
PrivacyFlash Pro: Automating Privacy Policy
Generation for Mobile Apps

Sebastian Zimmeck, Rafael Goldstein and David Baraka
Department of Mathematics and Computer Science, Wesleyan University

{szimmeck, rgoldstein01, dbaraka}@wesleyan.edu

Abstract—Various privacy laws require mobile apps to have
privacy policies. Questionnaire-based policy generators are in-
tended to help developers with the task of policy creation.
However, generated policies depend on the generators’ designs as
well as developers’ abilities to correctly answer privacy questions
on their apps. In this study we show that policies generated with
popular policy generators are often not reflective of apps’ privacy
practices. We believe that policy generation can be improved
by supplementing the questionnaire-based approach with code
analysis. We design and implement PrivacyFlash Pro, a privacy
policy generator for iOS apps that leverages static analysis.
PrivacyFlash Pro identifies code signatures — composed of
Plist permission strings, framework imports, class instantiations,
authorization methods, and other evidence — that are mapped to
privacy practices expressed in privacy policies. Resources from
package managers are used to identify libraries.

We tested PrivacyFlash Pro in a usability study with 40 iOS
app developers and received promising results both in terms
of reliably identifying apps’ privacy practices as well as on
its usability. We measured an F-1 score of 0.95 for identifying
permission uses. 24 of 40 developers rated PrivacyFlash Pro with
at least 9 points on a scale of 0 to 10 for a Net Promoter Score of
42.5. The mean System Usability Score of 83.4 is close to excellent.
We provide PrivacyFlash Pro as an open source project to the
iOS developer community. In principle, our approach is platform-
agnostic and adaptable to the Android and web platforms as well.
To increase privacy transparency and reduce compliance issues
we make the case for privacy policies as software development
artifacts. Privacy policy creation should become a native extension
of the software development process and adhere to the mental
model of software developers.

I. INTRODUCTION

Legislators around the world are enacting new privacy laws
to increase privacy protection online. Recent lawmaking activ-
ities stateside include Vermont’s Data Broker Regulation [Act
171 of 2018] and Nevada’s right of consumers to request their
information not being sold [SB 220]. Notably, California’s
enactment of the California Consumer Privacy Act [CCPA] is
the most comprehensive online privacy law in the US to date.
Many laws are based on notice and choice: users are notified
of applicable privacy practices and given the choice to opt
out; at least by not using a service. The instrument to convey
notice is the privacy policy, which serves as a manifestation of
the privacy practices an app developer is accountable for. App

developers can be subject to a host of privacy requirements
they have to disclose in their policies. They are also subject
to contractual privacy obligations. For example, the Apple
Developer Program License Agreement requires developers to
provide a policy explaining how they collect, use, disclose,
share, retain, and delete user and device data [9].

While app developers are often required to provide a
privacy policy, many are actually not familiar with the privacy
implications of their apps and the laws they have to comply
with [14]. Especially, individual developers and smaller organi-
zations with fewer employees and resources are often not able
to devote time or money to privacy considerations and may
need additional help with drafting privacy policies [14]. Con-
sequently, there is often a substantial disconnect between how
privacy practices are described in privacy policies and apps’
actual behavior [86]. This disconnect can lead to compliance
issues and is particularly prevalent for the use of permissions
by the developer and third parties as well as the integration
of third party libraries [86]. A recent study of 13,796 Android
apps and their privacy policies found that up to 42.4% of apps
either incorrectly disclose or omit disclosing their privacy-
sensitive data flows [6].

Questionnaire-based policy generators promise a low-cost
solution to the problem of writing legally compliant privacy
policies. Such generators, available for web and mobile apps,
prompt developers with a set of privacy-related questions on
their apps and generate policies based on the supplied answers.
An estimated 25% of Android app developers make use of such
generators [66]. In addition to alleviating developers from the
task of writing privacy policies, questionnaire-based generators
may be advantageous from the users’ perspective as well. The
standardized language and format may make it more con-
venient to compare different policies. Generated policies are
also easier to analyze automatically. However, questionnaire-
based policy generators have fundamental limitations. They are
necessarily reliant on the correctness of answers provided by
the developers, which creates a risk of inaccurate policies due
to wrong or missing answers. Design flaws in a generator may
reflect in the policies as well.

We propose to combine questionnaire- and code-based pol-
icy generation. Source code can be understood as a semantics-
rich documentation of an app’s privacy practices [48]. Thus,
app code, including code of integrated libraries, can serve as
the starting point for a privacy policy that is a traceable and
faithful representation of how an app behaves [85]. However,
while code analysis helps aligning policy disclosures with
actual app behavior, it still remains necessary to query the
developer for some input. For example, for how long personal

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24100
www.ndss-symposium.org

information is retained or whether an app is subject to the
CCPA cannot be solely derived from an app’s codebase. Com-
bining static code analysis and a questionnaire-based wizard
with templates, we implemented PrivacyFlash Pro, a privacy
policy generator for iOS apps written in Swift and integrated
Swift and Objective-C libraries. We demonstrate our idea for
iOS, but the same principles apply to Android, cross-platform
frameworks (e.g., React Native), and web apps. We believe that
especially indie developers, freelance developers, and startups
would benefit the most from our work.

We believe that privacy policies should be recognized as
software development artifacts [85]. The integration of legal
requirements into the software development process enables
compliance traceability, that is, the ability to link requirements
originating from privacy laws to their corresponding software
implementations. This link strengthens the synchronization
between privacy-by-policy and privacy-by-architecture [23].
Just as for software licenses, an area where legal considerations
became part of the software development process, privacy poli-
cies can be selected, created, and maintained by developers. In
order for developers to perform this new task well it is crucial
to design it based on their mental model. Certainly, policy
generation will not eliminate the work of lawyers in all cases.
For complex apps and apps with unusual privacy practices it
will still be necessary to create individualized privacy policies.
However, for the average app with standard permission uses
and third party library integrations automating privacy policy
generation holds the promise of increased privacy compliance
and traceability. Thus, in this study, we are making the
following contributions:

(1) We analyze the extent to which the use of popular
questionnaire-based privacy policy generators helps iOS
app developers to accurately disclose the privacy prac-
tices of their apps. Our results suggest that many apps
behave differently than described and that the examined
generators are inherently limited by their design and the
exclusive reliance on their questionnaire-based approach.
(§ III).

(2) We design and implement PrivacyFlash Pro, a privacy
policy generator for iOS apps written in Swift. Priva-
cyFlash Pro combines questionnaire-based policy genera-
tion and standardized templates with automatic detection
of privacy practices in app code via static analysis. It is
available as an open source project.1 (§ IV).

(3) We evaluate PrivacyFlash Pro in a usability study with
40 iOS app developers. The policies that the developers
generated with PrivacyFlash Pro offer better coverage of
the privacy practices of their apps than their previous
policies. The developers also reported high levels of
product usability and satisfaction. (§ V).

II. RELATED WORK

Online privacy is fundamentally based on the principle of
notice and choice.

1PrivacyFlash Pro GitHub repository, https://github.com/privacy-tech-lab/
privacyflash-pro, accessed: January 7, 2021.

A. Notice and Choice

Users should be notified of applicable privacy practices
and given the choice to opt out. However, oftentimes, it is
not transparent to users how mobile and web apps use and
disclose the data they collect. Especially, mobile app users
are confronted with trade-offs between privacy and usability
due to the constraints of mobile devices when setting their
notification preferences [74]. Notifications during app use,
instead of before app use, have proven to be effective [15],
however, may also lead to notification fatigue. Reducing the
number of privacy decisions users have to make [21] and
leveraging social interaction for privacy features [4] could help
prevent such [73]. Using comic-based privacy policies [68],
flyers [36], or paraphrased terms of use [75] are creative new
ways of engaging users’ interest.

B. Privacy Policy Generators

From a developer’s perspective, writing a privacy policy
that correctly reflects an app’s privacy practices and keeping
the policy up-to-date as the app evolves over time can be
a challenging task. Various solutions, most of which are
commercial, generate policies based on questionnaires filled
by the developer [7], [32], [35], [41], [53], [69], [70]. PAGE, a
plugin for the Eclipse IDE, can be used to create questionnaire-
based policies during the development process [59]. However,
purely questionnaire-based generators can lead to inaccurate
representations of an app’s privacy practices if the questions
are not answered, accurately, timely, and completely. We aim
to mitigate these shortcomings by leveraging code analysis.

The closest work to ours, Polidroid-AS, is an Android
Studio plugin that combines a simple privacy questionnaire
with code analysis functionality [63]. However, different from
Polidroid-AS, PrivacyFlash Pro has the goal of creating com-
prehensive and legally compliant policies for iOS apps beyond
the text snippets of Polidroid-AS. PrivacyFlash Pro intends to
create such policies by covering provisions of the FTC Act,
Children’s Online Privacy Protection Act [COPPA], California
Online Privacy Protection Act [CalOPPA], CCPA, and General
Data Protection Regulation [GDPR]. While no performance or
usability evaluations are available for Polidroid-AS, we provide
those in a usability study with iOS app developers, most of
which are full-time professionals (§ V).

AutoPPG is another closely related work [80]. Sim-
ilar to Polidroid-AS, AutoPPG extracts code from An-
droid apps to create short text snippets of app behavior.
A corpus of policies collected in the wild is used for
generating snippets of the form subject verb object
[condition], which, however, entails the risk of importing
non-compliant language into the generated snippets as many
policies are not compliant with the law [5]. Different from
AutoPPG, PrivacyFlash Pro aims to create fully legally compli-
ant policies by mapping app analysis results and questionnaire
answers to standardized legal templates. In addition, our study
goes beyond both AutoPPG and Polidroid-AS with a developer
usability study and a survey of questionnaire-based generators.
PrivacyInformer, another related tool, also creates text snippets,
though, only for apps created with the MIT App Inventor [46].

Code analysis is also used to generate templates with
app privacy settings [20] and security descriptions [82]. Such

2

https://github.com/privacy-tech-lab/privacyflash-pro
https://github.com/privacy-tech-lab/privacyflash-pro

templates and descriptions can be helpful for users to un-
derstand and adjust the privacy and security settings of an
app. Generally, profiling app behavior enables uncovering
privacy practices [58]. Though, any templates, descriptions,
and profiles are not directly usable as privacy policies.

C. Machine-readable Privacy Policies

While natural language privacy policies emerged as the
standard for disclosing privacy practices, machine-readable
policies would make it easier for browsers and other user
agents to process and act upon on what is disclosed in policies.
The Platform for Privacy Preferences (P3P) is one of the major
works taking steps towards this direction [24], [25]. Privacy
policy languages [78], [81] that allow a developer to specify
data flows and enforce constraints are an interesting area of
automating policy processing as well. However, as none of the
suggested approaches received significant industry adoption,
the natural language policy remains the default format and
its standardization via policy generators seems a more viable
avenue for making policies machine-readable rather than using
specialized policy languages.

D. Static and Dynamic Code Analysis

In order to identify the privacy practices an app is perform-
ing PrivacyFlash Pro relies on signature-based static analysis.
In the Android ecosystem Stowaway [30] paved the way for
the static analysis of permissions. FlowDroid [11] is still the
state of the art and was extended in various studies, e.g.,
for purposes of inter-component data-flow analysis to detect
privacy leaks between app components [37]. It was shown
that many apps are circumventing permissions [56]. For iOS
code analysis is much less explored. PiOS [28] is one of the
few static analysis frameworks for iOS. Fortunately, it is not
necessary for us to leverage reverse-engineering techniques as
PrivacyFlash Pro is operating on apps’ source code. Even in
compiled libraries, APIs are visible in plaintext. As many apps
include such libraries, a comprehensive privacy analysis needs
to be able to reliably identify those [13].

E. Privacy Policy Analysis

Various studies examined the extent to which information
can be extracted from privacy policies [43], [55], most no-
tably, related to opt out mechanisms [60], purposes for app
permission usages [12], and sections that are relevant under the
GDPR [71]. While recently neural networks were used for this
purposes [33], simple machine learning techniques are often
sufficient due to the limited variation in policy language [84].
Especially, financial institutions’ privacy notices are usually
based on a standard template [26].

One analysis found that mobile financial services often do
not disclose what types of personal information they collect
and store [17]. Whether in finance or other domains, the
disclosure of third party practices is rare. An analysis of over
200,000 website privacy policies revealed that third party data
flows are disclosed in fewer than 15% of required cases [40].
While many policies have internal contradictions [5], recent
lawmaking activity seems to have a positive effect. Polices
generally became more specific in the wake of the enactment
of the GDPR [42].

F. Privacy Compliance Analysis

Beyond policy analysis, compliance analysis seeks to
identify discrepancies between privacy practices described
(or omitted) in policies and actual code functionality. Apps
are potentially non-compliant due to developers’ use of app
building frameworks that add unnecessary permissions and
API invocations, reuse of privacy-sensitive functionality by
developers in multiple apps, support of secondary undocu-
mented app functionality, or use of third party libraries [77].
Policies can be in conflict with third party library policies [79].
Thus, the ability to correctly distinguish between first and third
party functionality is crucial to identify compliance issues [6]
and is accounted for in PrivacyFlash Pro. Based on linking
policy phrases to privacy-sensitive API invocations numerous
potential compliance issues were identified for a set of top
Android apps [64]. Similar findings were confirmed in a large-
scale analysis of about 1 million Android apps [86].

Privacy non-compliance even persists in sensitive domains.
A set of 80 health and finance apps displayed 20 “strong”
and 10 “weak” violations where their functionality did not
align with their privacy policies [76]. To prevent violations
of Institutional Review Board policies an app platform for
enforcing such policies was proposed [83]. Ultimately, current
privacy compliance analysis approaches of mobile apps are
grounded in the notion that an app’s codebase is a semantics-
rich documentation carrying meaningful privacy-related in-
formation [48]. Thus, natural language processing can be
applied to automatically locate program elements of interest
and perform a learning-based program structure analysis to
identify those structures that are indeed carrying sensitive
content [48].

G. App Development Practices and Tools

Various development practices are impacting the privacy
behavior of apps. Most notably, many developers are includ-
ing code from Stack Overflow [65] or other crowdsourcing
resources in their app code. An analysis of 1.3 million An-
droid apps revealed that 15.4% contained security-related code
snippets from Stack Overflow and 97.9% of these contained
at least one code snippet that was not secure [31]. The
official Android API documentation is perceived as difficult
to use; informal resources appear more accessible, though,
often lead to vulnerable code [2]. Boilerplate code from app
generators includes well-known security issues, such as code
injection vulnerabilities, however, due to their blackbox nature,
developers are often unaware of these hidden problems [51].
Individual developers and smaller organizations are more likely
to run into privacy and security issues, particularly, due to
the opacity of third party ad and analytics libraries [14].
Developers often do not feel responsible for managing and
addressing consumer risks from integrating such libraries [45].

Developer tools may reduce the barriers for app developers
to implement privacy and security best practices [14]. To
support Android developers in writing better code, FixDroid,
an Android Studio plugin, highlights security- and privacy-
related code problems, provides an explanation to developers,
and suggests quickfix options [50]. Similarly, Coconut, another
Android Studio plugin, highlights potential privacy problems
and offers quickfixes [38]. The information provided to the

3

CCPA COPPA GDPR
Policy Generator May’20 Jan’21 May’20 Jan’21 May’20 Jan’21

iubenda 14/18 14/18 2/4 2/4 8/8 8/8

Termly 3/18 15/18 1/4 1/4 8/8 8/8

TermsFeed et al. 5/18 16/18 2/4 2/4 8/8 8/8

TABLE I: Tallies of the generators’ compliance with legal require-
ments. The App Privacy Policy Generator does not claim CCPA,
GDPR, or COPPA compliance. The individual requirements are
shown in Table II (CCPA) and in Appendix Tables A.7 (COPPA)
and A.8 (GDPR).

developer in FixDroid and Coconut can be used as a starting
point for writing the respective apps’ privacy policies. The
same is true for PrivacyStreams, an implementation of a
functional programming model for evaluating the access and
processing of personal information in Android apps [39].
PrivacyStreams provides an API on top of the Android API
that highlights privacy-related code usage, although, it does
not account for third party libraries.

III. QUESTIONNAIRE-BASED POLICY GENERATORS

Questionnaire-based policy generators guide developers
through a privacy questionnaire and are intended to generate
a compliant privacy policy from the supplied answers.

A. Generator and Policy Selection

We set out to review six popular questionnaire-based gen-
erators for creating mobile app privacy policies: App Privacy
Policy Generator [7], FreePrivacyPolicy [32], iubenda [35],
PrivacyPolicies [53], Termly [69], and TermsFeed [70]. The
market is quite small but increasing. We are only consid-
ering generators covering mobile apps.2 During our evalua-
tion we found that three generators — TermsFeed, FreeP-
rivacyPolicy, and PrivacyPolicies (in the following, Terms-
Feed et al.) — are provided by the same entity and seem
to generate identical policies. This relationship is not im-
mediately obvious but was confirmed to us by the op-
erator, who also explained that TermsFeed is their main
offering. Neither of the generators we review has any
code analysis functionality. In order to collect policies
from the questionnaire-based generators we started with a
Google search. For example, searching for ios iubenda
site:https://itunes.apple.com/ returned numer-
ous search results for policies of iOS apps in Apple’s App
Store generated with iubenda [35]. We collected policies in
the order they appeared in the search results given they were
(1) in English,3 (2) associated with a free iOS app on the US
App Store, (3) linked from an app’s App Store page, and (4)
hosted on the generator site or appearing to be generated with
the generator.

To ensure that the policies were in fact generated by
the generators and not modified by the developers we are
relying on the generators’ hosting features. All generators but
one offer the option to host the generated policies on their

2Thus, for example, we are not reviewing the generators of e-commerce
services 3dcart [1] and Shopify [62] as they are only covering websites.

3Some generators support generation of policies in multiple languages.

servers so they can update the policies in case of changes
in the legal environment. The App Privacy Policy Generator
is the only generator not offering hosting. However, policies
from this generator include a reference disclosing that “[t]his
privacy policy page was created at privacypolicytemplate.net
and modified/generated by App Privacy Policy Generator.”
All policies we are examining from this generator contained
such reference and do not appear modified. We also generated
multiple policies from each generator on our own to verify the
absence of modifications in the policies we collected. Using
the generators ourselves let us evaluate how they work and
observe what policies they generate for different questionnaire
answers. Leaving aside the policies we created on our own, we
collected a total of 95 policies from the App Privacy Policy
Generator (20), iubenda (20), Termly (20), and TermsFeed et
al. (35).

B. Privacy Policy Analysis

Generators must be designed so that developers are able
to generate compliant privacy policies. In particular, they
must be kept up to date with changing laws. All generators
we examined, except for the App Privacy Policy Generator,
advertised on their websites to generate policies compliant with
the CCPA, COPPA, and GDPR. However, in our initial analysis
in May 2020 we found that all generators had substantial short-
comings, for example, they failed to create CCPA-compliant
policies. Table I shows tallies of generators’ compliance with
legal requirements in May 2020. It also shows tallies of
our second analysis in January 2021 after we had contacted
the generator operators.4 In May 2020 policies generated
with Termly were only compliant with 3 out of 18 CCPA
requirements. Similarly, policies generated with TermsFeed et
al. were only compliant with 5 out of 18 CCPA requirements.
For example, neither policy generated with iubenda, Termly,
or TermsFeed et al. provided a list of categories of personal
information disclosed for business purpose in the preceding 12
months per CCPA §1798.130(a)(5)(C).

The non-compliance was independent of the answers pro-
vided in the generators’ privacy questionnaires. It was the
design of the generators that did not sufficiently accommodate
the CCPA. Perhaps, the generator operators needed some time
to adapt their questionnaires to the new law. The CCPA became
effective fairly recently in January 1, 2020 after a rather
quick lawmaking process. In our analysis of January 2021
we found that Termly and TermsFeed et al. had adapted their
questionnaires and their policies are now compliant with CCPA
§1798.130(a)(5)(C). To cover this provision a generator would
need to be adapted because it goes beyond the traditional canon
of what a privacy policy usually discloses. On the other hand,
the higher levels of GDPR compliance in our first analysis
in May 2020 could be based on the GDPR already being
effective since 2018, after it was well publicized in 2016. The
requirements of the GDPR are also more general than those
of the CCPA and cover disclosures that are often traditionally
included in privacy policies even if they are not GDPR-
specific, for example, the purposes of the data processing per
GDPR Art. 13(1)(c), 14(1)(c).

4We contacted all generator operators in June 2020 and notified them of
our findings. We received a response from a representative at TermsFeed et al.
and further explained our findings. The representative told us that TermsFeed
et al. is in a process of updating their generator.

4

iubenda Termly TermsFeed et al.
CCPA Requirement May’20 Jan’21 May’20 Jan’21 May’20 Jan’21

Disclosure of right to request how personal information is collected, used, sold, disclosed for a business 3 3 7 3 7 3
purpose, and shared [CCPA §1798.130(a)(5)(A), 1798.110(a), 1798.115(a), Regs §999.308(c)(1)(a)]

Disclosure of right to request deletion of personal information [CCPA §1798.105(b), 1798.130(a)(5)(A), 3 3 7 3 7 3
Regs §999.308(c)(2)(a)]

Disclosure of whether personal information is sold and right to opt-out of sale [Regs §999.308(c)(3)(a), 3 3 7 3 7 3
999.308(c)(3)(b), 999.306]

Disclosure of right to not be discriminated against when requesting any rights [CCPA §1798.130(a)(5)(A),
1798.125(a), Regs §999.308(c)(4)(a)] 7 7 7 3 3 3

Instructions for submitting requests and link to online form or portal if offered [Regs §999.308(c)(1)(b), 3 3 7 3 3 3
999.308(c)(2)(b), 999.308(c)(2)(c)]

Instructions for authorized agents to make requests [Regs §999.308(c)(5)(a)] 3 3 7 3 7 3

Description of the process used to verify requests [Regs §999.308(c)(1)(c)] 3 3 7 3 7 3

List of categories of personal information collected in preceding 12 months [CCPA §1798.130(a)(5)(B),
1798.110(c), Regs §999.308(c)(1)(d)] 3 3 7 3 7 3

List of categories of personal information sold in preceding 12 months [CCPA §1798.130(a)(5)(C),
1798.115(c)(1), Regs §999.308(c)(1)(g)(1)] 3 3 7 3 7 3

List of categories of personal information disclosed for business purpose in preceding 12 months [CCPA
§1798.130(a)(5)(C), 1798.115(c)(2), Regs §999.308(c)(1)(g)(1)] 7 7 7 3 7 3

For each personal information category, categories of third parties to whom information was disclosed or 3 3 7 3 7 3
sold [Regs §999.308(c)(1)(g)(2)]

Categories of sources from which personal information is collected [Regs §999.308(c)(1)(e)] 3 3 3 3 3 3

Business or commercial purpose for collecting or selling personal information [Regs §999.308(c)(1)(f)] 3 3 7 3 7 3

Whether the business has actual knowledge that it sells personal information of minors under 16 years of 3 3 7 7 7 3
age and special process [Regs §999.308(c)(1)(g)(3), 999.308(c)(9)]

Contact information for questions or concerns [Regs §999.308(c)(6)(a)] 3 3 3 3 3 3

Date policy was last updated [Regs §999.308(c)(7)] 3 3 3 3 3 3

Special requirements for businesses buying, receiving, selling, or sharing personal information of 7 7 7 7 7 7
10,000,000 or more consumers in a calendar year [Regs §999.308(c)(8), 999.317(g)(1)]

For online notices, follow generally recognized industry standards, such as the W3C Web Content 7 7 7 7 7 7
Accessibility Guidelines, version 2.1 of June 5, 2018 [Regs §999.308(a)(2)(d)]

TABLE II: CCPA privacy policy requirements and generators’ compliance.

C. Privacy Compliance Analysis

Privacy policies take a long time to read [44]. However,
there would not even be a point in reading a policy if it does
not describe the actual behavior of an app or other piece of
software. In fact, reading it could even be misleading. The
potential misalignments between policies and apps motivate us
to study the extent to which generated policies are susceptive
to such compliance issues. All results in this subsection are
current as of May 2020.

1) The Law on Privacy Compliance: We define a com-
pliance issue to mean that an app is performing a privacy
practice (e.g., uses location data) while its privacy policy does
not disclose it or discloses the opposite (e.g., discloses that it
is not using location data) [86]. The notion that a policy must
accurately describe the behavior of the app it covers is both
evident as well as explicitly described in the law. Per the CCPA
Regulations [Regs §999.308(a)(1)], it is the purpose of the
policy to provide consumers with a comprehensive description
of online practices regarding the collection, use, disclosure, and
sale of personal information. Using clear and plain language,
notification of data processing practices must be provided in
a concise, transparent, intelligible and easily accessible form
[GDPR Art. 12(1)]. Not properly disclosing a practice can be
an unfair or deceptive act or practice in or affecting commerce

[15 USC §45] and result in a privacy enforcement action by
the Federal Trade Commission. The Apple Developer Program
License Agreement also specifies that developers must provide
a privacy policy explaining the collection, use, disclosure,
sharing, retention, and deletion of user or device data [9].
Consequently, Apple’s vetting process for publishing an app on
the App Store includes the identification of compliance issues
as well.5

2) Permission Under- and Over-disclosures: The first types
of compliance issues we are examining are under- and over-
disclosures of permissions used by apps and their integrated
third party libraries [86], [87]. The threat model is that once
a user grants permission, an app or library is able to access
and send the related data off of the device. The set of apps
we evaluate consists of the 95 apps whose App Store pages
link to the generated policies we collected (§ III-A). After
we downloaded and installed the apps from the App Store on
an iPhone, we explored their permission use. If necessary, we
created an account with the app, navigated to all views, and
tapped on every interactive element to trigger any permission
uses. To avoid under-disclosures it is not sufficient that the

5Apple CEO Tim Cook explained in an interview with MSNBC [47]:
“[Apple is] looking at every app in detail. What is it doing? Is it doing what
it is saying it is doing? Is it meeting the privacy policy that they are stating,
right? And so we are always looking at that.”

5

Fig. 1: Permission under- and over-disclosures (by permission).
∗UIImagePickerController allows use of some photos with-
out Photos permission. Therefore, it is not included here.

Questionnaire-based Apps With At Least Apps With At Least
Policy Generator One Under-disclosure One Over-disclosure

App Privacy Policy Generator 7/20 (35%) 0/20 (0%)

iubenda 5/20 (25%) 9/20 (45%)

Termly 5/20 (25%) 14/20 (70%)

TermsFeed et al. 18/35 (51%) 2/35 (6%)

TABLE III: Permission under- and over-disclosures (by generator).

policy of an app contains general disclosures (e.g., “we use
your device data”). Rather, we require that a policy specifies
a certain type of information (e.g., “we use your location
data”). Under-disclosures can be particularly problematic for
third party permission uses as users may incorrectly assume
that granting a permission only refers to an app itself but
not to integrated libraries. An over-disclosure refers to an
app not using a permission that is actually disclosed in its
policy. Arguably, over-disclosures are less harmful than under-
disclosures as an app will simply use fewer permissions than
disclosed. However, over-disclosures can contribute to eroding
trust in privacy policies in general as those may not appear
trustworthy if apps behave differently from what policies
describe. While our analysis of over-disclosures aims to be
as comprehensive as possible, it should be noted that there
is always a possibility of missing to trigger a permission,
which should be taken into account for the interpretation of
our results.

Apps with policies from iubenda and Termly have fewer
under-disclosures compared to apps with policies from the
App Privacy Policy Generator and TermsFeed et al. The latter
exhibits the maximum with 51% (Table III). One reason for
iubenda and Termly covering apps’ permission uses better
than the other two could be the design of the generators’
questionnaires. iubenda’s and Termly’s questionnaires include
menus to select the permissions an app uses and also offer
the option to manually provide additional permissions not
contained in the menus. On the other hand, the App Privacy
Policy Generator has just a free-form text field and TermsFeed

et al. only offer Location, Contacts, and Camera permissions
without any other options or free-form fields. Indeed, any
permission use we observed for apps with policies from
TermsFeed et al. — except for the location permission use
— resulted in an under-disclosure.

Over-disclosures are particularly pronounced for the loca-
tion permission with 21% (Figure 1). The majority of these
over-disclosures are contained in privacy policies generated
by Termly, which has, by far, the largest percentage of over-
disclosures with 70% (Table III). A reason for these frequent
location over-disclosures in Termly policies could lie in the
policy text that is generated when answering affirmatively that
an app will “be collecting any derivative data” from users.
The rather unspecific term of “derivative data” is not tailored
to apps and covers a host of data types “such as your IP
address, browser and device characteristics, operating system,
language preferences, referring URLs, device name, country,
location, and information about how and when you use our
Apps” (emphasis added) [69]. In addition, Termly is asking
about location use in multiple other questions. Affirmative
answers to those will also include location use in the generated
policy. Overall, apps’ permission use is not well reflected in
the examined policies. Our results illustrate that the design of
a generator’s questionnaire can have an adverse impact on the
accuracy of disclosures in generated policies.

3) Library Under- and Over-disclosures: Oftentimes, de-
velopers are not aware of third party library practices or if they
are, they may not feel responsible for those [14], [45]. The
integration of libraries can result in compliance issues if their
use is not properly disclosed in privacy policies. We examined
the integration of 10 popular libraries in our set of 95 apps
and their disclosure in the generated privacy policies. While
we interacted with each app, we decrypted and observed its
resulting web traffic using the Fiddler web proxy [54]. After we
had accessed all views and interactive elements of an app we
analyzed the log files with the captured traffic. If, for instance,
an app made a request to graph.facebook.com, we
concluded that it integrates Facebook. We used the following
list of ad and analytics domains to identify third party library
integration.

(1) AdMob: googleads.g.doubleclick.net,
pubads.g.doubleclick.net

(2) Facebook: graph.facebook.com
(3) Vungle: ads.api.vungle.com
(4) AdColony: events3.adcolony.com
(5) MoPub: ads.mopub.com
(6) Chartboost: live.chartboost.com
(7) Tapjoy: ws.tapjoyads.com
(8) UnityAds: unityads.unity3d.com
(9) InMobi: sdktm.w.inmobi.com

(10) Flurry: data.flurry.com

We require disclosure of the specific libraries, per GDPR
Art. 13(1)(e), 14(1)(e), and not just of “other companies,” for
example. Apart from the GDPR, some laws generally only
require the disclosure of categories of third parties and not
their specific names (e.g., “ad network” instead of “AdMob”).
However, as all generators provide functionality for selecting
or entering specific third parties in their questionnaire, we are
holding them to that standard.

6

Fig. 2: Library under- and over-disclosures (by library).

Fig. 3: App Store age rating and policy age requirements.

Our results reflect the online advertising duopoly [52] with
Google’s AdMob and Facebook each being integrated in about
a third of the apps. However, only 15% of apps disclose in their
policies that they integrate AdMob and 20% do not. The results
for under-disclosures of Facebook are similar. 20% of apps
disclose Facebook integration and 21% omit such disclosure.
This trend holds for all other libraries as well, albeit, at lower
integration levels (Figure 2). Compared to the other generators’
policies, it is striking that the rate for under-disclosures in
policies from TermsFeed et al. is more than twice as high
with 63% (Table IV).

Termly and iubenda provide menus with hundreds of third
party libraries for inclusion in the generated policies. On the
other hand, the App Privacy Policy Generator and TermsFeed
et al. only offer a handful of libraries. As all generators
have an option to manually add libraries not included in
their menus, though, it is generally possible to discloses any
library. However, another difference between the generators
is their pricing structure. The App Privacy Policy Generator
is completely free. Termly and iubenda are offering a basic
version of their generator for free and a more extensive paid
version for a flat subscription fee. But TermsFeed et al. is

Questionnaire-based Apps With At Least Apps With At Least
Policy Generator One Under-disclosure One Over-disclosure

App Privacy Policy Generator 5/20 (25%) 1/20 (5%)

iubenda 6/20 (30%) 5/20 (25%)

Termly 5/20 (25%) 2/20 (10%)

TermsFeed et al. 22/35 (63%) 5/35 (14%)

TABLE IV: Library under- and over-disclosures (by generator).

offering à la carte pricing where the addition of each library
category, e.g., analytics, advertising, or marketing, will incur
extra charges. Also, TermsFeed is the one we’re focusing solely
on now. Developers may feel disincentivized from extensive
privacy disclosures due to the increase in fees that would come
with those. Thus, the reason for TermsFeed et al.’s relatively
higher levels of library under-disclosures may be rooted in its
pricing structure indicating that such can have an impact on
privacy compliance as well.

4) Improper Disclosures of Childrens’ Apps: Online Ser-
vice operators who direct their apps to children under 13 or
who have actual knowledge of such users must provide COPPA
disclosures in their policies (Appendix A). For example, they
must disclose that a parent can review, have deleted, and refuse
to permit further collection or use of the child’s personal infor-
mation [COPPA §312.4(d)(3)]. Whether an app is directed to
children depends, among others, on its subject matter, its visual
content, and the use of animated characters or child-oriented
activities and incentives, music or other audio content [29]. In
our set 6 of the 95 apps meet these criteria. However, neither
of the apps’ policies contain any COPPA disclosures. Rather,
they assume teenage or adult users with 3 policies requiring
a minimum age of 13 and the other 3 requiring a minimum
age of 18. However, even if the developers wanted to make
accurate COPPA disclosures, the generators would not allow
them to do so comprehensively as they do not implement all
requirements (Table I).

61% of apps’ policies require users to be at least 13 or
18 years old while their apps are rated for age 4+ (Figure 3).
This discrepancy is not problematic because age ratings do not
mean that an app is suitable for children of a certain age but
rather only that it is unsuitable below that age [41]. However,
for 2% of apps the discrepancies between their age ratings
and policies’ age requirements present a problem. Their age
ratings require users to be 17+ while their policies only require
users to be at least 13. The policies effectively allow access
to violence, nudity, and other content unsuitable for younger
users. Age ratings are voluntary and self-regulatory industry
efforts. Still, policies should be consistent with the ratings.

IV. GENERATING POLICIES WITH PRIVACYFLASH PRO

We aim to increase privacy transparency and reduce com-
pliance issues with a privacy policy generator that squarely
fits developers’ mental model and tightly integrates into the
software development process and tools.6

6We presented PrivacyFlash Pro at iOSoho - New York City’s largest iOS
Engineer Meetup [34] and were featured on Brian Advent’s iOS development
YouTube channel [3]. All source code is available at https://github.com/
privacy-tech-lab/privacyflash-pro/, accessed: January 7, 2021.

7

https://github.com/privacy-tech-lab/privacyflash-pro/
https://github.com/privacy-tech-lab/privacyflash-pro/

Fig. 4: Excerpt from PrivacyFlash Pro’s iOS API evidence specification for the location framework. The full specification, about 3,000 lines
of code, including comments, is available at our project’s GitHub repository (https://github.com/privacy-tech-lab/privacyflash-pro/).

A. PrivacyFlash Pro Architecture

Current questionnaire-based generators have design weak-
nesses (§ III). They also necessarily rely on developers’ ability
to answer questions on the privacy practices of their apps
accurately, comprehensively, and over time upon any privacy-
relevant code change. We suggest automating privacy policy
generation by using, as far as possible, first, standardized tem-
plates (§ IV-A1), second, automatic code analysis (§ IV-A2),
and third, a questionnaire-based wizard (§ IV-A3).

1) Standardized Templates: Different apps will often be
subject to the same disclosure requirements. For example,
any app subject to the GDPR must disclose that users can
request access to the data a controller has stored on them
[GDPR, Art. 13(2)(b), 14(2)(c)].7 These types of disclosures
are included via templates in any policy that needs to com-
ply with the GDPR. PrivacyFlash Pro contains templates for
provisions of the GDPR, CCPA, CalOPPA, and COPPA. Such
standardization eases policy comparison and comprehensibility
by use of familiar terminology and placement of information
resources [23]. Using standardized templates also has the
advantage of enabling machine-readability of policies allowing
browsers and other user agents to consume policy data and
take actions on a user’s behalf [23].8 Making natural language
policies machine-readable seems more promising at this point
than developing dedicated machine-readable policy formats
due to the wide adoption of the former. The more standardized
language a policy contains, the easier it will become to make
it machine-readable.

2) Code Analysis: Using Python for the code analysis logic
and JavaScript for the UI, PrivacyFlash Pro runs as a macOS
desktop app locally in the web browser and generates policies
for iOS apps written in Swift and their libraries in Swift and
Objective-C. The signature-based static analysis approach is
language-agnostic as long as the analyzed code is sufficiently
expressive to reveal information about its privacy-sensitive
behavior when executed.

7PrivacyFlash Pro generates policies for GDPR “controllers” and CCPA
“businesses” as opposed to “processors” and “service providers.”

8The GDPR reintroduced this idea by providing for policy disclosures in
combination with machine-readable icons [GDPR, Art. 12(7)].

a) From Evidence to Signatures to Policies: The de-
tection of a privacy practice by PrivacyFlash Pro depends
on the evidence found in the analyzed codebase. To that
end, PrivacyFlash Pro contains a specification layer, distinct
from the analysis logic, that defines the evidence that will be
searched for. The specification contains hundreds of evidence
items from the iOS Swift and Objective-C APIs [8]. Figure 4
shows an excerpt. As Swift and Objective-C continue to
evolve, the specification can be updated without restructuring
the analysis logic. The following are the different types of
evidence items and their uses in the analysis:

(1) Plist Permission Strings. Since iOS 10.0 apps
must include in their Info.plist file a
UsageDescription key explaining why access
to a certain permission is requested. This explanation
is used in the generated policy to describe the purpose
for why personal data is processed [e.g., GDPR, Art.
13(1)(c), 14(1)(c)].

(2) Framework Imports: All functionality we are interested
in is bundled in frameworks. For example, an app must
import the CoreLocation or MapKit frameworks to
obtain the location of a device.

(3) Class Instantiations. At least one class from the frame-
work must be instantiated. Otherwise, the framework’s
functionality could not be used.

(4) Authorization Methods. There must be instance method
declarations for authorization methods (for example,
requestAlwaysAuthorization to request the de-
vice location whenever the app is running). Some-
times they are also called access methods (for exam-
ple, requestAccess to request access to the device’s
microphone). Parameters disambiguate methods with the
same name (for example, both microphone and camera
have a requestAccess method but microphone has an
audio parameter and camera has a video parameter).

(5) Entitlements. Using particularly sensitive resources that
are expanding beyond the sandbox of an app requires an
entitlement, for example, use of HealthKit. Those are

8

https://github.com/privacy-tech-lab/privacyflash-pro/

Fig. 5: Detection of a location signature in an app’s source files causing the privacy policy to be populated with the location practice.

controlled by Apple through the app signing process and
must be declared in the Entitlements.plist file.

(6) Additional Evidence. Instance methods (for example,
startUpdatingLocation) and instance properties
(for example, AVCaptureDeviceInput) require an
authorization method to be used. Just as for authorization
methods, parameters are used to disambiguate instance
methods with the same name.

Once the evidence is completed to a signature, it is inferred
that a privacy practice is performed that should be disclosed
in a privacy policy. The signatures for first parties (i.e., apps)
and third parties (i.e., libraries) are composed of the same
evidence items. For a signature of a first party practice, the
first party (i.e., app) code must contain (1) a Plist permission
string, (2) a framework import, (3) a class instantiation, (4)
an authorization method, and (5) an entitlement, to the extent
required for the practice, where (6) additional evidence can
be used in place of an authorization method if and only if an
authorization method is present in the third party (i.e., library)
code. For a signature of a third party practice, the first party
code must contain (1) and the third party code must contain
(2) through (5), where (6) additional evidence can be used in
place of an authorization method if and only if an authorization
method is present in the first party code. As third parties do
not have their own Info.plist, they reuse the first party’s.
Similarly, third parties can reuse the first party’s authorization
method, in which case additional evidence in the third party
code is required to show that the practice is actually used by the
third party. Although, unlikely to occur, the first party can also
reuse a third party’s authorization method, in which case the
first party code needs additional evidence. Figure 5 illustrates
the idea. Generally, the evidence-based approach is also used
to search for functionality within libraries, such as federated
Facebook or Google Login.

b) Detecting Libraries and their Purposes: The code
analysis distinguishes first and third parties since various
legal requirements depend on such distinction. For example,
apps subject to CalOPPA must disclose whether third parties
may collect personally identifiable information [CalOPPA,
§22575(b)(6)]. As described, third party libraries can make
use of the same APIs as the app itself. Whether libraries are
written in Swift or Objective-C, all APIs remain visible in
plaintext even when the libraries are compiled. Thus, libraries
in both source and compiled format can be analyzed.

PrivacyFlash Pro scans through the project directory of
an app, e.g., searching for the Google-Mobile-Ads-SDK
that would indicate the presence of Google’s AdMob library.
As app developers in the iOS ecosystem usually include
libraries via package managers, such as CocoaPods [22] or
Carthage [19], libraries are recognized based on Pods and
Carthage directories as well as other framework resources from
package managers used in an app. For example, the name of
a third party can be reliably identified from the Podfile if
the third party library was integrated via CocoaPods. Use of a
package manager ensures that the library directory is present
and named accordingly as otherwise the build process for the
app would fail. While the third party library identification
necessarily hinges on the use of a package manager and
does not cover libraries manually included in an app, our
performance analysis indicates that only a tiny fraction of
libraries might be missed (§ IV-B1).

The purpose for a permission use by a first party can be
inferred from the Plist permission string. However, the purpose
for a third party use is usually not explicitly specified in the app
or library code. Thus, the specification layer of PrivacyFlash
Pro also contains a third party purpose specification. At this
point, the specification contains the purposes for 300 popular
third party libraries we identified on the analytics service
Apptopia [10]. It is our goal to grow this specification with

9

Fig. 6: Screenshot of the wizard and policy generation UI including an excerpt from the privacy law overview (1) and a tooltip (2).

open source contributions. The purpose categories we use
so far (and the quantity of libraries) are: authentication (9),
advertising (105), analytics (38), social network integration
(31), payment processing (10), and developer support (107). It
should be noted, though, that even if the purpose of a library is
not included in the specification, the integration of the library
will still be detected as long as it was done with a package
manager. The developer can also always specify the purpose
manually in the questionnaire wizard.

3) Questionnaire Wizard: Once the code analysis is fin-
ished, the developer is presented with a wizard for adjusting
any (un)detected practices. The wizard helps the developers
to determine which laws are applicable to their apps and
provides explanations of the law. Despite the evidently large
impact that different laws can make on what must be disclosed
(Appendix A), existing generators are sparse in this regard.
Implementation details for the policy, e.g., where it is to
be posted, and related topics, e.g., whether the developer is
required to provide Do Not Sell functionality, are covered in
tooltips. Once the developer has finalized the policy, it can be
exported into an HTML page that can be readily posted on
the developer’s website and that is accessible as per CCPA
Regs §999.308(a)(2)(d). Figure 6 shows a screenshot of the
wizard with the AdColony library detected. Since making it
available to the public, we start to see privacy policies created
with PrivacyFlash Pro in the field (§ V-D3).

B. PrivacyFlash Pro Performance

To test its practicability we evaluated the code analysis and
runtime performance of PrivacyFlash Pro.

1) Code Analysis Performance: We started evaluating Pri-
vacyFlash Pro on an app we created with 13 permissions and
5 libraries. Running PrivacyFlash Pro on this app resulted in
a fully correct analysis. We also randomly selected 10 apps
from the Collaborative List of Open-Source iOS Apps [27]
and other public repositories covering 18 permission, at least
one from each of the 13 permissions, and 45 unique libraries.

Permission Category True Positives False Positives False Negatives

Bluetooth 2 0 0
Calendars 4 0 0
Camera 15 0 2
Contacts 3 0 1
Health 0 0 0
HomeKit 0 0 0
Location 21 0 0
Microphone 1 0 0
Motion & Fitness 0 0 0
Media & Apple Music 2 0 1
Photos 14 0 1
Reminders 0 0 1
Speech Recognition 0 0 0

Sum 62 0 6

TABLE V: Detection of permission uses for the 40 apps analyzed
by the participants in our usability study (first and third party uses
combined). With 62 true positives and 6 false negatives the analysis
achieves a precision of 1 and recall of 0.91 for an F-1 score of 0.95.

Running these apps, analyzing their permission and library
uses (§ III-C2, § III-C3), and comparing them against the
results of PrivacyFlash Pro did not result in any discrepancy.
In addition, we asked the 40 participants in our usability
study if they had encountered any analysis errors when using
PrivacyFlash Pro. We also asked them to provide us with the
policy they generated so we could observe the results.9 Table V
shows the permission performance reported by the participants.

We find it noteworthy that our signature-based code anal-
ysis does not produce any false positives, which could occur
due to unreachable code, for instance. The false negatives are
likely due to APIs not contained in our specification. From
the feedback we received, this is at least true for 1 out of
the 6 false negatives, which was based on an older Swift
API. Another reason may be our categorization of evidence
items, e.g., there may be a few cases where an additional
evidence item should have been categorized as authorization

9The complete usability questionnaire is attached in Appendix B.

10

Fig. 7: Participants’ qualifications for developing Swift iOS apps.

Third Party Code True Positives False Positives False Negatives

Libraries 525 0 1
Facebook Login 9 0 2
Google Login 6 0 3

TABLE VI: Detection of third party libraries, Facebook Login, and
Google Login.

method. The library detection performed well with just 1 false
negative. However, the false negative rates for Facebook and
Google Login implementations are higher with 2/11 (18%) and
3/9 (33%) instances (Table VI). Login detection goes beyond
identifying a library as it aims to reason about its functionality.
While we are following the same principles as for detecting
other API uses (§ IV-A2), there are many different ways for
integrating Facebook and Google Login. At least in 2 instances
the reported APIs were not included in our specification. Thus,
performance could be improved by increasing the number of
APIs in the specification possibly combined with a slight re-
categorization of evidence items.

2) Runtime Performance: We ran PrivacyFlash Pro on a
small (91MB) and a large (624MB) app. Running the analysis
5 times for each, we measure an average runtime of 13.6s for
the small and 46.3s for the large app on a 13-inch MacBook
Pro (2017) with 2.3GHz Intel Core i5 CPU and 8GB RAM.

3) Limitations: PrivacyFlash Pro’s code analysis may lead
to false positives and false negatives that the developer would
need to correct in the wizard. If left uncorrected, false pos-
itives would lead to over-disclosures and false negatives to
under-disclosures. It is the developer’s responsibility that the
privacy policy reflects the app’s practices correctly. Further,
PrivacyFlash Pro’s code analysis does not account for server-
side data sharing, which may require taint tracking. It also does
not take into account different library configurations.

V. EVALUATING PRIVACYFLASH PRO’S USABILITY

We performed a usability study of PrivacyFlash Pro with 40
iOS developers. After the participants had used PrivacyFlash
Pro, we asked them in an online survey whether they found it
helpful for policy creation as well as easy to use.

A. Participant Recruitment and Experience

We obtained our institution’s IRB approval and recruited
participants on the freelance platform Upwork [72], from
developer websites, such as the iOS programming community
on Reddit [57] and in person at iOSoho - New York City’s
largest iOS Engineer Meetup [34]. We asked the participants

Fig. 8: The different methods that participants used to create their
current privacy policy, if any.

to use PrivacyFlash Pro on an app they had written in Swift. We
also required that they have an app published on Apple’s App
Store for the US. To ensure that participants were proficient
in developing iOS apps in Swift we checked their Upwork
profiles, especially, reviews of prior work in this area. For
participants outside of Upwork we asked them for the e-mail
address they use in their apps to verify that they are indeed
the developers and sent their compensation to this address.
To ensure that answers are reliable we included an attention
question in the survey. The System Usability Scale, which
is part of our survey (§ V-D1), contains a mix of positively
and negatively worded statements that also forces attentive-
ness [61]. We further required participants to submit the policy
they generated to ensure they actually used PrivacyFlash Pro.
We paid every participant $20.10 All participants were at least
18 years old; most ranging 20-29 (21) and 30-39 (14). 1
participant identified as female and 39 as male. Most were
full time developers and had Swift experience of 4-5 years
(Figure 7). 13 participants were from the US and 27 from
other countries.

B. Non-compliance of Current Policies

As Figure 8 shows, 10 out of the 40 participants in our
study were provided a policy for their app by their employer
or client (or did not know how the policy was created). 5
participants did not have a policy, which can happen as the
App Store only seems to require a policy link without Apple
enforcing that it actually leads to a policy. The remaining
participants created their policy themselves indicating a need
for a policy generation tool. 26 participants provided us with
their policy or a link to such. Upon examining those, many
policies do not sufficiently cover their apps.

We observed similar compliance issues as those discussed
for policies from questionnaire-based generators (§ III-C).
15/26 (58%) policies have at least one permission under-
disclosure and 4/26 (15%) at least one permission over-
disclosure. Library under-disclosures occur in 13/26 (50%) of
cases. 2/26 (8%) policies also exhibit library over-disclosures.
While 1 app was directed at children, its policy was not
compliant with COPPA. These rates of compliance issues

10We increased the amount from $5 to $20 to motivate participation.
Participants who participated before the increase received an additional $15.

11

Fig. 9: For example, the participant with ID 40 at the top found
creating their current privacy policy relatively difficult (2) and creating
a policy with PrivacyFlash Pro very easy (7). On the other hand,
the participant with ID 1 found the creation of their current policy
relatively easy (6) and using PrivacyFlash Pro actually more difficult
(6-2=4).

are generally a bit higher than those for the policies from
questionnaire-based generators (§ III-C), which may well be
taken as an indicator that generators can principally help to
create compliant policies. Indeed, the policies that the partic-
ipants generated with PrivacyFlash Pro have better coverage
of their apps’ permission and library usages than their current
policies (§ IV-B1).

C. Easing the Policy Creation Process

Beyond ensuring that policies are compliant and have good
coverage, PrivacyFlash Pro is intended to ease the policy
creation process. Most participants expressed that privacy
policy creation became substantially easier with PrivacyFlash
Pro compared to their current method. When asked to rate
the level of difficulty for creating their current policy on a
scale of 1 (very difficult) to 7 (very easy), the mean difficulty
across all participant responses converged to 4.675 and the
median difficulty to 4. For creating a privacy policy with
PrivacyFlash Pro, the mean increased by 1.875 to 6.55 and the
median by 3 to 7. Figure 9 shows the differences in ratings for
every individual participant. For 6 participants it was already
very easy (7) to create their current policy. However, for 31
participants PrivacyFlash Pro provided an improvement and,
except for participant 17, eased the difficulty to at least a level
of 6. A number of developers expressed, unprompted for, that
they were pleased with PrivacyFlash Pro and found it easy to
use. Appendix D contains the complete set of comments.

D. Usability Measurement Results

We analyzed the usability of PrivacyFlash Pro based on the
System Usability Scale (SUS) and Net Promoter Score (NPS).

1) System Usability Scale: The System Usability Scale is a
10-question scale for obtaining a global view of subjective as-
sessments of usability [18]. It covers a variety of aspects, such
as the need for technical support, training, and complexity,
and, thus, is considered to have a high level of face validity for

Fig. 10: The System Usability Scale results for PrivacyFlash Pro.

measuring usability of a system [18]. Each of the 10 questions
is answered based on a Likert scale ranging from 1 (strongly
disagree) to 5 (strongly agree). Then, the individual scores are
added. Questions with odd numbers are positively formulated
and contribute their score minus 1. Even-numbered questions
are negatively formulated and contribute 5 points minus their
score. Multiplying the sum of the scores by 2.5 puts each SUS
score in a range between 0 and 100. Thus, given a score, s,
of an individual question,

SUS = 2.5

 4∑
i=0

(s2i+1 − 1) +

5∑
j=1

(5− s2j)

 . (1)

PrivacyFlash Pro reached a mean SUS score of 83.4 and
a median SUS score of 87.5 (Figure 10). For comparison, for
3,500 surveys of 273 studies covering, among others, web, UI,
and hardware tools and systems, a total mean score of 69.5
was reported [16]. Mean scores of 71.4 are considered good
(standard deviation 11.6) and scores of 85.5 excellent (standard
deviation 10.4) [16], thus, placing PrivacyFlash Pro close to the
mean of excellent scores. A number of participants provided
suggestions for further improvements. The most frequent sug-
gestion was to implement PrivacyFlash Pro as a native desktop
app (6). The browser-based implementation raised concerns
with some developers that their source code would be sent off
of their devices. In a similar vein, more transparency about
what is being done with the source code during the analysis
was requested (3), which is a point that we will address with
more and detailed explanations of how PrivacyFlash Pro works
in the UI. The complete set of improvement suggestions is
available in Appendix C.

2) Net Promoter Score: We asked study participants: “How
likely is it that you would recommend PrivacyFlash Pro to
a friend or colleague?” This single multiple choice question
allows answers on a scale of 0 (not at all likely) to 10
(very likely). Participants scoring a 9 or 10 are considered
promoters who will likely recommend PrivacyFlash Pro. Those
who gave a score of 7 or 8 are reasonably satisfied but would
not go out of their way. Detractors give scores between 0-6
and are dissatisfied. The Net Promoter Score is the difference

12

Fig. 11: PrivacyFlash Pro has 24 promoters and 7 detractors.

between the number of promoters, p, and detractors, d, given
n participants, i.e.,

NPS =
(p− d)

n
100. (2)

Net Promoter Scores can range from -100 to 100. Priva-
cyFlash Pro reaches an NPS of 42.5 (Figure 11). According to
global benchmark data from SurveyMonkey, which accounts
for the scores of more than 150,000 organizations, the average
NPS is 32 with technology companies scoring a bit higher
with an average of 35 and a median of 40 [67]. PrivacyFlash
Pro places above these scores. Indeed, without prompting,
one participant explicitly mentioned that they will recommend
PrivacyFlash Pro (Appendix D).

3) Use of PrivacyFlash Pro in the Field: Since making
it available to the public, we started to see privacy policies
created with PrivacyFlash Pro in the field.11. As of January
7, 2021, the PrivacyFlash Pro GitHub repository was starred
by 107 users, forked by 7, and 5 are watching it. A sample
privacy policy generated with PrivacyFlash Pro is available in
the GitHub repository of our project.12

VI. CONCLUSIONS

Privacy policies are the standard instruments for disclosing
online privacy practices. They should provide users with trans-
parent disclosures as to what happens with their data and which
rights they have. Privacy policy generators can help developers
creating legally compliant privacy policies. However, current
generators are questionnaire-based and partly flawed in their
design as well as fundamentally limited by the error-prone
nature of the manual question-answering process. We believe
that the combination of standardized policy templates, code
analysis, and a wizard-based questionnaire has the potential
to improve the current situation. To that end, we created
PrivacyFlash Pro and introduced it as an open source project to
the iOS developer community. The performance and feedback
on the usability of PrivacyFlash Pro encourages us to move
further in this direction.

A host of privacy-sensitive app functionalities can be
surfaced from their code. Going forward it would be interesting

11See, e.g., https://codewithchris.com/cwc-mobile-privacy-policy/, https:
//www.simpleflights.app/privacy-policy/, https://perspect.photos/privacy/, or
https://www.elitebaseballacademy.net/app-privacy-policy/ (each accessed: Jan-
uary 7, 2021).

12It can be viewed at https://htmlpreview.github.io/?https://github.com/
privacy-tech-lab/privacyflash-pro/blob/master/iOS-sample-projects/Workout-
with-Friends-Sample-Privacy-Policy.html (accessed: January 7, 2021).

to analyze additional app features and generate corresponding
policy descriptions, for example, for an app’s use of tracking
technologies. Also, as Apple announced at its Worldwide
Developers Conference 2020 that developers now need to
provide privacy labels for their apps on the App Store [49], we
are interested in exploring the extent to which our approach
can be used for automating the label creation process. We
also think that our approach can be used beyond iOS in the
Android and web ecosystems. In fact, many privacy policies
are intended to cover more than just one platform or app.
Thus, generator results for multiple platforms and apps would
need to be combined, possibly also with offline data collection
practices. We see the potential for integrating policy generators
like ours into developer tools. Generally, we understand our
study as an initial step towards the automatic generation of
privacy documentation.

We see a privacy tech trend that transcends disciplines
of privacy law and software engineering. The emergence of
web and app technologies has created new privacy challenges.
However, those same technologies can be used to create new
privacy solutions. If an app’s codebase is not aligned with its
privacy policy, one way to improve its alignment is to make
privacy policies traceable by generating them as far as possible
from the codebases they are intended to cover. In order to avoid
non-compliance, whenever possible, it is not only advisable
to design software with privacy built-in at its inception, but
rather to synchronize it over the course of its life cycle with
its privacy policy and other privacy documentation.

Software is not written in a vacuum; there are social,
ethical, and legal considerations involved. By infusing the
software development process and its tools with privacy re-
quirements, developers are more likely to appreciate the need
for compliance enabling them to write more compliant code.
We think that the establishment of privacy policy generation
as a native extension of the software development process
will be beneficial for both privacy transparency and com-
pliance. Software developers have embraced legal concepts
before. With the open source movement as its catalyst, many
developers came to appreciate software licensing as an integral
component of their work. We think that a similar development
is possible and desirable for privacy. Software developers can
and should be stakeholders for creating compliant privacy
policies. Adherence to a developer’s mental model is critical. If
developers can do what they are already doing — writing code
— in a programming language they already know with tools
they already use, privacy policies can become indeed software
development artifacts.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their detailed reviews and most excellent suggestions. We
would also like to thank Peter Story, Shaoyan Sam Li, and
Yuanyuan Feng for their invaluable assistance in the early
stages of this project and Kuba Alicki for his unit tests. Finally,
PrivacyFlash Pro would not exist without the generous funding
from Wesleyan University, its Department of Mathematics &
Computer Science, and the Anil Fernando Endowment.

13

https://codewithchris.com/cwc-mobile-privacy-policy/
https://www.simpleflights.app/privacy-policy/
https://www.simpleflights.app/privacy-policy/
https://perspect.photos/privacy/
https://www.elitebaseballacademy.net/app-privacy-policy/
https://htmlpreview.github.io/?https://github.com/privacy-tech-lab/privacyflash-pro/blob/master/iOS-sample-projects/Workout-with-Friends-Sample-Privacy-Policy.html
https://htmlpreview.github.io/?https://github.com/privacy-tech-lab/privacyflash-pro/blob/master/iOS-sample-projects/Workout-with-Friends-Sample-Privacy-Policy.html
https://htmlpreview.github.io/?https://github.com/privacy-tech-lab/privacyflash-pro/blob/master/iOS-sample-projects/Workout-with-Friends-Sample-Privacy-Policy.html

REFERENCES

[1] 3dcart. Create a GDPR personalized privacy policy template. https://
www.3dcart.com/personalized-policy.html. Accessed: January 7, 2021.

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L.
Mazurek, and Christian Stransky. You get where you’re looking for:
The impact of information sources on code security. In S&P, 2016.

[3] Brian Advent. Privacy and software development. https://www.youtube.
com/watch?v=7tpq0v4j_vM, May 24, 2020. Accessed: January 7, 2021.

[4] Zaina Aljallad, Wentao Guo, Chhaya Chouhan, Christy Laperriere,
Jess Kropczynski, Pamela Wisnewski, and Heather Lipford. Designing
a mobile app to support social processes for privacy and security
decisions. In USEC, 2019.

[5] Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin
Whitaker, William Enck, Bradley Reaves, Kapil Singh, and Tao
Xie. PolicyLint: Investigating internal privacy policy contradictions on
Google Play. In USENIX Security, 2019.

[6] Benjamin Andow, Samin Yaseer Mahmud, Justin Whitaker, William
Enck, Bradley Reaves, Kapil Singh, and Serge Egelman. Actions Speak
Louder than Words: Entity-Sensitive Privacy Policy and Data Flow
Analysis with PoliCheck. In USENIX Security, 2020.

[7] App Privacy Policy Generator. Generate a generic privacy policy and
terms & conditions for your apps. https://app-privacy-policy-generator.
nisrulz.com/. Accessed: January 7, 2021.

[8] Apple. Apple Developer Documentation. https://developer.apple.com/
documentation. Accessed: January 7, 2021.

[9] Apple. Apple Developer Program License Agreement, 06/22/20,
§3.3.10. https://developer.apple.com/terms/. Accessed: January 7, 2021.

[10] Apptopia. https://apptopia.com/. Accessed: January 7, 2021.
[11] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-

dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. FlowDroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android apps. In PLDI, 2014.

[12] Rawan Baalous and Ronald Poet. How dangerous permissions are
described in android apps’ privacy policies? In Proceedings of the 11th
International Conference on Security of Information and Networks, SIN,
2018.

[13] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library
detection in Android and its security applications. In CCS, 2016.

[14] Rebecca Balebako, Abigail Marsh, Jialiu Lin, Jason Hong, and Lor-
rie F. Cranor. The privacy and security behaviors of smartphone app
developers. In USEC, 2014.

[15] Rebecca Balebako, Florian Schaub, Idris Adjerid, Alessandro Acquisti,
and Lorrie Cranor. The impact of timing on the salience of smartphone
app privacy notices. In SPSM, 2015.

[16] Aaron Bangor, Philip Kortum, and James Miller. Determining what
individual sus scores mean: Adding an adjective rating scale. J.
Usability Studies, 4(3):114–123, May 2009.

[17] Jasmine Bowers, Bradley Reaves, Imani N. Sherman, Patrick Traynor,
and Kevin R. B. Butler. Regulators, mount up! analysis of privacy
policies for mobile money services. In SOUPS, 2017.

[18] John Brooke. SUS-A quick and dirty usability scale. Usability evalua-
tion in industry. CRC Press, June 1996.

[19] Carthage. https://github.com/Carthage/Carthage. Accessed: January 7,
2021.

[20] Xin Chen, Heqing Huang, Sencun Zhu, Qing Li, and Quanlong Guan.
SweetDroid: Toward a context-sensitive privacy policy enforcement
framework for Android os. In WPES, 2017.

[21] Saksham Chitkara, Nishad Gothoskar, Suhas Harish, Jason I. Hong, and
Yuvraj Agarwal. Does this app really need my location?: Context-aware
privacy management for smartphones. ACM IMWUT, 1(3):42:1–42:22,
September 2017.

[22] CocoaPods. https://cocoapods.org/. Accessed: January 7, 2021.
[23] Lorrie Faith Cranor. Necessary but not sufficient: Standardized mech-

anisms for privacy notice and choice. J. on Telecomm. and High Tech.
L., 10(2):273–307, 2012.

[24] Lorrie Faith Cranor, Brooks Dobbs, Serge Egelman, Giles Hogben, Jack
Humphrey, Marc Langheinrich, Massimo Marchiori, Martin Presler-
Marshall, Joseph M. Reagle, Matthias Schunter, David A. Stampley,

and Rigo Wenning. The Platform for Privacy Preferences 1.1 (P3P1.1)
specification. World Wide Web Consortium, Note NOTE-P3P11-
20061113, November 2006.

[25] Lorrie Faith Cranor, Marc Langheinrich, Massimo Marchiori, Martin
Presler-Marshall, and Joseph M. Reagle. The Platform for Privacy
Preferences 1.0 (P3P1.0) specification. World Wide Web Consortium,
Recommendation REC-P3P-20020416, April 2002.

[26] Lorrie Faith Cranor, Pedro Giovanni Leon, and Blase Ur. A large-scale
evaluation of U.S. financial institutions standardized privacy notices.
ACM Trans. Web, 10(3):17:1–17:33, August 2016.

[27] dkhamsing. Collaborative list of open-source iOS apps. https://github.
com/dkhamsing/open-source-ios-apps. Accessed: January 7, 2021.

[28] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna.
PiOS: Detecting privacy leaks in iOS applications. In NDSS, 2011.

[29] Federal Trade Commission. Complying with COPPA: Frequently asked
questions. https://www.ftc.gov/tips-advice/business-center/guidance/
complying-coppa-frequently-asked-questions, March 20, 2015. Ac-
cessed: January 7, 2021.

[30] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David
Wagner. Android permissions demystified. In CCS, 2011.

[31] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky,
Yasemin Acar, Michael Backes, and Sascha Fahl. Stack Overflow
considered harmful? the impact of copy&paste on Android application
security. CoRR, abs/1710.03135, 2017.

[32] Free PrivacyPolicy.com. Create a free privacy policy. https://www.
freeprivacypolicy.com/. Accessed: January 7, 2021.

[33] Hamza Harkous, Kassem Fawaz, Rémi Lebret, Florian Schaub, Kang G.
Shin, and Karl Aberer. Polisis: Automated analysis and presentation of
privacy policies using deep learning. In USENIX Security, 2018.

[34] iOSoho - New York City’s largest iOS Engineer Meetup. Develop-
ing privacy policies for iOS. https://www.meetup.com/iOSoho/events/
268790508, February 24, 2020. Accessed: January 7, 2021.

[35] iubenda. We help with the legal requirements, so you can focus on the
business. https://www.iubenda.com/en/. Accessed: January 7, 2021.

[36] Oksana Kulyk, Paul Gerber, Karola Marky, Christopher Beckmann, and
Melanie Volkamer. Does this app respect my privacy? design and
evaluation of information materials supporting privacy-related decisions
of smartphone users. In NDSS, 2019.

[37] Li Li, Alexandre Bartel, Jacques Klein, Yves Le Traon, Steven Arzt,
Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick D.
McDaniel. I know what leaked in your pocket: uncovering privacy
leaks on Android apps with static taint analysis. CoRR, abs/1404.7431,
2014.

[38] Tianshi Li, Yuvraj Agarwal, and Jason I. Hong. Coconut: An ide plugin
for developing privacy-friendly apps. ACM IMWUT, 2(4):178:1–178:35,
December 2018.

[39] Yuanchun Li, Fanglin Chen, Toby Jia-Jun Li, Yao Guo, Gang Huang,
Matthew Fredrikson, Yuvraj Agarwal, and Jason I. Hong. PrivacyS-
treams: Enabling transparency in personal data processing for mobile
apps. ACM IMWUT, 1(3):76:1–76:26, September 2017.

[40] Timothy Libert. An automated approach to auditing disclosure of third-
party data collection in website privacy policies. In WWW, 2018.

[41] I. Liccardi, M. Bulger, H. Abelson, D. J. Weitzner, and W. Mackay. Can
apps play by the COPPA rules? In 2014 Twelfth Annual International
Conference on Privacy, Security and Trust, pages 1–9, 2014.

[42] Thomas Linden, Rishabh Khandelwal, Hamza Harkous, and Kassem
Fawaz. The privacy policy landscape after the GDPR. In PETS, 2020.

[43] Frederick Liu, Shomir Wilson, Peter Story, Sebastian Zimmeck, and
Norman Sadeh. Towards Automatic Classification of Privacy Policy
Text. Technical Report CMU-ISR-17-118R and CMU-LTI-17-010,
School of Computer Science Carnegie Mellon University, Pittsburgh,
PA, June 2018.

[44] Aleecia M. McDonald and Lorrie F. Cranor. The cost of reading privacy
policies. I/S: A Journal of Law and Policy for the Information Society,
4(3):540–565, 2008.

[45] Abraham H. Mhaidli, Yixin Zou, and Florian Schaub. “We can’t live
without them!” App developers’ adoption of ad networks and their
considerations of consumer risks. In SOUPS, 2019.

14

https://www.3dcart.com/personalized-policy.html
https://www.3dcart.com/personalized-policy.html
https://www.youtube.com/watch?v=7tpq0v4j_vM
https://www.youtube.com/watch?v=7tpq0v4j_vM
https://app-privacy-policy-generator.nisrulz.com/
https://app-privacy-policy-generator.nisrulz.com/
https://developer.apple.com/documentation
https://developer.apple.com/documentation
https://developer.apple.com/terms/
https://apptopia.com/
https://github.com/Carthage/Carthage
https://cocoapods.org/
https://github.com/dkhamsing/open-source-ios-apps
https://github.com/dkhamsing/open-source-ios-apps
https://www.ftc.gov/tips-advice/business-center/guidance/complying-coppa-frequently-asked-questions
https://www.ftc.gov/tips-advice/business-center/guidance/complying-coppa-frequently-asked-questions
https://www.freeprivacypolicy.com/
https://www.freeprivacypolicy.com/
https://www.meetup.com/iOSoho/events/268790508
https://www.meetup.com/iOSoho/events/268790508
https://www.iubenda.com/en/

[46] Daniela Yidan Miao. PrivacyInformer: An automated privacy descrip-
tion generator for the MIT App Inventor. Ms thesis, Massachusetts
Institute of Technology, Cambridge, US, 2014.

[47] MSNBC. Tim Cook slams Facebook’s Zuckerberg: I wouldn’t
be in this situation. https://www.msnbc.com/msnbc/watch/tim-
cook-slams-facebook-s-zuckerberg-i-wouldn-t-be-in-this-situation-
1197130819683, March 2018. Accessed: January 7, 2021.

[48] Yuhong Nan, Zhemin Yang, Xiaofeng Wang, Yuan Zhang, Donglai
Zhu, and Min Yang. Finding clues for your secrets: Semantics-driven,
learning-based privacy discovery in mobile apps. In NDSS, 2018.

[49] Alfred Ng. Apple’s new iOS privacy updates will show how apps
are tracking you. https://www.cnet.com/news/apples-new-ios-privacy-
updates-will-show-how-apps-are-tracking-you/, June 2020. accessed:
January 7, 2021.

[50] Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael Backes,
Charles Weir, and Sascha Fahl. A stitch in time: Supporting Android
developers in writing secure code. In CCS, 2017.

[51] Marten Oltrogge, Erik Derr, Christian Stransky, Yasemin Acar, Sascha
Fahl, Christian Rossow, Giancarlo Pellegrino, Sven Bugiel, and Michael
Backes. The rise of the citizen developer: Assessing the security impact
of online app generators. In S&P, 2018.

[52] Nicole Perrin. US advertisers still eager to target at scale with
duopoly. https://www.emarketer.com/content/us-advertisers-still-eager-
to-target-at-scale-with-duopoly, May 21, 2019. Accessed: January 7,
2021.

[53] PrivacyPolicies.com. Privacy policies are required by law. get compliant
today. https://www.privacypolicies.com/. Accessed: January 7, 2021.

[54] Progress Software Corporation. Fiddler. http://www.telerik.com/fiddler.
Accessed: January 7, 2021.

[55] Rohan Ramanath, Fei Liu, Norman Sadeh, and Noah A. Smith. Unsu-
pervised alignment of privacy policies using hidden markov models. In
ACL, 2014.

[56] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On,
Narseo Vallina-Rodriguez, and Serge Egelman. 50 ways to leak your
data: An exploration of apps’ circumvention of the Android permissions
system. In S&P, 2019.

[57] Reddit, r/iOSProgramming. https://www.reddit.com/r/
iOSProgramming/comments/em86k4/generate_privacy_policies_
from_app_code/. Accessed: January 7, 2021.

[58] Sanae Rosen, Zhiyun Qian, and Z. Morely Mao. AppProfiler: A flexible
method of exposing privacy-related behavior in Android applications to
end users. In CODASPY, 2013.

[59] Mark Rowan and Josh Dehlinger. Encouraging privacy by design
concepts with privacy policy auto-generation in Eclipse (Page). In
Proceedings of the 2014 Workshop on Eclipse Technology eXchange,
ETX ’14, pages 9–14, New York, NY, USA, 2014. ACM.

[60] Kanthashree Mysore Sathyendra, Shomir Wilson, Florian Schaub, Se-
bastian Zimmeck, and Norman Sadeh. Identifying the provision of
choices in privacy policy text. In EMNLP, 2017.

[61] Jeff Sauro and James R. Lewis. When designing usability question-
naires, does it hurt to be positive? In CHI, 2011.

[62] Shopify. Free privacy policy generator. https://www.shopify.com/tools/
policy-generator. Accessed: January 7, 2021.

[63] Rocky Slavin. PoliDroid-AS. https://github.com/rslavin/PoliDroid-AS,
2019. Accessed: January 7, 2021.

[64] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester,
Ram Krishnan, Jaspreet Bhatia, Travis D. Breaux, and Jianwei Niu.
Toward a framework for detecting privacy policy violation in Android
application code. In ICSE, 2016.

[65] Stack Overflow. https://stackoverflow.com/. Accessed: January 7, 2021.
[66] Yi Ping Sun. Investigating the effectiveness of Android privacy

policies. Master of applied science thesis, University of Toronto,
Toronto, Canada, 2018. Accessed: January 7, 2021.

[67] SurveyMonkey. What is a good net promoter score? and how does it
vary across industries? https://www.surveymonkey.com/curiosity/what-
is-a-good-net-promoter-score/. Accessed: January 7, 2021.

[68] Madiha Tabassum, Abdulmajeed Alqhatani, Marran Aldossari, and
Heather Richter Lipford. Increasing user attention with a comic-based
policy. In CHI, 2018.

[69] Termly. Free privacy policy generator. https://termly.io/products/
privacy-policy-generator/. Accessed: January 7, 2021.

[70] TermsFeed. Trusted legal agreements. https://www.termsfeed.com/.
Accessed: January 7, 2021.

[71] Welderufael B. Tesfay, Peter Hofmann, Toru Nakamura, Shinsaku
Kiyomoto, and Jetzabel Serna. I read but don’t agree: Privacy policy
benchmarking using machine learning and the eu gdpr. In WWW, 2018.

[72] Upwork. https://www.upwork.com/. Accessed: January 7, 2021.
[73] Christine Utz, Martin Degeling, Sascha Fahl, Florian Schaub, and

Thorsten Holz. (un)informed consent: Studying GDPR consent notices
in the field. In CCS, 2019.

[74] Raj Vardhan, Ameya Sanzgiri, Dattatraya Kulkarni, Piyush Joshi, and
Srikanth Nalluri. Notify assist: Balancing privacy and convenience in
delivery of notifications on Android smartphones. In WPES, 2017.

[75] T. Franklin Waddell, Joshua R. Auriemma, and S. Shyam Sundar.
Make it simple, or force users to read?: Paraphrased design improves
comprehension of end user license agreements. In CHI, 2016.

[76] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin,
Travis D. Breaux, and Jianwei Niu. Guileak: Identifying privacy
practices on gui-based data. https://pdfs.semanticscholar.org/ced1/
313acaacd3897b5b231cdccb1383d01d20c4.pdf, 2017. Accessed: Jan-
uary 7, 2021.

[77] Takuya Watanabe, Mitsuaki Akiyama, Tetsuya Sakai, and Tatsuya Mori.
Understanding the inconsistencies between text descriptions and the use
of privacy-sensitive resources of mobile apps. In SOUPS, 2015.

[78] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language
for automatically enforcing privacy policies. In POPL, 2012.

[79] L. Yu, X. Luo, X. Liu, and T. Zhang. Can we trust the privacy policies
of Android apps? In DSN, 2016.

[80] Le Yu, Tao Zhang, Xiapu Luo, and Lei Xue. AutoPPG: Towards
automatic generation of privacy policy for Android applications. In
SPSM, 2015.

[81] W. D. Yu and S. Murthy. PPMLP: A special modeling language
processor for privacy policies. In ICCE, 2007.

[82] Mu Zhang, Yue Duan, Qian Feng, and Heng Yin. Towards automatic
generation of security-centric descriptions for Android apps. In CCS,
2015.

[83] Yanyan Zhuang, Albert Rafetseder, Yu Hu, Yuan Tian, and Justin
Cappos. Sensibility testbed: Automated irb policy enforcement in
mobile research apps. In HotMobile, 2018.

[84] Sebastian Zimmeck and Steven M. Bellovin. Privee: An architecture
for automatically analyzing web privacy policies. In USENIX Security,
2014.

[85] Sebastian Zimmeck, Peter Story, Rafael Goldstein, David Baraka,
Shaoyan Li, Yuanyuan Feng, and Norman Sadeh. Compli-
ance traceability: Privacy policies as software development arti-
facts. https://petsymposium.org/2019/files/workshop/abstracts/PUT_
2019_paper_21.pdf, July 2019. Accessed: January 7, 2021.

[86] Sebastian Zimmeck, Peter Story, Abhilasha Ravichander, Daniel
Smullen, Ziqi Wang, Joel Reidenberg, N. Cameron Russell, and Norman
Sadeh. MAPS: Scaling privacy compliance analysis to a million apps.
In PETS, 2019.

[87] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger Iyengar, Bin Liu,
Florian Schaub, Shormir Wilson, Norman Sadeh, Steven M. Bellovin,
and Joel Reidenberg. Automated analysis of privacy requirements for
mobile apps. In NDSS, 2017.

APPENDIX

A. Legal Requirements for Privacy Policies

The following privacy policy requirements are covered
by PrivacyFlash Pro and, where indicated, by the examined
questionnaire-based generators.13 Also, an omission or wrong
disclosure can be an unfair or deceptive act or practice [15
USC §45].

13The App Privacy Policy Generator [7] does not claim to be compliant
with any of the laws and, thus, is not included in the analysis.

15

https://www.msnbc.com/msnbc/watch/tim-cook-slams-facebook-s-zuckerberg-i-wouldn-t-be-in-this-situation-1197130819683
https://www.msnbc.com/msnbc/watch/tim-cook-slams-facebook-s-zuckerberg-i-wouldn-t-be-in-this-situation-1197130819683
https://www.msnbc.com/msnbc/watch/tim-cook-slams-facebook-s-zuckerberg-i-wouldn-t-be-in-this-situation-1197130819683
https://www.cnet.com/news/apples-new-ios-privacy-updates-will-show-how-apps-are-tracking-you/
https://www.cnet.com/news/apples-new-ios-privacy-updates-will-show-how-apps-are-tracking-you/
https://www.emarketer.com/content/us-advertisers-still-eager-to-target-at-scale-with-duopoly
https://www.emarketer.com/content/us-advertisers-still-eager-to-target-at-scale-with-duopoly
https://www.privacypolicies.com/
http://www.telerik.com/fiddler
https://www.reddit.com/r/iOSProgramming/comments/em86k4/generate_privacy_policies_from_app_code/
https://www.reddit.com/r/iOSProgramming/comments/em86k4/generate_privacy_policies_from_app_code/
https://www.reddit.com/r/iOSProgramming/comments/em86k4/generate_privacy_policies_from_app_code/
https://www.shopify.com/tools/policy-generator
https://www.shopify.com/tools/policy-generator
https://github.com/rslavin/PoliDroid-AS
https://stackoverflow.com/
https://www.surveymonkey.com/curiosity/what-is-a-good-net-promoter-score/
https://www.surveymonkey.com/curiosity/what-is-a-good-net-promoter-score/
https://termly.io/products/privacy-policy-generator/
https://termly.io/products/privacy-policy-generator/
https://www.termsfeed.com/
https://www.upwork.com/
https://pdfs.semanticscholar.org/ced1/313acaacd3897b5b231cdccb1383d01d20c4.pdf
https://pdfs.semanticscholar.org/ced1/313acaacd3897b5b231cdccb1383d01d20c4.pdf
https://petsymposium.org/2019/files/workshop/abstracts/PUT_2019_paper_21.pdf
https://petsymposium.org/2019/files/workshop/abstracts/PUT_2019_paper_21.pdf

COPPA Requirement iubenda Termly TermsFeed et al.

Name, address, telephone number, and email address of all operators collecting or maintaining personal 7 7 7
information from children or of one operator who will respond to all inquiries if names of all operators
are also listed [§312.4(d)(1)]

Description of the operator’s collection, use, and disclosure practices [§312.4(d)(2)] 3 3 3

Description of whether the site or service enables a child to make personal information publicly avail- 7 7 7
able [§312.4(d)(2)]

Statement that parent can review, have deleted, and refuse to permit further collection or use of the 3 7 3
child’s personal information and procedures for doing so [§312.4(d)(3)]

TABLE A.7: COPPA privacy policy requirements. We analyzed each generator twice, in May 2020 and January 2021. The results were identical.

GDPR Requirement iubenda Termly TermsFeed et al.

Identity and contact details of the data controller and their representative, if any [Art. 13(1)(a), 14(1)(a)] 3 3 3

Purposes of the processing for which the personal data are intended and legal basis for the process- 3 3 3
ing [Art. 13(1)(c), 14(1)(c)]

Categories of personal data concerned [Art. 14(1)(d)] 3 3 3

Recipients or categories of recipients of the personal data [Art. 13(1)(e), 14(1)(e)] 3 3 3

Period for which the personal data will be stored, or if that is not possible, the criteria used to deter- 3 3 3
mine that period [Art. 13(2)(a), 14(2)(a)]

Existence of the rights to request data access, rectification, erasure, and data portability as well as the 3 3 3
rights to restrict and object to processing [Art. 13(2)(b), 14(2)(c)] 3 3 3

Right to withdraw consent for processing at any time [Art. 13(2)(c), 14(2)(d)] 3 3 3

Right to lodge complaint with a supervisory authority [Art. 13(2)(d), 14(2)(e)] 3 3 3

TABLE A.8: GDPR privacy policy requirements. We analyzed each generator twice, in May 2020 and January 2021. The results were identical.

CalOPPA Requirement

Identify categories of personally identifiable information collected and categories of third parties with whom it is shared [§22575(b)(1)]

If the operator maintains a process to review and request changes to personally identifiable information, provide a description of that process [§22575(b)(2)]

Description of the process by which consumers are notified of material changes to the operator’s privacy policy [§22575(b)(3)]

Identify the policy’s effective date [§22575(b)(4)]

Disclosure how the operator responds to Do Not Track (DNT) signals or other mechanisms that provide consumers’ choice as to the collection of personally
identifiable information across sites and over time [§22575(b)(5)]

Disclosure whether other parties may collect personally identifiable information across sites and over time [§22575(b)(6)]

TABLE A.9: PrivacyFlash Pro complies with CalOPPA’s requirements, which were not reviewed for the questionnaire-based policy generators.

B. Usability Survey Questionnaire

In our usability study (§ V) we used the following questionnaire.

1) Demographic Information:

• What is your age range? [Multiple choice; answer required]
◦ 18–19 ◦ 20–29 ◦ 30–39 ◦ 40–49 ◦ 50–59 ◦ 60–69 ◦ 70 or older

• What is your gender? [Multiple choice; answer required]
◦ Female ◦ Male ◦ Other [Short answer text; answer required if selected]

• Which country do you live in? [Short answer text; answer required]

2) Swift Development Experience:

• For how long have you been developing iOS apps in Swift? [Multiple choice; answer required]
◦ 1 year ◦ 2 to 3 years ◦ 4 to 5 years

• Please provide the App Store link to your iOS app written in Swift available in the United States with the most user ratings.
[Short answer text; answer required]

16

• What is your contribution to the app to which you linked in the previous question? [Long answer text; answer required]
• Tell us what type of app developer you are. [Multiple choice; answer required]

◦ Full-time developer (40 or more hours/week of mobile app development)
◦ Part-time developer (20-39 hours/week of mobile app development)
◦ Hobby developer (less than 20 hours/week of mobile app development)

3) Generating and Writing Privacy Policies:

• How did you create the current privacy policy for your app? [Multiple choice; answer required]
◦ I wrote it myself
◦ I used a generic template
◦ I copied someone else’s or parts thereof and used it or adapted it for my purposes
◦ I hired someone to write it (e.g., a lawyer)
◦ I used a questionnaire-based privacy policy generator (e.g., iubenda)
◦ I do not currently have a privacy policy
◦ Other [Short answer text; answer required if selected]

• Please paste the text of your current privacy policy (plain text format). [Long answer text; answer not required]
• Please paste the link to your current privacy policy. [Short answer text; answer not required]
• Overall, how difficult or easy was creating your current privacy policy?

[Multiple choice; answer not required; answer on a scale of “Very difficult 1 – 2 – 3 – 4 – 5 – 6 – 7 Very easy”]
• Please paste the privacy policy that you created for your app with PrivacyFlash Pro. [Long answer text; answer required]
• Please select the extent to which you agree. [System Usability Scale (SUS); multiple choice; all answers required; each

answer on a scale of “Strongly disagree 1 – 2 – 3 – 4 – 5 Strongly agree”]
◦ I think that I would like to use PrivacyFlash Pro frequently
◦ I found PrivacyFlash Pro unnecessarily complex
◦ I thought PrivacyFlash Pro was easy to use
◦ I think that I would need the support of a technical person to be able to use PrivacyFlash Pro
◦ I found the various functions in PrivacyFlash Pro were well integrated
◦ I thought there was too much inconsistency in PrivacyFlash Pro
◦ I would imagine that most people would learn to use PrivacyFlash Pro very quickly
◦ I found PrivacyFlash Pro very cumbersome to use
◦ I felt very confident using PrivacyFlash Pro
◦ I needed to learn a lot of things before I could get going with PrivacyFlash Pro

• Overall, how difficult or easy was creating a privacy policy with PrivacyFlash Pro?
[Multiple choice; answer required; answer on a scale of “Very difficult 1 – 2 – 3 – 4 – 5 – 6 – 7 Very easy”]

• Sample Privacy Policy: This privacy policy discloses our privacy practices. In order to use our website, a user must first
complete the registration form to log in. You can log in using your Facebook or other social network account.

• Which type of company is mentioned in the sample privacy policy above? [Multiple choice; answer required]
◦ Social networks ◦ Analytics services ◦ Advertising networks ◦ Hosting services

• Did PrivacyFlash Pro miss to flag one of the following resources that your app is using? [Checkboxes; answer required]
◦ PrivacyFlash Pro did not flag the BLUETOOTH permission although my app is using it
◦ PrivacyFlash Pro did not flag the CALENDARS permission although my app is using it
◦ PrivacyFlash Pro did not flag that my app integrates FACEBOOK LOGIN
◦ PrivacyFlash Pro did not flag that my app integrates GOOGLE LOGIN
◦ PrivacyFlash Pro did not flag an SDK that my app integrates
◦ None of the above; PrivacyFlash Pro flagged all of the above resources that are used by my app

• If PrivacyFlash Pro did not flag a resource your app is using per the previous question, please provide a link to the site
with the instructions that you followed to integrate the resource in your app. [Long answer text; answer not required]

• Did PrivacyFlash Pro flag the presence of an aforementioned resource despite your app NOT using it?
[Checkboxes; answer required]
◦ PrivacyFlash Pro flagged the BLUETOOTH permission, but my app is not using it
◦ PrivacyFlash Pro flagged the CALENDARS permission, but my app is not using it
◦ PrivacyFlash Pro flagged FACEBOOK LOGIN, but my app is not using it
◦ PrivacyFlash Pro flagged GOOGLE LOGIN, but my app is not using it
◦ PrivacyFlash Pro flagged use of an SDK, but my app is not using it
◦ None of the above; all resources that PrivacyFlash Pro flagged are used by my app

• If PrivacyFlash Pro flagged a resource that your app is not using per the previous question, did you still find it useful that
PrivacyFlash Pro flagged it? (In particular, Privacy Flash Pro is intended to help developers maintaining a clean codebase
by flagging unreachable code.) [Multiple choice; answer not required]
◦ Yes ◦ No ◦ Other [Short answer text; answer required if selected]

• How likely is it that you would recommend PrivacyFlash Pro to a friend or colleague? [Net Promoter Score (NPS); multiple
choice; answer required; answer on a scale of “Not at all likely 0 – 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 Very likely”]

• We want to help app developers. How could we improve PrivacyFlash Pro? [Long answer text; answer not required]

17

• Please enter your e-mail address where you would like to receive your gift card or, if you are participating via Upwork,
please enter the name as used on Upwork. [Short answer text; answer required]

C. Improvement Suggestions from the iOS Developer Community

We received the following responses to our question “How could we improve PrivacyFlash Pro?” in the usability survey.

(1) No suggestion (16)
(2) Implement PrivacyFlash Pro as a native desktop app (6)
(3) Improve the UI/UX (e.g., the color scheme or toggle switches) (4)
(4) Add support for multiple policy file formats (e.g., Word and pdf) (3)
(5) Be more transparent about what is being done with the source code during the analysis (3)
(6) Make the tooltips more specific, extensive, or explain more of the law (2)
(7) Add to the third party library analysis more details on what they are doing and what their risks are (2)
(8) Implement PrivacyFlash Pro as a web app for analyzing code repositories online (2)
(9) Allow developers to manually include or exclude files or directories from the analysis (2)

(10) Create a marketplace for lawyers to confirm the generated policies (1)
(11) Add options “Maybe” or “I don’t know/not sure” to the wizard (1)
(12) Add functionality to store and modify generated policies (1)
(13) Make the setup process easier (1)
(14) Add multi-language support (1)

D. Comments from the iOS Developer Community

We received the following comments from study participants via the Upwork chat [72] or e-mail. Additional comments were
provided on Reddit’s r/iOSProgramming [57] where we solicited participants for our study. Neither comment was prompted for.

(1) “Thanks for this awesome application, very helpful”
(2) “As a developer, I am very pleased to use PrivacyFlash Pro.”
(3) “It is great. Awesome work I am really impressed.”
(4) “I found [PrivacyFlash Pro] very useful for future porpose [sic].”
(5) “I’ll use the application while developing iOS apps. It is great.”
(6) “This tool is amazing! Congratulations. I really mean that.”
(7) “i do really like privacy flash pro”
(8) “Your project is very interested [sic], but honestly I have never written the privacy info myself. But I realize how to make

privacy doc easily. if I need to write [...] that, I will recommend to use your program”
(9) “it is quite useful”

(10) “Neat tool you got there. It would be awesome to have something similar for GDPR too.14 One thing tho, for the flags, in
my opinion, it’s a bit confusing to add/remove any flags. I got a flag for a 3rd party lib, but it was a bit misleading on how
to remove id [sic]. Anyway, congrats on the cool tool and good luck !”

(11) “Overall it was very easy to use your app for creating privacy policy.”
(12) “Really cool thing for Privacy Policy creation”
(13) “I’ll give it a try when I will release a personal project in about 4 weeks[.] It’s a good tool, but in the past when I released a

large number of apps under my name, I did not pay so much attention to the privacy policy. I was just using a template[.]”
(14) “I’ve found your app very useful. It is really easy to use.”
(15) “I just expected it to run as a native app instead of opening a browser[.] Anyways, seems like a really cool app,

congratulations[.] I will return to it if I ever need a new privacy policy[.]”
(16) “Awesome tool, help [sic] to avoid routine work.”
(17) “I like this product and idea itself. I did not create many policies by myself but I’ve never heard/used something like your

product. It can save a lot of time and help [...] many people, I think.”
(18) “I like your product, and will consider using it in the future.”
(19) “thanks for letting me know about PrivacyFlash Pro software, it can really help every Swift developer out there.”
(20) “This looks awesome! Well done. Looking forward to giving this a try on a project I’m working on soon.”

[r/iOSProgramming]
(21) “[author name], congratulations to you and your team for the great work! PFP looks (and acts) more like a commercial

product that [sic] a research prototype :)” [r/iOSProgramming]
(22) “Saved this one for later. I cancelled working on my first app because of privacy policies” [r/iOSProgramming]
(23) “This is pretty cool! Would it be possible to skip the code analysis and allow for creating a privacy policy by just filling

out the questionnaire? I currently use Termly and I’d love to switch over to this and host it myself. Good job, y’all!”
[r/iOSProgramming]

(24) “This is really cool! Are there any plans for React Native support?” [r/iOSProgramming]

14Note that GDPR provisions are included in PrivacyFlash Pro.

18

	Introduction
	Related Work
	Notice and Choice
	Privacy Policy Generators
	Machine-readable Privacy Policies
	Static and Dynamic Code Analysis
	Privacy Policy Analysis
	Privacy Compliance Analysis
	App Development Practices and Tools

	Questionnaire-based Policy Generators
	Generator and Policy Selection
	Privacy Policy Analysis
	Privacy Compliance Analysis
	The Law on Privacy Compliance
	Permission Under- and Over-disclosures
	Library Under- and Over-disclosures
	Improper Disclosures of Childrens' Apps

	Generating Policies with PrivacyFlash Pro
	PrivacyFlash Pro Architecture
	Standardized Templates
	Code Analysis
	Questionnaire Wizard

	PrivacyFlash Pro Performance
	Code Analysis Performance
	Runtime Performance
	Limitations

	Evaluating PrivacyFlash Pro's Usability
	Participant Recruitment and Experience
	Non-compliance of Current Policies
	Easing the Policy Creation Process
	Usability Measurement Results
	System Usability Scale
	Net Promoter Score
	Use of PrivacyFlash Pro in the Field

	Conclusions
	References
	Appendix
	Legal Requirements for Privacy Policies
	Usability Survey Questionnaire
	Demographic Information
	Swift Development Experience
	Generating and Writing Privacy Policies

	Improvement Suggestions from the iOS Developer Community
	Comments from the iOS Developer Community

