
Poster: HyPFuzz: Formal-Assisted Processor
Fuzzing

Chen Chen†, Rahul Kande†, Nathan Nguyen†, Flemming Andersen†, Aakash Tyagi†,
Ahmad-Reza Sadeghi∗, and Jeyavijayan Rajendran†

†Texas A&M University, USA, ∗Technische Universität Darmstadt, Germany
†{chenc, rahulkande, nathan.tm.nguyen, flandersen, tyagi, jv.rajendran}@tamu.edu,

∗{ahmad.sadeghi}@trust.tu-darmstadt.de

Abstract

Recent research has shown that hardware fuzzers can effectively detect security vulnerabilities in modern processors. However,
existing hardware fuzzers do not fuzz well the hard-to-reach design spaces. Consequently, these fuzzers cannot effectively fuzz
security-critical control- and data-flow logic in the processors, hence missing security vulnerabilities.

To tackle this challenge, we present HyPFuzz, a hybrid fuzzer that leverages formal verification tools to help fuzz the hard-
to-reach part of the processors. To increase the effectiveness of HyPFuzz, we perform optimizations in time and space. First, we
develop a scheduling strategy to prevent under- or over-utilization of the capabilities of formal tools and fuzzers. Second, we
develop heuristic strategies to select points in the design space for the formal tool to target. We evaluate HyPFuzz on five widely-
used open-source processors. HyPFuzz detected all the vulnerabilities detected by the most recent processor fuzzer and found
three new vulnerabilities that were missed by previous extensive fuzzing and formal verification. This led to two new common
vulnerabilities and exposures (CVE) entries. HyPFuzz also achieves 11.68× faster coverage than the most recent processor fuzzer.

I. MAIN CONTENT

This research [1] is recently published in USENIX Security 2023. The original abstract and author list are shown above.
We post the paper link with the conference version1.

REFERENCES

[1] C. Chen, R. Kande, N. Nguyen, F. Andersen, A. Tyagi, A.-R. Sadeghi, and J. Rajendran, “HyPFuzz: Formal-Assisted Processor Fuzzing,” USENIX Security
Symposium, pp. 1361–1378, 2023.

1https://www.usenix.org/conference/usenixsecurity23/presentation/chen-chen

Published at USENIX Security Symposium 2023

Challenge 3: Seamless Integration Test case converter

 Property generator

HyPFuzz: Formal-Assisted
Processor Fuzzing

Chen Chen†, Rahul Kande†, Nathan Nyugen†, Flemming Andersen†, Aakash
Tyagi†, Ahmad-Reza Sadeghi*, and Jeyavijayan Rajendran†

†Texas A&M University, *Technische Universitat Darmstadt

• Hardware vulnerabilities are difficult to be patched.

• Hardware vulnerabilities emerge at an alarming rate.

Figure 1. Exponential increase in the number of hardware vulnerabilities [1].

Fuzzer

Test case
database

Coverage

DUT

Mutation engine

01010

11100

00111

10001

01000

11111

Covered

Uncovered
Intermediate

Scheduler
1

Point
selector

2

Property
generator

3

Test case
converter

3

Formal Tool

SystemVerilog Assertion

cover property P1

cover property P2

…

Reachability

Boolean
assignment

Seed
add x1, x2, x3

sub x1, x2, x3

…

switch

Technique Automated Scalable Efficient Coverage

Manual Inspection ❌ ❌ ❌ ❌

Formal verification ❌ ❌ ✔️ ❌

Random

regression
✔️ ✔️ ❌ ❌

Hardware Fuzzing ✔️ ✔️ ✔️ ❌

HyPFuzz ✔️ ✔️ ✔️ ✔️

Figure 2. Framework of HyPFuzz.

An uncovered branch point

cover property (mie[S_SW_INTERRUPT]

&& mip[S_SW_INTERRUPT])

The corresponding SVA property

Boolean assignments

Conditions

Instructions

Seed

Table 1. Comparison between various hardware verification techniques.

Introduction

2 2 3 1 5 5
13

7 8 6
1 3

8
16

6
17

3633

48
41

58

92

0

25

50

75

100

2001 2006 2011 2016 2021

#
 n

e
w

 C
V
E
s

Year

Research Objective

• HyPFuzz, a hybrid fuzzer that leverages formal verification tools to help fuzz the

hard-to-cover part of the processors.

Methodology

Fuzzer

Switched too late
Switched too early

Switched optimally

Verification time (hrs)
0 5 10 15 20

100

80

60

40

20

0

C
o
v
e
ra

g
e
(%

)

Challenge 1: Scheduling of Fuzzer and Formal Tool

• Switch from fuzzer to formal when rfuzz(w) < 𝑟𝑓𝑚𝑙.

• Rate of fuzzer of the recent w tests: 𝑟𝑓𝑢𝑧𝑧 𝑤 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑤 𝑐𝑜𝑣.(𝑤)

𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑚.𝑡𝑖𝑚𝑒 (𝑤)
.

• Rate for formal tool of |𝐶| points selected: 𝑟𝑓𝑚𝑙 =
𝑛𝑢𝑚.𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝐶

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑜𝑓 𝑡𝑖𝑚𝑒
.

Figure 3. Switch illustration from fuzzer to formal tool.

…

FETCH DECODE EXECUTE COMMIT

F
E
T
C
H

/D
E
C
O

D
E

D
E
C
O

D
E
/IS

S
U

E

IS
S
U

E
/E

X
E
C
U

T
E

E
X
E
C
U

T
E
/C

O
M

M
IT

CVA6

CSR File

Decoder
Instr.

decoding

FPU

Merge

FPMul

FPDiv

Interrupt
check

Covered Uncovered

MaxUncovd

ModDep

BotTop

Figure 4. Different point selection strategies on CVA6[3].

Challenge 2: Selection of Uncovered Points

• BotTop selects modules with the deepest distance to the top module.

• MaxUncovd selects modules with the maximal number of uncovered points.

• ModDep selects modules with the highest logic dependence.

Experiment Reference

Vulnerability detection

• Detected existing 11 vulnerabilities 3.06 × less time.

• Detected three new vulnerabilities.

• Resulted two CVEs: CVE-2022-33021, CVE-2022-33023.

Branch coverage achievement compared to:

• TheHuzz[2]: 41.24× speedup, 6.84% more total coverage.

• Random regression: 239.93× speedup, 12.70% more total

coverage.
Figure 5. Branch points achieved by random

regression, TheHuzz[2], and HyPFuzz on CVA6[3].

1. National Vulnerability Database. https://nvd.nist.gov/, 2023.

2. Kande, Rahul, et al. “TheHuzz: Instruction Fuzzing of Processors Using

Golden-Reference Models for Finding Software-Exploitable Vulnerabilities.”

USENIX Security, 2022.

3. Zaruba, Florian, et al. “The Cost of Application-Class Processing: Energy

and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core

in 22-nm FDSOI Technology.” VLSI, 2019.

Contact
• Chen Chen, Ph.D. student in Computer Engineering, Texas A&M University

• Email: chenc@tamu.edu Lab Website: https://seth.engr.tamu.edu/

2

