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I. INTRODUCTION

In this study, we assess the robustness of Reinforcement
Learning (RL) in Autonomous Driving (AD) systems, partic-
ularly against adversarial attacks. We adopted the Q-learning
based AD model proposed by Karavolos et al. [1] for its
simplicity, serving as the foundation of our analysis. This
choice allows us to draw a distinct comparison between the
straightforward Q-learning approach and the more complex
RL systems.

We design two threat models to simulate adversarial attacks
on RL-based AD systems. The first model involves injecting
undetectable malicious code during the RL model’s fine-
tuning, making it susceptible to adversarial perturbations that
could lead to collisions under specific trigger conditions. The
second threat model aims to induce a collision by directly
altering the RL model’s action decision under specific trigger
conditions, representing a more stealthy approach.

Based on these threat models, our empirical investigation fo-
cuses on two primary scenarios: manipulation of sensor inputs
and direct perturbation of actions. The findings indicate that
while RL-based AD systems demonstrate resilience against
sensor input manipulation, they exhibit vulnerabilities when
subjected to direct action perturbations. The primary and re-
alistic scenario involves changing sensor readings, like during
off-center turns, which can mislead the system and potentially
lead to accidents. This is crucial for maneuvers where small
errors are significant. The second scenario, directly perturbing
actions, serves more as a theoretical investigation into RL-
based AD systems’ vulnerabilities rather than a practical, real-
world threat.

II. ATTACK DESIGN

This section aims to detail the design of two attack strategies
targeting a RL-based autonomous driving system.

A. Threat Model 1

A schematic of Threat Model 1 is shown in Fig. 1.
Goal: To inject undetectable malicious code during the RL

model’s fine-tuning, causing the model to be susceptible to

Fig. 1. A schematic of Threat Model 1

an adversarial perturbation attack, leading to a collision under
specific trigger conditions. When the trigger is triggered, the
sensor data x is affected by the perturbation ∆ and changes
from x to x′, i.e., x′ = x+∆.

Knowledge and Capabilities: Assuming the attacker is a
malicious model maintainer with comprehensive knowledge
of the victim model, including its structure and parameters,
constituting a white-box attack. The attacker can access and
manipulate the model’s inputs.

B. Threat Model 2

A schematic of Threat Model 1 is shown in Fig. 2.
Goal: To induce a collision by directly altering the RL

model’s action decision under specific trigger conditions,
aiming for a stealthier attack. Specifically, the action a is
modified to a′, an alteration that impairs the performance of
the RL-based agent, potentially leading to a collision.

Knowledge and Capabilities: The attacker knows the victim
model’s type but not its specific parameters. They can access
the model’s state inputs and action outputs, modifying the
action when the trigger is activated.

C. Attack Scenarios

Based on the two threat models proposed in A and B,
we have meticulously developed two distinct attack scenarios
targeting RL-based Autonomous Driving (AD) systems, each
corresponding to one of the threat models:

1. Manipulation of Sensor Readings (Corresponding to
Threat Model 1): This scenario, which aligns with Threat
Model 1, represents a practical and realistic threat. It involves
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Fig. 2. A schematic of Threat Model 2

strategically altering sensor readings, such as those during off-
center turns, which can effectively mislead the AD system.
This manipulation is particularly critical in scenarios where
even minor deviations can have significant consequences,
potentially leading to erroneous decisions and, in worst-case
scenarios, resulting in accidents. The alignment with Threat
Model 1 is evident as this scenario exploits the vulnerabilities
introduced by the undetectable malicious code injected during
the model’s fine-tuning.

2. Direct Alteration of Actions (Corresponding to Threat
Model 2): The second scenario, aligning with Threat Model
2, delves into a more theoretical realm, focusing on the direct
perturbation of the actions determined by the RL system. This
approach is less about immediate real-world applicability and
more about probing the inherent vulnerabilities within RL
frameworks. By directly influencing the action outputs, this
scenario, which is a direct manifestation of Threat Model
2, provides valuable insights into how subtle, calculated al-
terations can impact the decision-making process of the AD
system, potentially leading to unintended outcomes.
Attack Trigger Mechanism. In our attack process, a trigger
mechanism is activated based on preset thresholds for the d
(lateral deviation) and θ (orientation) sensor readings, consis-
tent with our threat model scenarios. For example, the trigger
is activated when the vehicle turns left and is on the left side
of the lane (θ < −α and d < −β) or when it turns right and
is on the right side of the lane (θ > α and d > β), where α
and β are predetermined values ranging from 0 to 1. In both
attack scenarios, the triggering mechanism is the same.
Injecting Perturbations. In each scenario, the perturbations
are continuously applied as long as the trigger conditions are
met. In the first attack scenario, once triggered, we apply a
predetermined amount of perturbation to the sensor readings.
This results in a deliberate distortion of the data received by
the vehicle. The manipulated sensor inputs mislead the vehicle,
causing it to deviate from its intended path and subsequently
increasing the risk of a collision. Note that while we have not
necessarily optimized this attack specifically for RL, we do
introduce relatively large perturbations to the range of sensor
readings. The second scenario focuses on directly modifying
the actions determined by the RL system; it alters the vehicle’s
steering decision to a neighboring level.

III. PRELIMINARY EXPERIMENTS

Setup. The attack test is conducted using the TORCS simula-
tor on a standard course without extreme sharp curves. Each

run lasts 30 seconds with a speed limit of 120 km/h. The RL
model employed is the same as in the study by Karavolos et
al. [1]. Two triggers are set; trigger 1: α = 0.1, β = 0.2 and
trigger 2: α = 0.1, β = 0.1.
Scenario 1. In our adversarial input experiments, we injected
noise of sizes ε = 0.1 and ε = 0.3 into the sensor readings.
These noises were applied directly to both angular and position
sensors, specifically in a direction that increases the likelihood
of collision. In both cases, the RL-based autonomous driving
system remained unaffected, demonstrating its robustness to
perturbations in sensor readings.

The success rate of the three attacks was close to zero across
all parameter sets. This result is mainly due to the config-
uration of the Q-learning-based RL we adopted [1]. In this
referenced setting, the steering angle is discretized into five
values: 0.5, 0.1, 0, -0.1, -0.5. Because of this granularity, small
perturbations in the sensor values were rendered ineffective.
The evaluation of RL systems with continuous action spaces
is an important direction for future research.
Scenario 2. In the second scenario, we targeted the same RL-
based AD model by altering its actions to select neighboring
actions. This attack, performed with either Trigger 1 or Trigger
2, was repeated 50 times on the simulation. The experimental
results showed a success rate of approximately 60% using
Trigger 1 and 78% using Trigger 2. These results indicate
that larger adversarial inputs that directly affect the actions
can increase the probability of a successful attack. In addition,
more frequent activation of the triggers increases the overall
success rate of the attacks.

IV. CONCLUSION

In this study, we evaluated the robustness of the Q-learning-
based AD system against adversarial attacks. Two threat
models were designed, focusing on sensor input manipulation
and direct action alteration. Preliminary experiments using
the TORCS simulator demonstrated the system’s resilience
to sensor perturbations but revealed vulnerabilities to direct
action modifications, highlighting areas for future research in
RL system security.
Future Research Directions. Our future work will focus on
conducting an extensive assessment of vulnerabilities in RL-
based autonomous driving systems. We aim to identify specific
conditions under which these systems are most susceptible to
attacks. Additionally, we plan to explore the design of effective
adversarial inputs tailored to various RL algorithms used in
autonomous driving systems. This research will contribute to
enhancing the security and reliability of RL implementations
in real-world automotive applications.
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This study evaluates the robustness of the Q-learning-based Autonomous Driving(AD) system against
adversarial attacks. We developed two threat models: one injecting undetectable code affecting sensor
inputs, and another altering action decisions. Experiments conducted using the TORCS simulator
revealed that while reinforcement learning(RL) systems are resilient to sensor input manipulation, they
are vulnerable to direct action perturbations. Our findings highlight the need for further research into
the security of RL systems, especially in continuous action spaces, to enhance their reliability and
safety in autonomous driving applications.
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Conclusion & Future PlanPreliminary Experiments

Conclusion
- Q-learning AD system withstands small 

disturbances (Scenario 1).
- Impactful attacks must significantly alter 

system actions (Scenario 2).

Future Plan
- Conduct detailed vulnerability 

assessments on RL-based systems.
- Determine conditions for attack 

success.
- Develop adversarial inputs for diverse 

RL algorithms in autonomous driving 
systems.

Threat Model 1
Goal: Inject malicious code in the RL model during fine-
tuning to make it vulnerable to adversarial attacks,
causing collisions under certain triggers.
Knowledge and Capabilities: The attacker, a malicious
insider, fully understands the model, enabling a white-
box attack. They can access and alter the model's
inputs.
Scenario 1: Manipulation of Sensor Readings

Threat Model 2
Goal: To cause a collision by stealthily changing the RL
model‘s action from 𝑎 to 𝑎′ under certain triggers.
Knowledge and Capabilities: The attacker understands
the model type but not its exact parameters and can
modify actions based on the model's state inputs and
outputs upon trigger activation.
Scenario 2: Direct Alteration of Actions

Setup
- The attack test is conducted using the TORCS simulator on CG 

Speedway number 1 track without extreme sharp curves. 
- Each run lasts 30 seconds with a speed limit of 120 km/h. 
- The DRL model employed is the same as the study by  Karavolos [1].
- trigger 1: 𝛼=0.1, 𝛽=0.2 and trigger 2: 𝛼 =0.1, 𝛽 =0.1.

Results of Scenario 1
- We injected noise of magnitudes 0.1 and 0.3 into

the sensor readings.
- However, in both cases, the RL-based autonomous

driving system remained unaffected, demonstrating
robustness to perturbations in sensor readings.

- The limited impact of attacks can be attributed to
the discretized steering angle values.

Results of Scenario 2
- We targeted victim model by altering its actions to

select neighboring actions.
- The experimental results showed an approximate

success rate of 60% using Trigger 1 and 78%
using Trigger 2.

- These results indicate that larger adversarial
inputs that directly affect the actions can increase
the probability of a successful attack.
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