
Poster: Sharding SMR with Optimal-size Shards for
Highly Scalable Blockchains

Jianting Zhang
Purdue University

zhan4674@purdue.edu

Zhongtang Luo
Purdue University

luo401@purdue.edu

Raghavendra Ramesh
Supra Research

r.ramesh@supraoracles.com

Aniket Kate
Purdue University / Supra Research

aniket@purdue.edu

Abstract—Blockchain relies on State Machine Replication
(SMR) to enable trustless nodes to uphold a consistent ledger
while tolerating Byzantine faults. With the rapid growth of de-
centralized web3 platforms and applications, a central challenge
of blockchain systems is scalability, which can be evaluated with
two metrics: high performance and large network. However, ex-
isting blockchain systems struggle to simultaneously achieve both
scalability metrics while requiring to guarantee the underlying
security properties of SMR—safety and liveness. In this poster, we
present a novel blockchain architecture addressing this dilemma
by sharding the SMR. Our architecture builds upon two core
insights: ordering-processing sharding scheme and safety-liveness
separation. Specifically, the ordering-processing sharding scheme
securely accommodates a large number of nodes by dividing them
into multiple shards, enhancing the network scale. Additionally,
the safety-liveness separation allows each shard to consider the
security properties of SMR against Byzantine failures separately,
by which the system can create more optimal-size shards to
process transactions in parallel, enhancing performance. The
preliminary experiments show the efficacy of our architecture
in scaling blockchains.

I. MOTIVATIONS AND CONTRIBUTIONS

Blockchain systems rely on a Byzantine Fault Tolerant
(BFT) State Machine Replication (SMR) process to ensure
safety where any two honest nodes store the same prefix of
a ledger, and liveness where all transactions are eventually
handled. While the SMR problem can be solved using Proof-
of-X (PoX), such as Proof-of-Work and Proof-of-Stake, or an
atomic broadcast (ABC) protocol, they only achieve one of the
two scalability metrics, i.e., they either scale the network or
enhance performance. Specifically, the PoX protocol adopted
by early blockchain systems can accommodate thousands of
nodes but suffers from poor performance. For instance, the
mainnet of Ethereum has 900,000+ validators but can only
process 12 transactions per second and require minute-level
confirmation latency as of January 2024 [1]. On the other
hand, many subsequent blockchain systems, such as Diem [5]
and Sui [2] adopt the ABC protocol to solve the SMR
problems, achieving thousands of transaction throughput and
second-level confirmation latency. However, running the ABC
protocol with even hundreds of nodes will drop the through-
put exponentially due to the high communication overhead
required by the ABC protocol. Therefore, existing deployed
blockchain systems suffer from the scalability problem where
performance cannot scale well with more nodes joining.

Recently, sharding technology has been proposed to solve
the scalability problem for blockchains by combining the
PoX and ABC protocols [6]. A blockchain sharding system
initiates a PoX protocol to create identities for nodes and
divides nodes into multiple committees (a.k.a. shards) based
on their identities randomly. After that, shards can run the
ABC protocol to handle transactions in parallel. Intuitively,
with more nodes joining, a blockchain sharding system can
create more shards to handle transactions, thus enhancing scal-
ability. Unfortunately, existing blockchain sharding systems
face a size-security dilemma. Specifically, a small shard size
enhances efficiency but increases the probability of forming
insecure shards whereas a large shard size is less efficient
but more secure. Since security is a more important property
for a system, sharding systems have to set every shard large
enough to ensure security, leading to only a few shards being
created to handle transactions and each of them suffers from
high communication overhead. Therefore, sharding only brings
limited improvement to the scalability of blockchains and is
far away from practicality.

This poster targets designing a novel architecture to securely
enhance both performance and network scale for blockchains.
The main idea of our architecture is to shard an SMR based
on its three tasks (i.e., data dissemination, ordering, and
execution) while achieving optimal shard sizes. The optimal
shard sizes enable a blockchain system to create more shards
to perform SMR tasks in parallel, making it highly effective
and scalable. We first summarize the contributions of our work
here and then elaborate on our architecture in Section II.

• We propose a novel blockchain architecture that can: 1)
scale the blockchain network to support thousands of
nodes to participate in the SMR process, and 2) achieve
competitive performance compared to the state-of-the-art
high-performance blockchain systems.

• Our architecture frees most nodes of the system from
running consensus protocol, allowing them to asyn-
chronously process transactions without any timing as-
sumptions for avoiding FLP impossibility [4]. This makes
our architecture more robust to the realistic network.

• Our architecture is designed to be agnostic to the BFT
consensus protocol. Since the communications between
nodes do not rely on any timing assumptions, any BFT
consensus protocol is compatible with our architecture,



making our solution highly flexible.

Ledger

Certify 
Module

Execute 
Module

Processing Shards Ordering Shard

Ledger

Certify 
Module

Execute 
Module

𝑓! + 𝑓" < 1
𝑓! > 𝑓"

𝑓! + 2𝑓" < 1, 𝑓! = 𝑓"

⋯

Byzantine Fault
Tolerance Consensus

Global order

② ordered
transactions

① certified
transactions

① certified
transactions

② ordered
transactions

𝑓! + 𝑓" < 1
𝑓! > 𝑓"

③ execute
& commit

③ execute
& commit

Fig. 1. Overview of our architecture. The transaction handling workflow in
our architecture involves three key tasks within the SMR: ① Data dissemina-
tion: each processing shard disperses transactions and forwards the certified
transactions to the ordering shard; ② Ordering: the ordering shard runs a BFT
consensus to order the received transactions; ③ Execution: processing shards
execute and commit the ordered transactions received from the ordering shard.

II. ARCHITECTURE DESCRIPTION

Fig. 1 shows the overview of our architecture, which
consists of two building blocks: ordering-processing sharding
scheme and safety-liveness separation.

(1) Ordering-processing sharding scheme. There are two
types of shards: one ordering shard and multiple processing
shards. An ordering shard performs the ordering task of
SMR. It runs a BFT consensus protocol to establish a global
transaction order for the system. Processing shards perform the
data dissemination/availability and execution tasks of SMR.
They work as the ledger maintainer and transaction executor.
At a high level, our sharding architecture shards ledger main-
tenance and transaction execution but not consensus. By de-
coupling transaction processing from ordering, our architecture
enables processing shards to be free from consensus. Without
consensus, each processing shard can tolerate up to f < 1/2
ratio of Byzantine nodes, allowing a smaller shard size. Note
that the ordering shard running the consensus protocol is
designed to always guarantee both safety and liveness and
thus still requires a security threshold f < 1/3.

(2) Safety-liveness separation. Our architecture considers
safety and liveness against Byzantine nodes separately in pro-
cessing shards. Similar to a state-of-the-art sharding protocol
GEARBOX [3], we guarantee the safety property of processing
shards all the time, while allowing a processing shard to
violate liveness for a while but can be recovered eventually
by the sharding reconfiguration mechanism. Specifically, we
appropriately increase the safety threshold fS and decrease
the liveness threshold fL (thus fS > fL). When forming
processing shards, we use a larger fault-tolerance threshold
(i.e., fS) to obtain smaller shard sizes. Note that since pro-
cessing shards do not run a consensus protocol, the threshold
parameters satisfy fS+fL < 1, thus achieving fS ≥ 1/2. This
is a significant improvement for achieving a small shard size
while guaranteeing the liveness of processing shards in a high

probability (e.g., 99.99%). In contrast, GEARBOX asks each
shard to independently run a consensus protocol, requiring
fS + 2fL < 1 in each shard. Therefore, when setting the
same fS as our architecture, GEARBOX have to set smaller fL
than ours, which leads to more frequent liveness violations of
shards and shards recovery, thus compromising performance.

III. PRELIMINARY EVALUATION

In our preliminary evaluation, we evaluate the scalability
of our architecture compared to GEARBOX. When calculating
the shard sizes, we want to make sure that the shards always
satisfy the safety but only guarantee liveness with 99.99%
probability. TABLE I presents the results of this experiment
(where m represents the shard size and k represents the num-
ber of shards), showing that our architecture can create more
shards with smaller sizes and thus achieves better scalability.

TABLE I
SCALABILITY COMPARISON (WHERE TOTAL BYZANTINE RATIO s = 15%,

SECURITY PARAMETER λ = 20), SHOWN IN [GEARBOX, OURS]

The total number of nodes n
50 100 200 300 400 500

m [20, 13] [38, 18] [49, 20] [57, 22] [60, 24] [63, 24]
k [2, 3] [2, 5] [4, 10] [5, 13] [6, 16] [7, 20]

IV. CONCLUSION AND FUTURE DIRECTIONS

This poster presents a novel sharding scheme for achieving
highly scalable blockchains. Some interesting directions could
be further explored based on our sharding scheme. First,
this approach allows us to shard any unsharded blockchain
infrastructure without weakening the system resilience to
Byzantine failure or making network synchrony assumptions.
Second, utilizing the global order to efficiently handle cross-
shard transactions. Since the ordering shard establishes a
global order for all transactions from all shards, shards can
consistently handle transactions without locking any states.
Last but not least, integrating the smart contract execution
engine into blockchain sharding systems to support more com-
plex logic business. Since transaction execution and ordering
are performed separately and asynchronously, our architecture
may facilitate such an integration.

REFERENCES

[1] beaconcha.in. History of daily active validators in ethereum. https://
beaconcha.in/charts/validators. Accessed: 2024.

[2] Same Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis,
Lefteris Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd
Nowacki, Alberto Sonnino, et al. Sui lutris: A blockchain combining
broadcast and consensus. arXiv preprint arXiv:2310.18042, 2023.

[3] Bernardo David, Bernardo Magri, Christian Matt, Jesper Buus Nielsen,
and Daniel Tschudi. Gearbox: Optimal-size shard committees by lever-
aging the safety-liveness dichotomy. In ACM CCS, pages 683–696, 2022.

[4] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility
of distributed consensus with one faulty process. JACM, pages 374–382,
1985.

[5] The DiemBFT Team. State machine replication in the diem
blockchain. https://developers.diem.com/docs/technical-papers/
state-machine-replication-paper/. Accessed: 2024.

[6] Jianting Zhang, Wuhui Chen, Sifu Luo, Tiantian Gong, Zicong Hong,
and Aniket Kate. Front-running attack in sharded blockchains and fair
cross-shard consensus. In NDSS, 2024.

2

https://beaconcha.in/charts/validators
https://beaconcha.in/charts/validators
https://developers.diem.com/docs/technical-papers/state-machine-replication-paper/
https://developers.diem.com/docs/technical-papers/state-machine-replication-paper/


Sharding SMR with Optimal-size Shards 
for Highly Scalable Blockchains

Jianting Zhang1, Zhongtang Luo1, Raghavendra Ramesh2, Aniket Kate1,2

Introduction

• Blockchain scalability is evaluated by performance and 
network scale.

• With more nodes joining in, a scalable blockchain system 
is expected to handle more transactions. 

Key Observations

• Ordering-processing sharding scheme: one ordering shard
performs the ordering task and multiple processing shards
perform the dissemination and execution tasks.

Blockchain Sharding

1Purdue University, 2Supra Research 

Performance Network Scale

Blockchain Scalability

Ideal sharding

• Sharding scales a blockchain by dividing nodes into
shards for parallel execution.

• Efficiency-security dilemma: large shards are required to
guarantee security. 

Ø Small shard size
Ø Multiple shards
Ø High performance

Actual sharding

Ø Large shard size
Ø Few shards
Ø Limited performance

Nodes are divided
into shards

Evaluations Future Directions

Ledger

Certify 
Module

Execute 
Module

Processing Shards Ordering Shard

Ledger

Certify 
Module

Execute 
Module

𝑓! + 𝑓" < 1
𝑓! > 𝑓"

𝑓! + 2𝑓" < 1, 𝑓! = 𝑓"

⋯

Byzantine Fault
Tolerance Consensus

Global order

② ordered
transactions

① available
transactions

① available
transactions

② ordered
transactions

𝑓! + 𝑓" < 1
𝑓! > 𝑓"

③ execute
& commit

③ execute
& commit

Obs1: Blockchains rely on state machine replication to
maintain a ledger securely, performing the repeated tasks:
① Dissemination (data availability);② Ordering;③ Execution
• Tasks①③: resource-intensive but 1/2 fault tolerance
• Tasks②: resource-saving but only 1/3 fault tolerance

Our Solution

Idea: deconstructing SMR to create more lightweight shards.

• Safety-liveness separation: trade liveness threshold 𝑓! for
larger safety threshold 𝑓", create much smaller shards.

Obs2: The larger the fault tolerance a shard achieves, the
smaller the size of the shard is needed.

The total number of nodes 𝑛 [SOTA, Ours]

50 100 200 300 400 500

𝑚 20, 13 38, 18 49, 20 57, 22 60, 24 63, 24

𝑘 2, 3 2, 5 4, 10 5, 13 6, 16 7, 20

𝑚-shard size; 𝑘-shard number; • Shard any non-sharded blockchains without
weakening the system resilience to Byzantine
failure or making synchrony network assumptions.

• Efficient cross-shard coordination: with a global
order, shards could handle cross-shard transactions
consistently without locking states.

• Programmability for sharding: Since transaction
execution and ordering are performed
asynchronously, this may facilitate the integration
of smart contract execution engines.


	Motivations and Contributions
	Architecture Description
	Preliminary Evaluation
	Conclusion and Future Directions
	References

