
Second, there may be “suspicious content.” For instance, ads
can look similar to page content rather than common ads,
either because they lack transparency (e.g., not annotated by
“Advertisement” or “Sponsored”), or they may be closely

(a) gamer.com.tw: “No Adblocker” case

(b) gamer.com.tw: “With Adblocker” case

Fig. 8. Example of “Suspicious Content.” This gaming website shows
suspicious content on the right sidebar outlined in red. Note that the three small
images change between the (a) “No Adblocker” and (b) “With Adblocker”
sub-figures. Although the content may look like ads, it could also be benign
content related to gaming. Using a browser, we looked at their outgoing URLs
and observed that the two smaller images for Tera Awaken and EOS are ads,
while the third image links to a first-party page. Since there are still ads
displayed in (b) “With Adblocker,” we label this example as a positive label.

related to the site content. Fig. 8 illustrates an example of such
“suspicious content”: gaming ads are displayed for a gaming
site, “gamer.com.tw,” which makes it difficult to tell whether
they are ads or first-party content. To settle these cases, we visit
the site on our Chrome browser and set up ABP with the same
configuration (settings and filter lists) as our data collection.
This allows us to further verify whether the content was an ad
by looking at the outgoing link or test it out by clicking on it.
If the content is indeed an ad that goes to a third-party site,
we label it as positive. In our GT data set, we encountered
“suspicious content” only 69 out of 2321 times, thus making
it a corner case.

As described, our labeling methodology relies on using
screenshots. Recall from Section IV-A1 that for a given site,
we visit it four times for the “No Adblocker” and “With
Adblocker” cases, which corresponds to four screenshots for
each case. An alternative approach to labeling would be to use
a browser to check the site, which can produce higher quality
labels. For instance, the browser allows us to view the entire
site as opposed to the limited height of the screenshots, which
is capped at 3000px to deal with infinitely scrolling sites.
However, the browser approach increases the human labeling
efforts. Screenshots offer an attractive compromise: they allow
us to quickly compare the four page visits of “No Adblocker”
and “With Adblocker” with each other, without setting up our
browser and loading the sites four times per case.

10



Candidates for 
Labeling (CL)

LabelBootstrap 
Ground Truth

Train 
Classifier

Apply Classifier 
to Remaining CL

Sites from
Anti-CV List

Sites from 
Tranco Top-2K

Order by Decreasing 
Classifier Confidence

Add to 
Ground Truth

Select 
Top-500 Sites

Done

Fig. 9. Labeling Methodology: We start with a list of sites from both ACVL
and Tranco top-2K, as Candidates for Labeling (CL). We develop an iterative
process for prioritizing which (500 in a batch) sites to inspect and label next,
then add them to ground truth. We bootstrap a classifier by using outlier
detection to find positive labels. In each iteration, we apply the classifier on
the remaining sites in CL, sort the sites by decreasing classifier confidence,
and inspect and label the 500 sites where the classifier is most confident.
Compared to picking randomly 500 sites to label, this heuristic prioritization
discovers more positive labels. For example, see Fig. 10 between “Iteration
Zero” and “Iteration Zero Random.” We add the new labeled samples into
our ground truth, retrain our classifier, and repeat the process for two more
iterations and declare “Done” when the performance converges, as shown in
Fig. 10. We combine all labeled data into our Ground Truth (GT) data set.

Fig. 10. Positive Labels and F1 (per Iteration): For our ground truth,
we show how many positive labels (sites with successful circumvention) were
discovered within each iteration. When we compare iteration zero and the
randomly chosen iteration zero, we find that our methodology discovers twice
as many more positive labels. We see that by the end of iteration two, we
receive diminishing returns on our classifier performance based on its F1-score.
Note that we only find 55 positive labels from the Tranco top-2K overall.

Prioritizing Which Sites to Label. Labeling is time-
consuming and is a well-known bottleneck in all communities
that maintain filter lists, including EL and ACVL. We develop
a heuristic for prioritizing which sites from CL to inspect and
label first to rapidly discover positive labels and minimize the
overall effort. We employ an iterative process shown in Fig 9.

Bootstrapping. We start from CL and perform outlier
detection using Isolation Forest [65]; our intuition is that sites
that utilize circumvention are drastically different from those
that do not. However, not all outliers have circumvention, as
there can be other reasons why a site behaves differently, such
as displaying more page content when ads are not displayed.
Therefore, we still need to inspect and label this initial (108)
outliers, and we find 56 positive labels. Next, we order the
remaining sites extracted from ACVL by Tranco ranking, and
pick the top-400 sites. Our intuition comes from Fig. 5, where
there are around 400 sites in the Tranco top-100k sites. We
balance our ground truth with the most popular sites in the
ACVL so that our classifier can generalize well in the wild.
We merge the labeled outliers with the top-400 sites in the
ACVL to obtain our first batch of ground truth with ∼500
sites. We train our classifiers on this GT.

Label Precision Recall Accuracy F1-score
CV 0.94 0.84 0.93 0.89

No CV 0.92 0.97 0.93 0.94

TABLE IV. CV-INSPECTOR Cross-validation Results. USING A
RANDOM FOREST CLASSIFIER, 93 FEATURES, AND 5-FOLD VALIDATION.
THE LABEL “CV” MEANS SUCCESSFUL CIRCUMVENTION AND “NO CV”

MEANS THAT SITES HAVE NO CV ACTIVITY OR FAILED AT CV.

Iteratively enhancing the ground truth. We apply the clas-
sifier on the remaining sites of CL, sort the sites by decreasing
classifier confidence, and inspect and label the 500 sites where
the classifier is most confident. We add the new labeled
samples into our ground truth, we retrain our classifier, and
repeat the process. In each iteration, we choose and label 500
sites and add them to the ground truth, until the performance
converges. Fig. 10 shows diminishing returns after iteration 1,
thus we stop at 2 iterations. The main advantage of prioritizing
which sites to label is that it discovers more positive labels in
each iteration, compared to e.g. choosing 500 random sites to
label. This saves human effort, which is the main bottleneck.
Fig. 10 compares Iteration Zero (with our choice of 500 sites
in decreasing confidence) vs. Iteration Zero (Random choice
of 500 sites) and shows that we discover more than twice the
positive labels, and we achieve a higher F1.

Ground Truth Data Set (GT). We combine all labeled data
(from all iterations, including the randomly selected Iteration
Zero) into one data set, which we refer to as GT. It contains
755 positive labels and 1566 negative labels.

E. The CV-INSPECTOR Classifier

Training the Classifier. We train a classifier that can detect
successful circumvention, using all 93 features extracted in
Sec. IV-C, and the ground truth obtained in Sec. IV-D. We
considered different classifiers and observed that Random
Forest performs best. We split the GT data into 70/30 for
training and testings, respectively, and we perform 5-fold
cross-validation. We consider our contribution to lie not in the
ML technique itself but in the domain-knowledge that guided
the design of differential analysis, feature selection, and ground
truth labeling.

Cross-Validation Results. We display the results in Table IV.
Detecting positive labels (i.e. sites succeeding in circumventing
adblockers) is of interest for filter list authors such as ABP.
Here, we achieve an F1-score of 0.89 and precision of 0.94.
Detecting negatives labels is also important because authors
want to be confident when disregarding sites without circum-
vention accurately: we see an F1-score of 0.94 and a precision
of 0.92; this becomes invaluable in the monitoring approach
in Sec. V-B as it reduces human effort.

Important Features. Not all 93 features from Sec. IV-C are
equally important. In Table III, we denote some of the features
that end up being in the top-10 most important ones. Fig. 11
also shows the empirical CDFs (ECDF) of four top-features
and illustrates that they can discriminate between sites that
employ successful circumvention or not. For example, consider
the circumvention technique that randomizes the JS first-party
path. We see that the path has much more randomness than
sites that did not circumvent the adblocker; see example in

11



0 1 2 3 4
Content-Type JavaScript 
 First Party Path Entropy

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

0.0 2.5 5.0 7.5 10.0
Third Party Images 

 in Ad Locations

0.00 0.05 0.10 0.15
Number of Blocked Events 

 Over First 12 Seconds

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

0 2 4 6 8 10
Iframe Elements 

 Removed

Circumvention No Circumvention

Fig. 11. Top-Features ECDF. We show empirical CDFs of some of the top
features for our classifier. JS path entropy is the most discriminatory feature.

Listing 2. Specifically, 40% of sites with circumvention have
path entropy of two or less, while it is more than 80% of sites
with no circumvention. This captures the fact that publishers
can use first-party resources that contains circumvention code
to initialize the circumvention process. Thus, randomizing the
path can make it difficult for the adblocker to block it. The
corresponding ECDF is the most discriminatory, compared to
ECDFs of other features, uncovering the fact that randomizing
the path is a more effective technique against adblockers.
Fortunately, our usage of entropy as a feature captures this
difference and can detect the presence of circumvention.

Iframe elements removed and third-party images in ad
locations are also direct mechanisms of circumvention. The
former depicts when sites generally clean up iframes that are
being hidden or blocked by the adblocker. The latter details the
subsequent actions of re-injecting ad images into previously
known ad locations during circumvention. We can infer that
if a site completes more ad re-injection actions, then it has
a higher chance of circumventing the adblocker. The ECDF
of number of blocked events indicates circumvention, where
the adblocker generally blocks more for sites that successfully
circumvent the adblocker. This highlights that adblockers do
not need to block aggressively for sites where they can easily
target the root cause of ads. However, when obfuscation
techniques are employed, the adblocker must try harder and
has a higher chance of not blocking all ads.

Analysis of Mistakes. Next, we discuss the mistakes made
by CV-INSPECTOR and we explain the root causes of false
negatives (FN) and false positives (FP).

1) False Negatives (FN): FN occur when the site cir-
cumvented the adblocker but CV-INSPECTOR predicted that
it did not. We find that CV-INSPECTOR does not perform
well for sites that employ excessive DOM obfuscation. For
example, argumentiru.com displays Yandex [77] ads using
nested custom HTML tags named <yatag>, while separating
the ad image and the ad link in different parts of the ad DOM

structure. This makes it hard to identify whether it is an ad
or not and to evaluate the ad link for entropy. In addition,
strip2.xxx uses MobiAds [48] to display ads with a small
square image and the rest is text outside of the image. This
differs from regular ads where it is entirely an image with text
encapsulated in the image. As a result, CV-INSPECTOR cannot
help notify filter list authors when they should update filter
rules for these particular cases. However, we argue that CV-
INSPECTOR can be extended to cover corner cases to capture
CV activity, if the sites are of interest to the adblocker.

Another reason for FN is the logic of triggering circum-
vented ads for a user. We find that even when a site is
capable of circumventing the adblocker, it may choose not to.
Though more future work is necessary to infer the business
logic of circumvention, we find that for a few cases where
the site only triggers circumvention once out of the four
times we load the page, CV-INSPECTOR would predict there
is no circumvention. However, the classifier confidence is
generally higher (∼0.40), which is close to a positive label
when compared to when a site displays no ads at all within
the four page loads.

Lastly, some FNs are due to the limitations of screenshots
not conveying whether an ad is first-party or not. Thus, when
investigating these sites, we manually go to the sites and
found that they were first-party ads and should be labeled as a
negative. Here, we see that the classifier was able to determine
the correct label when it comes to first-party ads.

2) False Positives (FP): CV-INSPECTOR can mistake sites
that heavily rely on affiliation links or third-party links as their
own web content. For example, home-made-videos.com com-
prises completely of links to third-parties with image dimen-
sions that can be considered as ad dimensions. Furthermore,
some mistakes by CV-INSPECTOR can be attributed to a site’s
code mistakes. For instance, when investigating empflix.com,
we find that CV-INSPECTOR accurately identifies web requests
that correspond to circumvented ad content. However, during
re-insertion, the JS errors out because it expects the existence
of an element with ID “mewTives” but the container is actually
not there. We note that this error does not happen on the
site’s sub pages where the container does exists, and CV-
INSPECTOR correctly predicts that circumvention happens.

We find some false positives were actual true positives but
were mislabeled due to the height cap of screenshots. Recall
that we limit the height of the screenshots to be 3000px to be
compatible with sites that would infinitely scroll. We discover
that many adult content sites using ExoClick [32] would re-
inject ads back near the bottom of the page. We see this as a
strength of CV-INSPECTOR that establishes that it can detect
circumvention beyond just the top part of the site (i.e., above
the fold section [54]).

F. Feature Robustness

CV-INSPECTOR extracts a diverse range of features that
capture different fundamental characteristics of circumvention.
In this section, we discuss approaches that CV providers
could utilize to attempt to evade each type of features, along
with the approaches’ effectiveness and trade-offs involved. We
argue that it is challenging for CV providers to evade the
features used by the CV-INSPECTOR, while still achieving

12



their objectives, which are: (1) to evade adblocking filter rules,
to display ads, and to obtain publisher ad revenue; (2) to not
degrade the user experience on the publisher’s site; and (3) to
minimize the cost and overhead incurred by the provider when
integrating the CV service.

1. Web Request Features. Randomizing URL components,
such as subdomains and paths, is a typical obfuscation tech-
nique that CV providers use to evade filter rules. However,
our entropy features capture not the exact randomized string
(which would be easy to evade) but the fact that randomization
is used at all (which is robust). An example was shown in
Listing 2. To bypass these features, a CV provider would have
to stop obfuscating URL components all together, i.e. abandon
this circumvention technique.

2. DOM Mutation Features. A CV provider could try to
manipulate DOM mutation features. For instance, instead of
removing DOM nodes, the provider can hide the nodes.
However, circumvention would still be detected by our features
relating to “DOM attribute changes,” such as display and class.
CV providers could also try to add noise by causing dummy
DOM mutations. However, unless the provider can affect the
“No Adblocker” case as well, it will make circumvention activ-
ity even easier to detect via differential analysis. Furthermore,
adding too many dummy mutations can make the site slow
since the browser must refresh how the page is displayed,
which affects the user experience.

3. Temporal Features. The CV provider can try to change the
number of blocked elements by making the advertising DOM
structure simpler, as shown in Listing 3, or more complex by
using unnecessary DOM elements. This effectively reduces the
number of blocked elements. However, page source features
can still detect circumvention by analyzing ad positions rather
than the DOM structure. Another possible exploit is to delay
the triggering of circumvention (e.g. after the 12 second period)
so that CV-INSPECTOR does not detect the number of blocked
events. However, this goes against the main objective of ads,
which is to quickly display ads to the user before the user
leaves the page. This delaying approach would negatively
affect the revenue that the publisher wants to recover by
employing circumvention in the first place.

4. Page Source Features. To evade the features related to
the number of iframes and images in ad positions, a CV
provider can change the location of ads when circumvention
is employed. For example, if ads were original shown on the
right side bar for the “No Adblocker” case, then the ads can
be moved to left side bar. However, this increases the overhead
for the publisher to integrate with CV providers, as the new ad
locations must be seamlessly incorporated into individualized
templates of different sites. In the above example, the left
side bar must make sense within the publisher’s template
to be a feasible ad location. Also recall from Fig. 1(b) that
the publisher must still fetch for new ad content. Thus, CV-
INSPECTOR can still capture this circumvention characteristic
through our web requests features.

Takeaways. Overall, CV-INSPECTOR raises the bar in the
arms race with CV providers, by extracting diverse features
that collectively capture the fundamental behavior of CV

Detection on Tranco-20K Data Set
Sampling Label Predicted Correct Precision

No CV 91 79 / 91 87%
Yes No CV 29,248 345 / 380 91%

TABLE V. WE APPLY CV-INSPECTOR TO THE TRANCO-20K. FOR
“NO CV” INSTANCES, WE SAMPLE FROM THAT PREDICTED SET TO HAVE A

CONFIDENCE LEVEL OF 95% WITH 5% MARGIN OF ERROR.

providers through differential analysis. In order to evade dif-
ferential analysis, CV providers would have to make the site’s
behavior “With Adblocker” similar to that of “No Adblocker.”
However, this either limits ad re-injection to simple static ads
(often not profitable for publishers) or requires that CV ser-
vices are triggered for all users (using adblockers or otherwise)
resulting in higher cost for the publisher.

G. Summary

In this section, we presented the design and implementation
of CV-INSPECTOR. Specifically, it collects data from web
requests, DOM mutations, temporal information (including
blocked events caused by ABP), page source, and screenshots.
Then, it employs differential analysis designed uniquely to
capture circumvention activity, and we extract intuitive features
specifically designed for capturing circumvention. We also
provide an iterative methodology for obtaining ground truth,
that can speed up the process while discovering more positive
labels. We trained and evaluated a Random Forest classifier
using this GT data set, and demonstrated that it achieves an
accuracy of 93% in detecting sites that employ CV providers.
We further find that web request features relating to path
entropy is the most effective feature. By capturing the essential
characteristics of circumvention, we conclude that it would
be difficult for CV providers to evade both CV-INSPECTOR
and filter rules without incurring costs, i.e., not being able to
show profitable ads to the users and overhead of activating
circumvention for all users. Next, we apply and evaluate CV-
INSPECTOR in real world settings.

V. CV-INSPECTOR: IN THE WILD DEPLOYMENT

We employ CV-INSPECTOR in two real world scenarios.
First, in Sec. V-A, we employ CV-INSPECTOR on the popular
Tranco-20K sites to discover sites that circumvent adblockers,
and are possibly unknown. Second, in Sec. V-B, we use CV-
INSPECTOR to monitor the effectiveness of ACVL on sites
that are well-known to circumvent adblockers, and which
are continuously monitored by filter list curators. For the
evaluation of monitoring, we use two data sets: our own GTP
data set and Adblock Plus Monitoring data set provided by
ABP. More details are provided in the respective sections and
the data sets are detailed in Sec. IV-A4 and Table II.

A. Discovering Circumvention in the Wild

1) In the Wild Performance: We first conduct a large-scale
analysis of deploying CV-INSPECTOR in the wild. Our goal
is to facilitate the crowdsourcing effort by the adblocking
community to discover sites that successfully circumvent ad-
blockers. To that end, we apply CV-INSPECTOR on the popular
Tranco-20K sites, which contains 29.3K pages with sub-pages.
Recall that the Tranco top-2K sites were used as candidates for

13



Fig. 12. Discovery vs. Precision. The trade-off between discovering more
circumvention sites (positive instances) within our Tranco-20K (in the wild)
data set vs. being correct in the prediction.

labeling (CL), which eventually affected the training set (GT)
for our CV-INSPECTOR’s classifier. Therefore, we exclude it
from the in the wild evaluation because we want to keep the
Tranco sites used for training (top-2K) and testing (top 2k-
20K) disjoint. We follow our earlier data collection approach,
described in Fig. 6, to crawl these URLs. As shown in Table V,
CV-INSPECTOR detects 91 sites as “CV” and the remaining
29,248 sites as “No CV.” We validate the 91 “CV” sites and
a random sample (380) of “No CV” sites. CV-INSPECTOR
achieves 87% precision when identifying sites with successful
CV and 91% for the opposite case. Our evaluation in Table V
shows that CV-INSPECTOR generalizes well in the wild, with
similar precision when compared to Table IV.

The Random Forests classifier picks the likeliest class,
which in binary classification is by default the class with
probability above 0.5. This is the case in the results presented
in Tables V, VII, and VIII in this section. CV-INSPECTOR
can be applied to different use cases (e.g. discovery or mon-
itoring of sites employing circumvention) that value different
metrics (e.g. recall vs. precision, respectively). Since there is
no universally applicable operating point, instead of tuning
parameters to overfit a particular use case and data set, we
discuss the trade-offs involved and leave it up to the users
of CV-INSPECTOR to decide upon the operating point that
matches their goals.

Trade-offs. Fig. 12 reports how CV-INSPECTOR navigates
the trade-off between discovering more sites that successfully
circumvent adblockers and precision, when applied to the
Tranco-20K data set. For instance, a confidence level threshold
of 0.6 achieves a precision of 98% with only one FP. This
would be an attractive option to minimize human supervision
for monitoring sites of interest. However, if discovering sites
that use circumvention is more important, then lowering the
threshold below 0.5 would find more sites at the expense of
increasing human efforts to deal with FPs. The operating point
can be tweaked to optimize various objectives of interest.

As a concrete example, Fig. 13(a) depicts how CV-
INSPECTOR can navigate the trade-off between true positive
rate (TPR) and false positive rate (FPR). The suitable classifier

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Random
Random Forest
(AUC=0.92)
Max Youden's J
Threshold (0.41)
0.5 Threshold

(a) ROC Curve

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Random
Random Forest
F1-score Threshold (0.45)
0.5 Threshold

(b) Precision vs. Recall

Fig. 13. Trade-offs on the Tranco-20K Data Set. (a) Within our ROC curve,
we can maximize Youden’s J index if we value high true positive rate (TPR)
with low false positive rate (FPR) for the purpose of discovering sites with
successful circumvention. The threshold following this criteria is 0.41, which
corresponds to a TPR of 0.85 and FPR of 0.11. (b) Within our precision-recall
curve, we can find the threshold that corresponds to the optimal F1-score for
positive labels. The threshold following this criteria is 0.45, which achieves
an F1-score of 0.79.

threshold depends on the use case. For example, if one wants
to optimize for TPR (i.e., recall) while keeping the FPR low,
one metric to maximize is Youden’s J index, which leads to
a threshold of 0.41 with corresponding TPR of 0.85 and FPR
of 0.11. This is the right objective when we are interested in
discovering more sites that employ circumvention at the risk
of some additional false positives.

Another even more relevant trade-off in our case is
precision vs. recall, depicted on Fig. 13(b). We find that a
threshold of 0.45 maximizes the F1-score for positive labels,
achieving a F1-score of 0.79. It is not surprising that this value
is close but below 0.5, because our Tranco-20K data set is
imbalanced as shown in Table V. As discussed in Sec. IV-D,
positive labels are rare when compared to negative labels,
which makes the classifier less sensitive to the minority class.
To compensate for this, one would decrease the threshold to
improve recall for positive labels at the expense of precision.

2) Circumvention Providers: We now analyze the break-
down of different circumvention providers. Note that CV-
INSPECTOR is not designed to distinguish between different
circumvention providers. Therefore, we rely on other heuristics
to detect specific CV providers.

Unique Keywords for CV Providers. We curate keywords
that are indicative of specific CV providers through a careful
manual inspection of known circumvention sites in our GT data
set. Intuitively, to discover keywords, we first search using the
name of the providers within our collected data of web requests
(e.g., URLs and HTTP request/response headers) and page
source files (e.g., HTML files consisting of HTML, inline CSS,
and inline JS). Notably, we discover that some CV providers,
like ExoClick, AdDefend, and Adthrive, do not attempt to hide

14



CV Providers Count WR DOM CV-
INSPECTOR
precision

AdThrive [12] 154  G# 98%
Publica [59] 77  G# 95%
ExoClick [32] 76 G# G# 100%
Yandex [77] 434 G#  100%
AdDefend [7] 38 G#  N/A
MobiAds [48] 17 G#  N/A

TABLE VI. CIRCUMVENTION PROVIDERS & APPROACHES. WE
SHOW THE PRESENCE OF CIRCUMVENTION PROVIDERS WITHIN THE

TRANCO-20K. WE USE  TO MEAN FULL OBFUSCATION, WHICH MEANS
RANDOMIZED URL COMPONENTS (WR) OR DEEPLY NESTED

NONSTANDARD DOM STRUCTURES FOR AD (DOM). G# DENOTES PARTIAL
OBFUSCATION, WHICH MEANS AD RESOURCES MAY BE HIDDEN WITH

FIRST-PARTY DOMAIN (WR) AND AD REINSERTION USES SIMPLER DOM
STRUCTURES (DOM). WR = WEBREQUESTS, DOM = DOM CHANGES.

their presence, as the name of the provider was sufficient to be
used as keywords. For example, we found that ExoClick can
be detected by the keywords “exoclick” and “exoloader” in
the page source. For AdDefend, AdThrive and MobiAds, we
look at keywords “addefend,” “adthrive,” and “mobiads” in the
page source, respectively. Similarly, Publica can be detected by
looking for the key ”publica user id” in the HTTP response
Set-Cookie header. When the name of the provider was not
enough, we inspected the DOM structure of the ad using the
page source to see if there was any unique identifier that we
could use. In this case, we find that Yandex can be detected
by looking for the custom DOM tag “<yatag>.” In total, we
utilized seven keywords to identify the presence of six different
CV providers listed in Table VI.

We note that the presence of these keywords does not
necessarily always indicate that circumvention was successful.
It could also mean that circumvention attempt failed or that
circumvention was not even attempted (e.g., dormant code).
Therefore, we cannot simply use these heuristics in place of
CV-INSPECTOR to detect sites that circumvent adblockers.
Table VI summarizes the application of the aforementioned
heuristics on Tranco-20K sites. We identify many instances of
different CV providers, including ad networks such as Yandex
and dedicated CV providers such as AdThrive and AdDefend.

Taxonomy of Circumvention Approaches. Next, we char-
acterize the obfuscation approaches used by different CV
providers by defining whether the obfuscation is full ( ) or
partial (G#). For web request obfuscation, full obfuscation refers
to the use of randomized URLs including subdomains and
paths as shown in Listing 2 while partial obfuscation refers to
the use of first-party subdomains. For DOM obfuscation, full
obfuscation refers to the use of non-standard DOM structures
such as deeply nested elements or randomized tag attributes
while partial obfuscation refers to only randomized tag at-
tributes with simple DOM structures, such as Listing 3.

Using this taxonomy, we compare the full vs. partial ob-
fuscation techniques of different CV providers. First, ExoClick
and AdDefend simply leverage inlined JS, which is difficult
to block without hurting other page functionality [22], to im-
plement their circumvention logic. AdThrive redirects through
several domains (e.g., cloudfront.net → edvfwlacluo.com →

Ground Truth Positives (GTP) Data Set
Sampling Label Predicted Correct Precision

No CV 244 223 / 244 91%
Yes No CV 465 187 / 211 89%

TABLE VII. WE SHOW THE RESULTS OF APPLYING OUR CLASSIFIER
ON ∼700 SITES FROM OUR GROUND TRUTH THAT ALSO ORIGINATED FROM

ACVL (TABLE II). HOWEVER, THIS TIME WE COLLECT THE DATA BY
TURNING ON ACVL AS WELL WITHIN OUR CUSTOM ABP EXTENSION.
FOR “NO CV” INSTANCES, WE SAMPLE FROM THAT PREDICTED SET TO

HAVE A CONFIDENCE LEVEL OF 95% WITH 5% MARGIN OF ERROR.

Adblock Plus Monitoring Data Set
Sampling Label Predicted Correct Precision

No CV 5 4 / 5 80%
Yes No CV 355 184 / 185 99%

TABLE VIII. FROM A REAL WORLD DATA SET USED BY ABP TO
MONITOR CIRCUMVENTION, WE APPLY OUR CLASSIFIER AND SHOW THE

RESULTS. FOR “NO CV” INSTANCES, WE SAMPLE FROM THAT PREDICTED
SET TO HAVE A CONFIDENCE LEVEL OF 95% WITH 5% MARGIN OF ERROR.

lmyiwaakn.com) before fetching the JS that implements their
circumvention logic. Second, ExoClick and AdDefend do not
obfuscate URLs but rather serve their ad resources under first-
party domains that are difficult to distinguish from legiti-
mate content. AdThrive fetches ads in iframes using rotating
third-party domains, subdomains, and randomized IDs. Third,
ExoClick and AdDefend differ in their DOM obfuscation
techniques. ExoClick uses a simpler ad structure (a hyperlink
with two div children) while obfuscating the ad image by
serving it with CSS background-image instead of a regular
image tag. On the other hand, AdDefend employs a nested
DOM structure with obfuscated IDs, while Yandex uses nested
non-standard tags with obfuscated class names.

Finally, we analyze CV-INSPECTOR’s performance in de-
tecting different CV providers. We match each detected CV
provider instance in Table VI to our CV-INSPECTOR deploy-
ment results on Tranco-20K sites from Table V. We see that
CV-INSPECTOR achieves good precision in detecting different
popular CV providers. For AdDefend and MobiAds, we use
“N/A” to denote that we lack sufficient data.

B. Monitoring Circumvention for Sites of Interest

As discussed in Sec. III-B, ACVL is updated very fre-
quently to combat the back and forth between adblockers and
circumvention providers. In addition, filter list authors gener-
ally focus their attention on “sites of interest,” as discussed
in Sec. IV-A4. Curators must continuously monitor them to
see if the filter list (ACVL) continues to be effective, or if
circumvention has evolved, and the filter rules need updating.
Consequently, much human labor goes to this continuous
monitoring of sites in the ACVL. To that end, we show how
CV-INSPECTOR can automatically monitor whether ACVL is
effective in countering circumvention on a site. We use the
same approach as laid out in Fig. 6 but with one change. We
use the ACVL, in addition to EL, when crawling a site with an
adblocker. We use two data sets from Table II for evaluation:
(1) the GTP data set, which contains all sites that circumvent
the adblocker in our GT; and (2) Adblock Plus Monitoring data
set, which contains 360 sites that ABP continuously monitor
for circumvention activity to update filter rules.

15



1) Monitoring sites in GTP: We use CV-INSPECTOR to
classify sites within our GTP data set, which comprises of
700 sites from the GT data set that originated from ACVL
and were successful at circumventing the adblocker. If CV-
INSPECTOR again detects a site as “CV,” it shows that the
site is able to successfully circumvent even the ACVL. We
manually validate CV-INSPECTOR’s classifications. Table VII
summarizes the results. We note that CV-INSPECTOR again
detects 244 sites as “CV” with 91% precision and 465 sites as
“No CV” with 89% precision. The results show that more than
one-third of sites with relevant filter rules in the ACVL are still
able to successfully circumvent adblockers. This demonstrates
that the sites addressed by the ACVL need to be continuously
monitored. We suggest that CV-INSPECTOR should be period-
ically used (e.g., every hour) to monitor the sites on the ACVL.
The sites that are detected by CV-INSPECTOR would need to
be reviewed by ACVL curators to update the filter rules and
the rest can be safely ignored.

2) Monitoring sites from ABP: To further demonstrate CV-
INSPECTOR’s usefulness, we obtain a list of 360 sites from
ABP that are manually monitored by the ABP team due
to the sites’ fast-paced adaptation to changes in the ACVL.
Table VIII summarizes the results of applying CV-INSPECTOR
(with ACVL) on these sites. Out of these sites, we note that 5
sites are detected as “CV” and the remaining 355 as “No CV,”
again with high precision. This finding shows that even the
sites that are closely monitored to be addressed by the ACVL
team can successfully circumvent the adblocker. Notably, if we
consider only the 190 sites that we labeled as human labeling
effort, then CV-INSPECTOR was able to save up to 98% of
the work for ACVL curators by predicting 188 sites correctly.
Thus, CV-INSPECTOR can help with continuously monitoring
these sites at a high frequency.

VI. DISCUSSION AND FUTURE DIRECTIONS

Summary. In this paper, we studied an emerging threat in
the advertising ecosystem: circumvention (CV) services that
help publishers bypass adblockers and re-injects ads. CV
services are sophisticated, opaque for the user, and exploit
fundamental weaknesses of adblockers’ design and the open-
source nature of anti-CV community efforts (exemplified by
the anti-CV list). Although there has been increasing anecdotal
evidence about adoption of circumvention in the wild, to the
best of our knowledge, ours is the first large-scale study
of the state of circumvention arms race. We develop CV-
INSPECTOR: a methodology for automatically crawling sites
of interest and a classifier that can accurately detect whether a
site successfully circumvent the adblocker or not. We envision
that CV-INSPECTOR will serve as an automation tool for filter
list curators to help them focus their inspection efforts in
discovering new sites that employ circumvention in the wild
and in monitoring sites of interest continuously in the arms
race between circumvention and anti-CV filter rules.

Open Source Tools. We plan to make CV-INSPECTOR avail-
able to the community at [72]. This will include the data sets
(including our labeled dataset of top-20K crawled sites), crawl-
ing instrumentation (shareable as Amazon Machine Images
[15]), and the trained classifier.

Limitations. There are limitations in our design and imple-
mentation. First, CV-INSPECTOR uses differential analysis that
relies on differences between the “No Adblocker” and “With
Adblocker” cases. If sites exhibit no actual differences in the
two cases, then CV-INSPECTOR will not be able to detect
circumvention. For example, searchenginereports.net already
includes circumvented ads in the DOM structure of the “No
Adblocker” case but only hidden. When it detects an adblocker
affecting its ads, it will simply show the backup ads that were
already there. Second, CV-INSPECTOR only considers circum-
vention that appears without user interaction. For instance,
shahid4u.cam displays no visual ads to the user, but when the
user clicks on a link, it will redirect the user to an ad before
showing the real content. More details on implementation
choices and limitations are provided in Sec. IV-A3.

Future Directions. We plan to further automate filter rule
generation and help anti-CV authors, by building on two op-
portunities already provided by CV-INSPECTOR. First, our dif-
ferential analysis already uncovers web requests that are related
to circumvention. Consider the spring.org.uk example: CV-
INSPECTOR already pinpoints all randomized paths and sub-
domains of podfdch.com. Using that information, a filter list
author can simply create a filter rule such as “*.podfdch.comˆ”
or any variations of its subdomains and paths if there are
common prefixes and suffixes like “||podfdch.com/erej*”. Sec-
ond, our feature extraction already dynamically generates CSS
selectors of ad locations where re-injection can happen. Filter
list authors can translate them into DOM element hiding rules,
as described in Table I. They can infer the effectiveness of the
selectors — the more elements that match, the more ads the
selectors will affect.

It also remains to be seen how robust CV-INSPECTOR is
in the presence of ever-changing circumvention obfuscation
techniques. Our intuition is that the features used by CV-
INSPECTOR (e.g., randomness in an obfuscated path) are
inherently more long-lived and harder to evade than the exact
rules used by filter lists (e.g., the actual randomized string in
the path). It would be interesting to characterize the time scales
of this arms race.

Feature engineering can also be improved. We can consider
new features (e.g. extracted from JS) and improve existing
features (e.g. the way we capture DOM mutation, by taking
into account the DOM graph structure in the differential
analysis). With respect to JS in particular, the current version
of CV-INSPECTOR does not take into account JS features on
purpose, because CV providers heavily obfuscate JS, which
makes differential analysis challenging. As shown in Fig. 1(b),
this involves retrieving new ad content (web requests) and
displaying the ad to the user at the end (DOM structure). The
technique that JS utilizes to re-inject ads back upon the page
does not matter: as long as CV-INSPECTOR can recognize the
final DOM structure, it can still detect circumvention.

Overall, we consider CV-INSPECTOR to be the first sig-
nificant step towards automating aspects of the defense (ad
blockers, filter list authors’ effort) against circumvention by
showing that it can reduce human labeling efforts by 98%.
The longer term goal is to fully automate the defense against
circumvention through detection and filter list generation.

16



ACKNOWLEDGEMENTS

This work is supported in part by NSF Awards 1815666
and 1715152, 1815131, 1954224. We would like to thank our
NDSS shepherd, Sooel Son, and the anonymous NDSS review-
ers, for their constructive and detailed feedback. We would also
like to thank UCI undergraduate students Qingchuan Yang and
Yiyu Qian, who helped inspect and label the GT data set. Last
but not least, the authors would like to thank eyeo [34], for
providing the Adblock Plus Monitoring data set; special thanks
to Oleksandr Paraska, Uwe Bernitt, and Shwetank Dixit, for
sharing their insights on circumvention.

REFERENCES

[1] “The Acceptable Ads Standard,” https://acceptableads.com/standard,
Acceptable Ads.

[2] “Adblock warning removal list,” https://easylist-downloads.adblockplus.
org/antiadblockfilters.txt, Adblock Plus, (Accessed on 07/10/2020).

[3] “Taboola whitelisting too annoying, turned off acceptable ads,” https:
//adblockplus.org/forum/viewtopic.php?f=17&t=50287, Adblock Plus,
January 2017, (Accessed on 05/04/2020).

[4] “ABP anti-circumvention filter list ,” https://github.com/abp-filters/abp-
filters-anti-cv, Adblock Plus, 2019, (Accessed on 05/09/2019).

[5] “Adblock plus — the world’s # 1 free ad blocker,” https://adblockplus.
org/, Adblock Plus, 2020, (Accessed on 07/22/2020).

[6] “Contributors to abp-filters/abp-filters-anti-cv,” https://github.com/abp-
filters/abp-filters-anti-cv/graphs/contributors, Adblock Plus, May 2020,
(Accessed on 05/21/2020).

[7] “Anti-adblock platform - addefend.com,” https://www.addefend.com/en/
platform/##why-anti-adblock-inventory, AdDefend, 2020, (Accessed
on 03/18/2020).

[8] “AdGuard Scriptlets and Resources ,” https://github.com/AdguardTeam/
Scriptlets, AdGuard, 2019, (Accessed on 05/09/2019).

[9] “Adguard — world’s most advanced adblocker!” https://adguard.com/
en/welcome.html, AdGuard, 2020, (Accessed on 07/22/2020).

[10] “Adguardextra: Adguard extra is designed to solve complicated
cases when regular ad blocking rules aren’t enough.” https://
github.com/AdguardTeam/AdGuardExtra, AdGuard, 2020, (Accessed
on 03/18/2020).

[11] “Admiral launches one-click subscriptions and donations for publishers
to help grow alternative revenue post-gdpr,” https://blog.getadmiral.
com/admiral-launches-subscriptions-donations-transact-publishers, Ad-
miral, 2020, (Accessed on 03/18/2020).

[12] “Ad management and optimization for the world’s best content
creators,” https://www.adthrive.com/, AdThrive, 2020, (Accessed on
07/20/2020).

[13] M. Alzirah, S. Zhu, Z. Xing, and G. Wang, “Errors, misunderstandings,
and attacks: Analyzing the crowdsourcing process of ad-blocking
systems,” in Proceedings of the Internet Measurement Conference
2019, ser. IMC ’19. New York, NY, USA: ACM, 2019. [Online].
Available: https://doi.org/10.1145/3355369.3355588

[14] “Amazon ec2 instance types - amazon web services,” https://
aws.amazon.com/ec2/instance-types/, Amazon, 2020, (Accessed on
05/09/2020).

[15] “Amazon machine images (ami) - amazon elastic compute cloud,”
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html,
Amazon, 2020, (Accessed on 05/09/2020).

[16] M. A. Bashir, S. Arshad, E. Kirda, W. Robertson, and C. Wilson, “How
tracking companies circumvented ad blockers using websockets,” in
Proceedings of the Internet Measurement Conference 2018, ser. IMC
’18. New York, NY, USA: ACM, 2018, pp. 471–477. [Online].
Available: http://doi.acm.org/10.1145/3278532.3278573

[17] M. A. Bashir, S. Arshad, and C. Wilson, ““recommended for you”: A
first look at content recommendation networks,” in Proceedings of the
2016 Internet Measurement Conference, ser. IMC ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 17–24.
[Online]. Available: https://doi.org/10.1145/2987443.2987469

[18] “The Better Ads Standards,” https://www.betterads.org/standards, Better
Ads.

[19] “Blockadblock — stop losing ad revenue,” https://blockadblock.com/,
BlockAdBlock, (Accessed on 05/04/2020).

[20] “2020 adblock report – blockthrough,” https://blockthrough.com/2020/
02/06/2020-adblock-report-3/, Blockthrough, February 2020, (Accessed
on 03/18/2020).

[21] “brave/ad-block: Ad block engine used in the brave browser for abp
filter syntax based lists like easylist.” https://github.com/brave/ad-block,
Brave, May 2020, (Accessed on 06/21/2020).

[22] Q. Chen, P. Snyder, B. Livshits, and A. Kapravelos, “Improving web
content blocking with event-loop-turn granularity javascript signatures,”
2020.

[23] Y. Chen, “Tough sell: Why publisher ’turn-off-your-ad-blocker’ mes-
sages are so polite - digiday,” https://digiday.com/media/tough-sell-
publisher-turn-off-ad-blocker-messages-polite/, April 2016, (Accessed
on 05/04/2020).

[24] “Chromedriver - webdriver for chrome,” https://sites.google.com/a/
chromium.org/chromedriver/, Chromium, (Accessed on 05/09/2020).

[25] “Chromium blog: Under the hood: How chrome’s ad filtering
works,” https://blog.chromium.org/2018/02/how-chromes-ad-filtering-
works.html, Chromium, Febrary 2018, (Accessed on 05/04/2020).

[26] T. Claburn, “Revealed: The naughty tricks used by web ads to
bypass blockers,” https://www.theregister.co.uk/2017/08/11/ad blocker
bypass code/, 2017, (Accessed on 05/09/2019).

[27] R. Cointepas, “Cname cloaking, the dangerous disguise of third-party
trackers,” https://medium.com/nextdns/cname-cloaking-the-dangerous-
disguise-of-third-party-trackers-195205dc522a, November 2019, (Ac-
cessed on 05/04/2020).

[28] H. Dao, J. Mazel, and K. Fukuda, “Characterizing cname cloaking-
based tracking on the web,” IEEE/IFIP TMA’20, pp. 1–9, 2020.

[29] “Disconnectme tracking services,” https://raw.githubusercontent.com/
disconnectme/disconnect-tracking-protection/master/services.json, Dis-
connectMe, May 2020, (Accessed on 06/21/2020).

[30] S. Dixit, “Block, unblock, block! How ad blockers are being circum-
vented ,” https://www.youtube.com/watch?v=Vk9bPDaZELQ, 2019,
(Accessed on 05/09/2019).

[31] “Easyprivacy,” https://easylist.to/easylist/easyprivacy.txt, EasyList, June
2020, (Accessed on 06/21/2020).

[32] “Exoclick the innovative ad company,” https://www.exoclick.com/, Ex-
oClick, 2020, (Accessed on 07/26/2020).

[33] “Snippet filters tutorial — adblock plus help center,” https://
help.eyeo.com/adblockplus/snippet-filters-tutorial, eyeo, (Accessed on
06/10/2020).

[34] “eyeo gmbh – putting you in charge of a fair, profitable web.” https:
//eyeo.com/, eyeo, 2020, (Accessed on 07/30/2020).

[35] “Filterlists — subscriptions for ublock origin, adblock plus, adguard,
...” https://filterlists.com/, FilterLists, 2020, (Accessed on 07/30/2020).

[36] M. Garcia, “Circumvention of ad blockers? not on our watch.
– eyeo gmbh,” https://eyeo.com/circumvention-of-ad-blockers-not-on-
our-watch/, September 2018, (Accessed on 05/04/2020).

[37] “chrome.webrequest - google chrome,” https://developer.chrome.
com/extensions/webRequest, Google Chrome, 2020, (Accessed on
05/06/2020).

[38] greiner, “Adblock plus • view topic - why anti-circumvention filter
list not operated by easylist?” https://adblockplus.org/forum/viewtopic.
php?f=4&t=59473, Adblock Plus, September 2019, (Accessed on
05/23/2020).

[39] gwarser, “Resources Library ,” https://github.com/gorhill/uBlock/wiki/
Resources-Library, 2019, (Accessed on 05/09/2019).

[40] hfiguiere, “#6969 (implement abort-on-property-read snippet) – adblock
plus issue tracker,” https://issues.adblockplus.org/ticket/6969, March
2019, (Accessed on 06/11/2020).

[41] “Deal - iab tech lab,” https://iabtechlab.com/standards/ad-blocking/
deal/, IAB Tech Lab, (Accessed on 05/04/2020).

[42] U. Iqbal, Z. Shafiq, and Z. Qian, “The ad wars: Retrospective
measurement and analysis of anti-adblock filter lists,” in Proceedings
of the 2017 Internet Measurement Conference, ser. IMC ’17. New

17



York, NY, USA: ACM, 2017, pp. 171–183. [Online]. Available:
http://doi.acm.org/10.1145/3131365.3131387

[43] M. Jethani, “Adblock plus and (a little) more: Adblock plus 3.3 for
chrome, firefox and opera released,” https://adblockplus.org/releases/
adblock-plus-33-for-chrome-firefox-and-opera-released, August 2018,
(Accessed on 05/04/2020).

[44] L. Kudryavtseva, “New ad-tech terms: “ad reinsertion”, “ad re-
covery”, “ad replacement”,” https://adguard.com/en/blog/ad-reinsertion.
html, AdGuard, March 2017, (Accessed on 03/18/2020).

[45] N. Lomas, “Adblock Plus maker has a new taskforce to fight publisher
efforts to reinject ads,” https://techcrunch.com/2018/09/19/adblock-
plus-maker-has-a-new-taskforce-to-fight-publisher-efforts-to-reinject-
ads/, 2018, (Accessed on 05/09/2019).

[46] G. Merzdovnik, M. Huber, D. Buhov, N. Nikiforakis, S. Neuner,
M. Schmiedecker, and E. Weippl, “Block me if you can: A large-scale
study of tracker-blocking tools,” in 2017 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 2017, pp. 319–333.

[47] mjethani, “Implement basic support for snippet filters ,” https://issues.
adblockplus.org/ticket/6781, 2018, (Accessed on 05/09/2019).

[48] “mobiad – home — mobiad home,” http://mobiadhome.com/, Mobiad,
2020, (Accessed on 07/26/2020).

[49] “Mutationobserver - web apis — mdn,” https://developer.mozilla.org/
en-US/docs/Web/API/MutationObserver, Mozilla, January 2020, (Ac-
cessed on 05/06/2020).

[50] M. H. Mughees, Z. Qian, and Z. Shafiq, “Detecting anti ad-blockers in
the wild,” Proceedings on Privacy Enhancing Technologies, vol. 2017,
no. 3, pp. 130–146, 2017.

[51] B. Muthukadan, “Selenium with python — selenium python bindings
2 documentation,” https://selenium-python.readthedocs.io/, 2018, (Ac-
cessed on 05/09/2020).

[52] R. Nithyanand, S. Khattak, M. Javed, N. Vallina-Rodriguez,
M. Falahrastegar, J. E. Powles, E. De Cristofaro, H. Haddadi, and S. J.
Murdoch, “Adblocking and counter blocking: A slice of the arms race,”
in 6th {USENIX} Workshop on Free and Open Communications on the
Internet ({FOCI} 16), 2016.

[53] A. Oehler, “How the platform works – help center,” https://support.
instart.com/hc/en-us/articles/220929867, October 2019, (Accessed on
03/18/2020).

[54] “Above the fold,” https://www.optimizely.com/optimization-glossary/
above-the-fold/, Optimizely, (Accessed on 07/14/2020).

[55] “Oriel,” https://oriel.io/index.html##howitworks, Oriel, 2020, (Accessed
on 03/18/2020).

[56] Page Fair, “The State of the Blocked Web,” https://pagefair.com/
downloads/2017/01/PageFair-2017-Adblock-Report.pdf, 2017,
(Accessed on 05/09/2019).

[57] pkalinnikov, “Issue 2449913002: Support websocket in webrequest api.
- code review,” https://codereview.chromium.org/2449913002/, 2017,
(Accessed on 05/04/2020).

[58] V. L. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński,
and W. Joosen, “Tranco: A research-oriented top sites ranking hardened
against manipulation,” arXiv preprint arXiv:1806.01156, 2018.

[59] “Publica,” https://dev.getpublica.com/products/, Publica, 2020, (Ac-
cessed on 07/27/2020).

[60] E. Pujol, O. Hohlfeld, and A. Feldmann, “Annoyed users: Ads and
ad-block usage in the wild,” in Proceedings of the 2015 Internet
Measurement Conference, ser. IMC ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 93–106. [Online].
Available: https://doi.org/10.1145/2815675.2815705

[61] “Adblock circumvention strategies: Ad reinsertion, ad replacement, ad
recovery,” http://news.reviveads.com/adblock-circumvention-strategies/,
ReviveAds, (Accessed on 03/18/2020).

[62] “Reviveads and ad reinsertion: An overview,” http://news.reviveads.
com/white-paper-reviveads-ad-reinsertion/, ReviveAds, (Accessed on
03/18/2020).

[63] K. Rogers, “Why doesn’t my ad blocker block ‘please turn off your ad
blocker’ popups? - vice,” https://www.vice.com/en us/article/j5zk8y/
why-your-ad-blocker-doesnt-block-those-please-turn-off-your-ad-
blocker-popups, December 2018, (Accessed on 05/04/2020).

[64] sashachu, “D: #8471 · abp-filters/abp-filters-anti-cv@d36effc,”
https://github.com/abp-filters/abp-filters-anti-cv/commit/
d36effc62ec5207f5a6730127372a6cd3ebd1717, December 2018,
(Accessed on 06/11/2020).

[65] “sklearn.ensemble.isolationforest — scikit-learn 0.23.1 documentation,”
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
IsolationForest.html, scikit-learn, September 2016, (Accessed on
07/07/2020).

[66] S. Singh, “LEAN - IAB Tech Lab,” https://iabtechlab.com/standards/ad-
blocking/lean/, 2019, (Accessed on 05/09/2019).

[67] SourcePoint, “Homepage - sourcepoint,” https://www.sourcepoint.com/,
2020, (Accessed on 03/18/2020).

[68] The EasyList authors, “EasyList,” https://easylist.to/, 2005, [Online;
accessed 2019-05-11].

[69] “Resources for uBlock Origin, uMatrix: static filter lists, ready-to-use
rulesets, etc. ,” https://github.com/uBlockOrigin/uAssets, uBlock Origin,
2019, (Accessed on 05/09/2019).

[70] “Getadmiral-domains,” https://raw.githubusercontent.com/LanikSJ/ubo-
filters/master/filters/getadmiral-domains.txt, uBlock Origin, March
2020, (Accessed on 06/21/2020).

[71] “gorhill/ublock: ublock origin - an efficient blocker for chromium and
firefox. fast and lean.” https://github.com/gorhill/uBlock, uBlock Origin,
July 2020, (Accessed on 07/22/2020).

[72] “CV-Inspector: Towards Automating Detection of Adblock Circum-
vention: Project Overview,” https://athinagroup.eng.uci.edu/projects/cv-
inspector/, UCI Networking Group, January 2021, (Accessed on
01/04/2021).

[73] A. Vastel, P. Snyder, and B. Livshits, “Who filters the filters: Un-
derstanding the growth, usefulness and efficiency of crowdsourced ad
blocking,” arXiv preprint arXiv:1810.09160, 2018.

[74] R. J. Walls, E. D. Kilmer, N. Lageman, and P. D. McDaniel, “Measuring
the impact and perception of acceptable advertisements,” in Proceedings
of the 2015 Internet Measurement Conference, ser. IMC ’15. New
York, NY, USA: Association for Computing Machinery, 2015, p.
107–120. [Online]. Available: https://doi.org/10.1145/2815675.2815703

[75] W. Wang, Y. Zheng, X. Xing, Y. Kwon, X. Zhang, and P. Eugster,
“Webranz: Web page randomization for better advertisement delivery
and web-bot prevention,” in Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 205–216. [Online]. Available:
https://doi.org/10.1145/2950290.2950352

[76] wizmak, “D: #9056 · abp-filters/abp-filters-anti-cv@ddd0c3d,”
https://github.com/abp-filters/abp-filters-anti-cv/commit/
ddd0c3d9cd729d589519c57ba9aaa07229bdf10c, November 2018,
(Accessed on 06/11/2020).

[77] “Yandex advertising network and ad exchanges - yandex.direct. help,”
https://yandex.com/support/direct/general/yan.html, Yandex, 2020, (Ac-
cessed on 07/26/2020).

[78] S. Zhu, X. Hu, Z. Qian, Z. Shafiq, and H. Yin, “Measuring and
disrupting anti-adblockers using differential execution analysis,” in The
Network and Distributed System Security Symposium (NDSS), 2018.

18


