
Poster: Bypassing Control Invariants-Based Defenses
in Autonomous Vehicles

Yinan Zhao
Waseda University

yinanzhao@nsl.cs.waseda.ac.jp

Ziling He
Waseda University

ziling@nsl.cs.waseda.ac.jp

Tatsuya Mori
Waseda University

mori@nsl.cs.waseda.ac.jp

Abstract—Autonomous Vehicles (AVs) have been increasingly
attacked by hackers. However, the system security of AVs is of
major importance, since any successful attack can lead to severe
economic loss, equipment damage, or even loss of human life. A
good security principle for evaluating new algorithms is to show
that the proposal is resilient against a powerful adversary. So in
this poster, we realize the worst type of of attacks, called stealthy
attacks, against steering control system which is important to
lateral control for AVs. The core of our proposed stealthy attacks
is the use of Model Predictive Control (MPC), State-space Model
(SSM), System Identification (SI) and Dynamic Time Warping
(DTW) to allow attackers to accurately simulate system behavior-
allowing them to perform undetectable attacks.

I. INTRODUCTION

Autonomous vehicles (AVs) rely heavily on sensor data
for navigation, raising concerns about their vulnerability to
data manipulation and the need for robust data validation.
To improve the security of AVs, Choi et al. [1] developed
a control invariant (CI) framework to detect such threats. CI
framework extracts control invariants by jointly modeling a
vehicle’s physical properties, its control algorithm and the laws
of physics. Recognizing CI framework’s reliance on physical
models for defense, our research challenges these defenses by
developing stealthy attacks. The proposed attack strategy is
to apply perturbations that are undetectable by CI framework,
striking a balance where the induced deviations do not exceed
the anomaly detection threshold. At the core of our approach
is the use of Model Predictive Control (MPC), System Identi-
fication (SI), Dynamic Time-warping (DTW) and State Space
Model (SSM) to allow attackers to accurately simulate system
behavior-allowing them to perform undetectable attacks on PI-
IDS-secured AV systems.

In this preliminary study, we present our progress in how to
successfully implement stealthy attacks against steering control
system.

II. ATTACK MODEL

The attack model assumes that the attacker is able to

• Interact with the CAN network to read and write messages
through the OBD-II port or other hardware attachments.

• Know the start point and destination of the ego vehicle
and list all the possible routes the vehicle may follow to
implement MPC control.

• Have full knowledge of SSM, MPC, SI and DTW technique.
• Inject tailored messages into the vehicle’s network to

stealthily control the vehicle.

III. METHODOLOGY

Stealthy attacks means the caused deviations are within
the expected thresholds during an AV mission which do not
cause any immediate unexpected behavior. The implementation
of stealthy attacks against steering control mainly consists of
the following steps. First, using MPC to identify the desired
steer, current states and next expected states. Then, exploiting
SI in MATLAB to instantiate the state space model. Finally,
deciding the error threshold by using DTW technique. The
more detailed procedure is as follows.

A. State Space Model

State space model [2] [3] describes the probabilistic de-
pendence between the latent state variable and the observed
measurement, which consists of the state equation (1) and the
output equation (2):

x(t+ 1) = Ax(t) +Bu(t) (1)

y(t) = Cx(t) +Du(t) (2)

where u(t), y(t), x(t), and x(t + 1) represents the system
inputs at time t, system outputs at time t, control states at
time t, and next expected states, respectively.

B. Model Predictive Control

MPC seeks to find control policy u for equation (1) by
minimizing the deviation between desired trajectory and actual
one. Here are the MPC parameters.

• Sample time: 0.02s
• Prediction horizon: 100
• Reference path: x∈(-10, 100), y = -5
• Weight matrix for states: [1.0, 1.0, 5.0, 10.0], weight matrix

for control inputs: [0.1, 0.1]
• Constraints: kinematic model as shown in Fig.1 [4].

The inputs of the MPC controller are the current states
of the ego vehicle and the reference path. The output of
the MPC controller is the desired steering angle, u, and
desired acceleration. The simulation of MPC is shown in Fig.2.

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.23045
www.ndss-symposium.org

Fig. 1: Kinematic Model MPC algorithm subject to [4].

Fig. 2: MPC simulation.

The orange line represents the reference path, and blue line
represents its actual path calculated by MPC algorithm.

C. Random Mission Generation

20 random missions are executed with different start points
and the same destination. To simulate uncertainties and dis-
turbances that might affect the actual system in real-world
situations, noise is added to the control inputs, which means
both desired steer and desired acceleration calculated from
MPC are added to noise as actual steer, ym, and actual
acceleration, respectively. For the steering angle noise, the
mean value is zero and the standard deviation is 1 rad. For the
acceleration noise, the mean value is also zero and the standard
deviation is 0.1 m/s2. Take one mission as an example, the
desired steering angle derived from MPC algorithm and the
actual steering angle (ym) after adding noise to the desired
one are shown in Fig. 3.

Introducing noise to the control inputs helps to simulate the
fact that in real world, the control inputs may not be perfectly
executed due to various factors such as sensor noise, actuator
limitations, or external disturbances. By adding noise to the

Fig. 3: Desired Steer (blue) and Actual Steer (orange).

control inputs during the simulation, MPC becomes more
robust to uncertainties and can better handle the variability
that presents in the actual system.

D. System Identification

After finding u and ym for the AV, we need to identify the
values of the four matrices: A, B, C, and D for equation (1) and
(2). We invoke MATLAB System Identification Toolbox [5],
which is the same with the method using in [1] to instantiate
the four matrices.

E. Dynamic Time-warping Technique

We then derive the error threshold using DTW. Assuming
the real vehicle needs x seconds to make a turn. The model
may take x + w seconds to make the same turn. Therefore,
our idea of determining the monitor window is to look for
the maximum w in all the primitive operations [1]. Once
the window is decided, the error threshold is then computed
from the maximum observed model-induced errors within the
window [1]. Here we use DTW to look for an order-alignment
of the timestamps of the two sequences: yp and ym to get the
detection window size w and error threshold τ .

F. Stealthy Attacks Execution

Algorithm 1 shows the algorithm to implement stealthy
attacks against steering control system. To remain stealthy, the
attacker should manipulate the steering angle such that the
accumulated deviations S(k) between ym and yp are lower
than τ , namely S(k) < τ , to avoid raising the alarm.

Algorithm 1 Stealthy Attacks Implementation

y = Cx+D ∗ targets
x = Ax+B ∗ targets
dev = |y − angles|
devsum + = dev
if devsum > threshold

raise alarm

IV. FUTURE WORK

In future work, we aim to integrate the attack framework
into a realistic autonomous driving simulator, such as Carla or
Autoware, to evaluate the overall attack framework. We will
also work on developing countermeasures to mitigate these
threats.

Acknowledgement A part of this work was supported by JSPS
KAKENHI 22S0604 and JST CREST JPMJCR23M4.

REFERENCES

[1] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Deng, “Detecting attacks against robotic vehicles: A control invariant
approach,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 801–816.

[2] D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[3] Z. Chen and E. N. Brown, “State space model,” Scholarpedia, vol. 8,
no. 3, p. 30868, 2013.

[4] W. Farag and Z. Saleh, “Mpc track follower for self-driving cars,” 2019.
[5] MATLAB, “System identification toolbox,” https://jp.mathworks.com/p

roducts/sysid.html.

2

Poster: Bypassing Control Invariants-Based
Defenses in Autonomous Vehicles
Yinan Zhao1, Ziling He1, Tatsuya Mori1,2,3
1Waseda University, 2RIKEN, 3NICT

Causing a major deviation in the intended path which is easy to be
detected
Almost all attacks which mutate the sensor measurements or inject false
messages to control systems are major, which can cause obvious anomalies

Limitations of Current Attacks Research against AVs

Stealthy Attacks: Cause Subtle and Minor Deviations

[1] Choi, Hongjun, et al. "Detecting attacks against robotic vehicles: A control invariant
approach." Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 2018.

Future Plan

Attack Model

• Implementation and comprehensive evaluation of
the stealthy attack.

• Integrating the attack framework into a realistic
autonomous driving simulator, such as Carla or
Autoware, to evaluate the overall attack framework.

• Developing countermeasures to mitigate these
threats.

Stealthy Attacks Algorithm

Key idea: Using Model Predictive Control (MPC) which is subject to
kinematic model and State-space Model (SSM), System Identification (SI),
and Dynamic Time Window (DTW) [1] to allow attackers to accurately
simulate system behavior-allowing them to perform undetectable attacks on
Control Invariants-secured AV systems.

The attack model assumes that the attacker is able to
• Interact with the CAN network to read and write messages through the

OBD-II port or other hardware attachments.
• Know the start point and destination of the ego vehicle and list all the

possible routes the vehicle may follow to implement MPC control.
• Have full knowledge of SSM, MPC, SI and DTW technique.
• Inject tailored messages into the vehicle’s network to stealthily control

the vehicle.
Kinematic Model MPC Simulation in CARLA

DTW Technique

MPC Simulation in Python

Current Attacks: Cause Major Deviations

Acknowledgement: A part of this work was supported by JSPS KAKENHI 22S0604 and JST CREST JPMJCR23M4.

Desired & Actual Steering Angle

