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Abstract

Recent research has shown that hardware fuzzers can effectively detect security vulnerabilities in modern processors. However,
existing hardware fuzzers do not fuzz well the hard-to-reach design spaces. Consequently, these fuzzers cannot effectively fuzz
security-critical control- and data-flow logic in the processors, hence missing security vulnerabilities.

To tackle this challenge, we present HyPFuzz, a hybrid fuzzer that leverages formal verification tools to help fuzz the hard-
to-reach part of the processors. To increase the effectiveness of HyPFuzz, we perform optimizations in time and space. First, we
develop a scheduling strategy to prevent under- or over-utilization of the capabilities of formal tools and fuzzers. Second, we
develop heuristic strategies to select points in the design space for the formal tool to target. We evaluate HyPFuzz on five widely-
used open-source processors. HyPFuzz detected all the vulnerabilities detected by the most recent processor fuzzer and found
three new vulnerabilities that were missed by previous extensive fuzzing and formal verification. This led to two new common
vulnerabilities and exposures (CVE) entries. HyPFuzz also achieves 11.68× faster coverage than the most recent processor fuzzer.

I. MAIN CONTENT

This research [1] is recently published in USENIX Security 2023. The original abstract and author list are shown above.
We post the paper link with the conference version1.
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• Hardware vulnerabilities are difficult to be patched.

• Hardware vulnerabilities emerge at an alarming rate.

Figure 1. Exponential increase in the number of hardware vulnerabilities [1].
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Manual Inspection ❌ ❌ ❌ ❌

Formal verification ❌ ❌ ✔️ ❌

Random 

regression
✔️ ✔️ ❌ ❌

Hardware Fuzzing ✔️ ✔️ ✔️ ❌

HyPFuzz ✔️ ✔️ ✔️ ✔️

Figure 2. Framework of HyPFuzz.

An uncovered branch point

cover property (mie[S_SW_INTERRUPT] 

&& mip[S_SW_INTERRUPT])

The corresponding SVA property
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Conditions

Instructions

Seed

Table 1. Comparison between various hardware verification techniques.
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Research Objective

• HyPFuzz, a hybrid fuzzer that leverages formal verification tools to help fuzz the 

hard-to-cover part of the processors.
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Challenge 1: Scheduling of Fuzzer and Formal Tool

• Switch from fuzzer to formal when rfuzz(w) < 𝑟𝑓𝑚𝑙.

• Rate of fuzzer of the recent w tests: 𝑟𝑓𝑢𝑧𝑧 𝑤 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑤 𝑐𝑜𝑣.(𝑤)

𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑚.𝑡𝑖𝑚𝑒 (𝑤)
.

• Rate for formal tool of |𝐶| points selected: 𝑟𝑓𝑚𝑙 =
𝑛𝑢𝑚.𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝐶

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑜𝑓 𝑡𝑖𝑚𝑒
.

Figure 3. Switch illustration from fuzzer to formal tool.

…

FETCH DECODE EXECUTE COMMIT

F
E
T
C
H

/D
E
C
O

D
E

D
E
C
O

D
E
/IS

S
U

E

IS
S
U

E
/E

X
E
C
U

T
E

E
X
E
C
U

T
E
/C

O
M

M
IT

CVA6

CSR File

Decoder
Instr. 

decoding

FPU

Merge

FPMul

FPDiv

Interrupt 
check

Covered Uncovered

MaxUncovd

ModDep

BotTop

Figure 4. Different point selection strategies on CVA6[3].

Challenge 2: Selection of Uncovered Points

• BotTop selects modules with the deepest distance to the top module.

• MaxUncovd selects modules with the maximal number of uncovered points.

• ModDep selects modules with the highest logic dependence.

Experiment Reference

Vulnerability detection

• Detected existing 11 vulnerabilities 3.06 × less time.

• Detected three new vulnerabilities.

• Resulted two CVEs: CVE-2022-33021, CVE-2022-33023.

Branch coverage achievement compared to:

• TheHuzz[2]: 41.24× speedup, 6.84% more total coverage.

• Random regression: 239.93× speedup, 12.70% more total 

coverage.
Figure 5. Branch points achieved by random 

regression, TheHuzz[2], and HyPFuzz on CVA6[3].
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