
Poster: Discovering Authentication Bypass
Vulnerabilities in IoT Devices through Guided

Concolic Execution

Jr-Wei Huang, Nien-Jen Tsai, Shin-Ming Cheng
National Taiwan University of Science and Technology
{m10815007,m11115009,smcheng}@mail.ntust.edu.tw

Abstract—The severity of attacks on IoT devices underscores
the pressing need for efficient and effective vulnerability discov-
ery methods. Specifically, authentication-related vulnerabilities
consistently cause significant security breaches in IoT devices,
allowing attackers to seize control through these vulnerabilities.

We propose a novel concolic execution framework to uncover
vulnerabilities in IoT devices with HTTP services. By integrating
the extensive testing coverage of symbolic execution with the rapid
execution speed on emulated IoT devices, execution paths can
be explored both efficiently and effectively. Furthermore, with
the assistance of offline graph-based static analysis, unresolved
functions in symbolic execution can be identified and redirected
to concrete execution on emulated devices, maintaining the
genuine behavior of the program and thereby enhancing analysis
accuracy. In our experiments, we assessed the performance and
efficacy by comparing to the state-of-the-art system.

I. INTRODUCTION

Malicious users might leverage backdoors of web service
to bypass the user verification and to perform privileged
operations illegally [5]. The hard-coded credentials or hidden
authentication interface for maintenance and upgrade are easily
found in vulnerable firmware [7].

Automated firmware vulnerability analysis is generally
achieved in static and dynamic manners. By using symbols
as the inputs of the target binary and representing all the
operations and branches in the form of symbols, symbolic
execution could get the symbolic constraints of the arbitrary
path in the binary [9]. However, when infinite loops exist in the
program or the program scope is too large, symbolic execution
will encounter the path explosion problem [10]. One innovative
approach to alleviate the problem is to concretely execute
the functions of web services or system calls that cannot be
handled by symbolic execution, which is known as concolic
execution. The previous research proposed multiple approaches
to provide real hardware response to symbolic analysis, but
emulating firmware with heterogeneous hardware architectures
and peripherals are challenging.

We propose a framework by combining symbolic execution
and concrete execution to discover authentication. In our
framework, we include static analysis on the target httpd
binary for symbolic analysis performing on top of angr [11]
symbolic execution engine (SEE). In particular, we modify
Ghidra [6] to generate control flow graphs (CFGs) of target
binary so that the program is sliced and execution flow can be
analyzed. The unnecessary program block or heavy-cost loops

are labeled to guide the following symbolic execution so that
state complexity is significantly reduced.

Regarding the performance and fidelity metric, we compare
our preliminary results with SYMBION [1]. Our system is
faster and finds more vulnerable paths, which shows promising
potential as a security tool for web-based IoT firmware.

II. BACKGROUND AND RELATED WORK

A. Symbolic Execution

Symbolic execution needs to translate the binary machine
code to an intermediate representation (IR), which is really
time-consuming. Many frameworks only support user-level
emulation, which may suffer from the drawbacks of no truthful
feedback from peripherals. LEARCH [4] uses an iterative
learning procedure to address the path explosion issue. To
solve the time-consuming problem, SymCC [8] has proposed a
compilation-based approach. However, this approach requires
compiler handling and runtime-supported libraries.

B. Concolic Execution

Path explosion problems in symbolic execution can be
alleviated by concretely executing the unresolved functions or
system calls. SYMBION extends angr from the perspective
of synchronization between concrete execution and symbolic
execution (like what S2E currently offered). However, SYM-
BION is designed for malware analysis and only x86-based
IoT devices are supported. AnimateDead [2] applies concolic
execution method to web applications, but it does not concern
firmware cases. Existing concolic executors are much slower
than native executors, and SYMSAN [3] addresses the problem
by leveraging data-flow analysis.

III. OUR APPROACH

Figure 1 is the architecture of our system. It can be divided
into three parts, including static analysis module, symbolic
execution engine, and concrete execution module.

We model the unresolved function in firmware binaries
to substitute the original function during concolic execution,
so we firstly apply static analysis to find source, sink points,
and unresolved functions. The source point is the start of the
symbolic execution part, and then we use a static analysis tool
to find the symbol of input functions, such as tcp_recv,
get_line, and uh_tcp_recv. On the other hand, key-
words related to administrator permissions are also important,

Fig. 1. System Design

such as system(), reboot() functions. The unresolved
functions can be identified by using the ELF file structure. Our
next step is to generate a control flow graph (CFG) for program
slicing, which we modified Ghidra for less time consuming.

For the concolic execution part, we firstly emulate with full
system emulator, and then execute the GDB agent to attach the
service and wait for angr to connect. When angr is connected,
we set breakpoints for synchronizing the symbolic execution
environment.

TABLE I. TEST CASES

Efficiency Test Effectiveness Test
Service TinyHTTPd uHTTPd

Firmware OpenWRT NETGEAR R7800
Firmware Version - 1.0.2.62

Authentication Bypass Self-injection PSV-2019-0076

IV. RESULT

Table I shows our test cases, and all of our experiments
are conducted on Ubuntu 18.04 LTS system with Intel Core-i5
CPU and 16GB RAM. We push the boundaries of our system
to also support the ARM architecture, in addition to the x86
architecture firmware.

Table II is our system efficacy by comparing to SYMBION.
Total Path means the number of paths that the symbolic
execution tool totally generates. 1st Vul. Found means the time
that the system spends for finding the first vulnerable path.
Vul. Path stands for the number of vulnerable paths that the
system found. SYMBION suffers from path explosion, which
is shown as “(not finish)” in Table II. Our system found 24
vulnerable paths, but SYMBION could only find 11 of them.
Most importantly, we only spent 37 seconds noticing the first
vulnerable path, which is much less than 230 seconds (3m
50s).

TABLE II. EFFICACY RESULTS

Total Path Time Cost 1st Vul. Found Vul. Path
SYMBION 1168 (not finish) 8m 10s 3m 50s 11

Ours 445 1m 27s 37s 24

V. CONCLUSION

Our framework leverages symbolic execution and concolic
execution, which is helpful for finding authentication bypass
vulnerabilities. We improve the efficiency of symbolic exe-
cution and program runtime slicing, and this is significant
for solving the path explosion problem. Our system holds
a promising future as a concolic execution tool, and our
preliminary results are quite remarkable.

ACKNOWLEDGMENT

Thank you our anonymous reviewers. The research funding
was supported by the TACC project from the National Science
and Technology Council of Taiwan.

REFERENCES

[1] “SYMBION: Interleaving symbolic with concrete execution,” in Proc.
IEEE CNS 2020, Jun. 2020.

[2] B. A. Azad, R. Jahanshahi, C. Tsoukaladelis, M. Egele, and N. Niki-
forakis, “AnimateDead: Debloating web applications using concolic
execution,” in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 5575–5591.

[3] J. Chen, W. Han, M. Yin, H. Zeng, C. Song, B. Lee, H. Yin, and I. Shin,
“SYMSAN: Time and space efficient concolic execution via dynamic
data-flow analysis,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 2531–2548.

[4] J. He, G. Sivanrupan, P. Tsankov, and M. Vechev, “Learning to explore
paths for symbolic execution,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2021, pp.
2526–2540.

[5] Y. Jiang, W. Xie, and Y. Tang, “Detecting authentication-bypass flaws
in a large scale of IoT embedded web servers,” in Proc. ICCNS 2018,
Nov. 2018, p. 56–63.

[6] NSA, “National security agency. 2019. Ghidra - Software Reverse
Engineering Framework,” https://github.com/NationalSecurityAgency/
ghidra, 2019.

[7] M. O. Ozmen, R. Song, H. Farrukh, and Z. B. Celik, “Evasion attacks
and defenses on smart home physical event verification.” NDSS, 2023.

[8] S. Poeplau and A. Francillon, “Symbolic execution with SymCC: Don’t
interpret, compile!” in 29th USENIX Security Symposium (USENIX
Security 20), 2020, pp. 181–198.

[9] Poeplau, Sebastian and Francillon, Aurélien, “SymQEMU:
Compilation-based symbolic execution for binaries,” in Proc. NDSS
2021, Feb. 2021.

[10] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Fir-
malice - Automatic detection of authentication bypass vulnerabilities in
binary firmware,” in Proc. NDSS 2015, Feb. 2015.

[11] F. Wang and Y. Shoshitaishvili, “Angr - The next generation of binary
analysis,” in Proc. IEEE SecDev 2017, 2017, pp. 8–9.

2

Poster: Discovering Authentication Bypass Vulnerabilities in IoT Devices
through Guided Concolic Execution
Jr-Wei Huang, Nien-Jen Tsai, Shin-Ming Cheng

National Taiwan University of Science and Technology
{m10815007,m11115009,smcheng}@mail.ntust.edu.tw

Problem Overview and Contributions

Figure : Normal User Interaction on IoT httpd

● Attacks related to bypassing user verifications or conducting
privileged operations are common.

● The symbolic execution method has shown great promise for security tools.

● State-of-the-art systems can either focus solely on symbolic execution or
limit themselves to find authentication bypasses caused by missing peripherals.

● We are the first to propose a “guided” concolic execution tool with symbolic
execution within a full system emulation environment.

● We push the boundaries
of our system to support
more CPU architectures
compared to the previous
research.

● Our preliminary results
show significant improvements
for the path explosion problem.

Figure : Authentication Bypass Example

● Emulate with full system emulator.

● Model the unresolved function in firmware binaries to
substitute the original function during concolic execution.

● Set the keywords as source and sink points for static
analysis.

● Attach GDB agent to the service and set breakpoints for
synchronizing the symbolic execution environment.

System Design Experimental Results and Conclusion

Table : Comparison with Other Systems

Table : Test Cases

Table : Results

Future Work
● Make source and sink points more precisely.

● Try to evaluate by running more test cases.

● Add more supported target architectures.

Figure : Our System Design

