
An Experimental Study on Attacking Homogeneous
Averaging Processes via Side Channel Attacks

Olsan Ozbay
Dept. ECE, University of Maryland

oozbay@umd.edu

Yuntao Liu
ISR, University of Maryland

ytliu@umd.edu

Ankur Srivastava
Dept. ECE, ISR, University of Maryland

ankurs@umd.edu

Abstract—Electromagnetic (EM) side channel attacks (SCA)
have been very powerful in extracting secret information from
hardware systems. Existing attacks usually extract discrete values
from the EM side channel, such as cryptographic key bits and
operation types. In this work, we develop an EM SCA to extract
continuous values that are being used in an averaging process,
a common operation used in federated learning. A convolutional
neural network (CNN) framework is constructed to analyze the
collected EM data. Our results show that our attack is able to
distinguish the distributions of the underlying data with up to
93% accuracy, indicating that applications previously considered
as secure, such as federated learning, should be protected from
EM side-channel attacks in their implementation.

I. INTRODUCTION

Side channel attacks are a powerful set of attacks that
can bypass traditional security protections, and help attackers
access classified information. Unlike traditional attacks, side
channels do not exploit vulnerabilities in the system, but
rather opt to observe the system, and learn details on how
it completes certain tasks. In this paper, we will be focusing
on the Electromagnetic side channel.

An Electromagnetic (EM) side channel attack (SCA) is a
type of security attack that involves exploiting electromagnetic
emissions from electronic systems, to gain information about
their operation, or data being processed within these systems.
These emissions are natural byproducts of the system func-
tioning and adhering to user commands, thus are not directly
requested by the user to be emanated.

Of the EM signals emanated from electronic systems, it is
important to underline the ones belonging to computational
activity, as it requires a large variety of activity in the micro-
architectural level, as well as the surface level, to occur. These
signals were proven significant enough to be able to determine
the specific instructions that were executed in an infinite loop
of code [3], which raises the question: would it be possible to
know additional details of the instructions that were executed?

This paper is the summary of our attempts to extract EM
side channel information of the weight of values being added
in a loop. Our main contributions are:

• The setup on how it is possible to extract EM side channel
data of a system running addition in a loop.

• The results of the EM side channel data collected from
these systems.

• An AI model that can determine to which set of addition
weights (of certain ranges) a collected EM side channel
emanation sample belongs to.

Our basic premise is that information leakage occurring
from EM side channels on centralized systems can be used to
distinguish the magnitude of values in basic C operations, such
as ADD and DIV. Thus, attackers can learn the difference of
the values being inputted by observing the signal dependence
of the EM side channels response to the updating code. We
present a basic setup to showcase how an attacker may launch
this attack on a centralized system.

Furthermore, we expand upon the limitations of the knowl-
edge obtainable via these methods based on the results. Using
these limitations in mind, we train an AI model that can auto-
matically differentiate between different sets of homogeneous
numbers that were added in the centralized system (within the
limitations based off of the results).

The applicability of our measurements and the AI model
is significant. Averaging of a large set of values samples
from a distribution is extensively carried out in federated
learning (which otherwise is touted for its security properties).
In each iteration, the “players” send their local weights from
running the Deep Neural Network (DNN) training on their
local data to a central server which calculates the average and
communicates back to the players. An EM side channel on the
central server can learn the distribution of the weights being
averaged in each iteration which can then be used to train the
DNN by a malicious observer attacking the central server.

II. LITERATURE REVIEW

Over the years, side channels have proven to be a pow-
erful class of attacks, with the EM side channel playing an
important role. EM side channels can be loosely defined as
where an attacker can use various tools to capture leaking
electromagnetic radiation from modern computers to extract
information [1] [5]. EM side channels were used to extract
cryptographic keys [6], fully recover user keystrokes on wired
and wireless keyboards [7], attack block ciphers [2], and much
more. These potential attacks naturally sparked defenses, such

Workshop on Security and Privacy in Standardized IoT (SDIoTSec) 2024
26 February 2024, San Diego, CA, USA
ISBN 979-8-9894372-6-9
https://dx.doi.org/10.14722/sdiotsec.2024.23016
www.ndss-symposium.org

as using the clock signal to mask any activity that might lead
to leakage [4].

One of the more recent ways to use EM side channels to
attack a system is to use the SAVAT metric: using this metric
it is possible to quantify the differences in code execution,
down to the level of which instruction was executed [3]. This
was further expanded on, as researchers tried to quantify how
much leakage certain instructions or groups of instructions
would cause [8].

Since nothing more granular has been done on EM side
channels, we aim to venture into this unexplored territory by
trying to decipher the contents of an instruction: Trying to
reverse engineer the values (floating point numbers) being used
in a standard averaging process via EM side channels.

III. PROBLEM DEFINITION AND METHODOLOGY

Our main goal in this research attempt was to launch an
attack on a centralized computing system that was running
an averaging process on a set of values. The attack would
consist of collecting EM side channel data from this averaging
process, and then attempting to decipher knowledge about
the values corresponding to the side channel data that was
collected. To create this attack, a setup involving a spectrum
analyzer, magnetic loop, micro-controller single board com-
puter (shortly referred to as “board”), and a laptop were used.

The first part of the creation of this attack involves the
board, and the code for the averaging process. The sole
purpose of the board was to create the victim of the attack:
the board would be the centralized system that is running
the averaging process which is under attack. Additionally, the
code for the averaging process that was running on this board
involved randomly generating 15 million numbers, averaging
these numbers, and then restarting the process. A Beaglebone
Black was chosen as the board for this experiment, and was
not modified throughout the process.

Whilst the board ran the averaging process, the magnetic
loop and spectrum analyzer were used to capture the relevant
values of the EM emanations occurring. The magnetic loop
was positioned within a couple centimeters of the CPU of
the board, and the magnetic loop itself was attached to the
spectrum analyzer. This allowed for the real time EM signals
emanated from the CPU to be captured by the magnetic
loop, and displayed on the spectrum analyzer’s screen (which
updated at a rate of 0.01 ms). The spectrum analyzer would
display the values in a logarithmic decibel vs frequency graph,
and an example of a potential output can be seen in Figure 1.
The magnetic loop of choice was the EMRSS RF Explorer
H-Loop Near Field Antenna, and the spectrum analyzer used
was the Agilent E4443A.

Finally, the laptop was used to extract the EM side channel
data off of the spectrum analyzer in a readable format: a CSV
file. The CSV files collected are then checked for duplicates
that can occur due to the spectrum analyzer lagging, and the
averaging values are collected. These values are then inspected
via a machine learning algorithm, which will be discussed in
an upcoming section of this paper.

Fig. 1: Potential Spectrum Analyzer Output for One Snapshot
in Time

Fig. 2: Experimental Setup

To summarize: The averaging process occurs on the board,
which is running in an infinite loop. The attacker uses a
magnetic loop which is attached to the spectrum analyzer,
and positions it centimeters above of the CPU of said board
to capture the EM side channel emanations. These emanated
signals are then displayed on the spectrum analyzer in real
time. To ensure these real time side channel values are saved,
a laptop is connected to the spectrum analyzer to save the
real time displayed data in CSV files. The CSV files are
checked for duplicates, and the appropriate averaging values
are extracted (and will be used in a machine learning process
in the future). The experimental setup can be seen in Figure
2, and the flowchart for the procedure can be seen in Figure
3.

2

Fig. 3: Flowchart for Experiment Methodology

IV. EXPERIMENTS & RESULTS

A. Initial Results

The EM side channel data was collected on the averaging
process of various randomized numbers. To be able to directly
compare the results of the collected EM side channel, the ran-
domized numbers in the averaging process were constrained
within certain hierarchical ranges. The specific ranges for the
randomized values are as follows:

• 0.0-9.9 (100)
• 10.0-99.9 (101)
• 100.0-999.9 (102)
• 1000.0-9999.9 (103)
• 10000.0-99999.9 (104)
The constraints selected for these ranges are powers of 10,

and the values themselves are floating point numbers. Once a
range is selected, only random numbers from within that range
can be included in the randomized number averaging process,
as to preserve homogeneity, and create a clear contrast between
the outputted EM side channel results. As an example: This
allows for the results of the EM side channel of averaging
done on values between 0.0-10.0 to be compared directly to
the results of values between 10.0-99.9, to see if increasing
the size of the number being averaged can directly affect the
side channel output.

In the following part of this paper some key definitions
are used. “Time Sample” or “Sample” for short, references
a 45x1 array that is the resulting output of a single EM side
channel response in time. It is 45x1 as there are 45 frequencies,
and 1 time response. A “Group” refers to a cluster of samples,
typically between 5-50 of them clustered together. Assuming
5 time samples are “grouped”, the group would be an array
of size 45x5: 45 frequencies, and 5 time responses.

In this experiment, over 15,000 time samples of the av-
eraging processes were collected for each range. Once an
averaging process concluded, a new one with re-randomized
numbers within the set range would restart the process to
ensure more samples could be collected if needed. These
samples consisted of different parts of the averaging processes
that were captured, as well as different averaging processes
altogether (from the code restarting and new random numbers
being generated). These time samples were collected into an

TABLE I: The First 8 Rows of a Single Time Sample Output

Frequencies (MHz) Output (log10(dB))
25.000 -68.75
25.075 -78.344
25.150 -81.466
25.225 -93.07
25.300 -84.417
25.375 -100.531
25.450 -87.018
25.525 -100.654

... ...

Fig. 4: Sample Output Graph of an Averaging Process

excel sheet corresponding to their own range. An example
of a singular time sample output can be seen in Table I.
The rows correspond to frequencies (between 25-69 MHz),
and the values within the cells are in log10(dB). Whilst this
data was accurate, it was difficult to graph the values to
recreate exactly what was seen on the spectrum analyzer, as
the frequency sample ranges were too granular, leading to
too many sudden shifts in the graph instead of the smoother,
clearer images the spectrum analyzer produced. To combat
this, all non-integer frequency values collected were averaged
into the nearest larger integer frequency, as this was the case
in the images the spectrum analyzer naturally produced. The
resulting graphs were much more consistent and readable,
similar to the original graphs viewed on the spectrum analyzer.
An example of such an image can be seen in Figure 4.

B. Ensuring Data Quality and Grouping

After confirming the graphs were readable, and were repli-
cating what was seen on the screen of the spectrum analyzer,
the accumulated data was put through a quality checking
code. What this algorithm did was ensure that the collected
time samples did not have any external noise captured that
could skew the data. Common sources of noise could occur
from the spectrum analyzer re-aligning, or the clock cycles
changing. Additionally, if any of the components lagged, this
would also duplicate the data captured across multiple time
readings, so the quality checking code included a checker to
omit duplicated readings.

3

Fig. 5: Average and Rounded Mode of the Standard Deviation
of the EM Side Channel Outputs

Once the code finishes running, it creates an excel sheet
with all 15,000 samples collected from the same randomized
value range, where there are 45 rows for the 45 frequencies
between 25 MHz and 69 MHz, and each column represents
one captured data snapshot in time.

C. Differentiating the Results Manually

Whilst there was not a clear and abrupt change in the
data visible in the graphs or the finalized excel sheet, there
were slight changes in the maximum and minimum values
obtained within the cells. It was visually apparent that as the
range differences and the values within these ranges grew,
the standard deviation of these numbers grew as well. To
quantify this observation, the standard deviation of all the
columns within each of the finalized excel sheets were taken
and averaged. After averaging, an increase in the standard
deviation of the values collected from most time samples were
observed, but a linear increasing trend was not seen in the over-
all averages for each set, due to certain recorded time samples
having extremely low, or extremely high standard deviations.
However, when rounded to the second significant digit, the
mode of the standard deviations did yield an increasing trend.
This can be seen in Figure 5.

To attempt to avoid losing accuracy by rounding, and to
be able to work with smaller amounts of time samples to
confidently class them in a range, groups of 5-50 time samples
were created. These groups would help get a grasp of the
general region where the standard deviations would pile up for
each range, similar to finding a direct mode. Once these groups
were created, the help of machine learning was invoked.

D. Differentiating the Results Using AI

The aim with using machine learning to differentiate the re-
sults is to be able to work with fewer amounts of time samples.
Instead of using 15,000 samples to be able to determine which
range group a sample belongs in, the AI was trained on smaller
groups, from as little as 5 to as many as 50 time samples. For
reference, a single averaging process takes anywhere between
14 to 20 time samples to complete. Groups larger than 50

TABLE II: Average CNN Accuracies Achieved After 10 Runs
(Rounded Down To the Nearest Whole Number)

—m-n— Difference Accuracy Algorithm
4 93% CNN
3 60% CNN
2 56% CNN
1 54% CNN

were not tested as they forced the training sample size to be
too small to produce accurate results. To further increase the
chances of higher accuracy, the AI was asked to differentiate
between only 2 sample ranges at a time; the inputs of sample
range 10n would be compared to the inputs of sample range
10m, where n and m are distinct numbers between 0 and 4.

Once these sets were created, they were inputted into
several different learning algorithms: Random Forest (RF),
Support Vector Machine (SVM), Recurrent Neural Network
(RNN), and Convolutional Neural Network (CNN). Since the
largest difference in standard deviation observed in the manual
inspection was between 100 and 104, these two sets were
selected as the starting inputs (to be split into training and
testing later on) for all of these learning algorithms.

It is also important to note that these sets were shuffled
within themselves to increase homogeneity; the aim was to
group the hard to distinguish samples with easy to distinguish
ones to improve accuracy. Whilst this did indeed improve
accuracy overall, it also increased the standard deviation
achieved from the final accuracies of the machine learning
process itself: The results achieved would sway by 5%+/- from
their average accuracy. To combat this, all the final result of
these algorithms over 10 runs were taken and averaged. This
ensures the end accuracy obtained is not skewed to either end.

Whilst Random Forest and RNN failed to get more than
60% accuracy, SVM achieved on average 65% accuracy. The
CNN algorithm however, surpassed all others by achieving
85% accuracy on average, with up to 93% accuracy for group
sizes of 25. Thus for the testing of the other sample ranges, a
group size of 25 was chosen.

Expectedly, as the difference between the range difference
decreased, the accuracy also decreased. The CNN could only
achieve around 60% accuracy for groups of 10n and 10m,
where |m−n| = 3, and 54% for |m−n| = 2. For |m−n| = 1,
it achieved even worse at 52% on average. This goes to show
that while the AI is indeed useful for differentiating between
larger differences in the values of the averaging process, a
lot more samples are needed to achieve that same level of
accuracy for smaller differences. A final table of the accuracies
for the CNN algorithm can be seen in Table II. The other
algorithms were omitted, as they under-performed the CNN’s
results in each category.

V. APPLICATIONS & FUTURE WORK

Once improvements in terms of accuracy in granular cases
are made, this can be a dangerous tool for attacking centralized
servers working on sensitive data. An example of this would
be to attack a federated learning centralized server. Centralized

4

servers in federated learning processes are tasked with taking
player models, and averaging them to create a global model.
Using this improved EM side channel technique, it would be
more than possible to learn about the details of the player
models and the distribution of data amongst the federated
learning players via the collected side channel information.

VI. CONCLUSION

Side channels are a powerful class of attacks that can be
launched on hardware systems, and a significant amount of
attacks and defenses have been proposed based on them.
Recent research has shown that side channels can be assessed
at the granularity of a single processor, and even individual
instructions themselves [3]. This led to the idea of potentially
expanding upon this granularity by being able to determine
the contents within an instruction. In our case, the values and
instructions used in an averaging process were chosen.

In this paper, we have managed to show that using a
magnetic loop and a spectrum analyzer, we can determine the
range of the values being added in homogeneous averaging
processes on a micro-controller, with the only condition of
the attacker being able to position the magnetic loop within
centimeters of the micro-controller. We have also proven that
for larger differences in the values being added, it is possible to
use AI to determine which values are being added with as little
as 25 time samples needed. Overall we were able to confirm
which values were being averaged using the standard deviation
of the values obtained from the side channel signatures.

It is important to be able to use what was found in this
paper as a baseline, and improve upon the granularity and
scale to launch attacks, create defenses, and further dive into
the possibilities of what can be done on instruction level EM
side channels.

REFERENCES

[1] D. Agrawal, B. Archambeault, et al. The EM side-channel(s). In
Proceedings of Cryptographic Hardware and Embedded Systems (CHES),
pages 29–45, 2002.

[2] A. Bechtsoudis and N. Sklavos. Side channel attacks cryptanalysis
against block ciphers based on fpga devices. In Proceedings of the IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pages 460–461,
07 2010.

[3] R. Callan, A. Zajic, and M. Prvulovic. A practical methodology for
measuring the side-channel signal available to the attacker for instruction-
level events. In 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 242–254, Cambridge, UK, 2014.

[4] R. Callan, A. Zajić, and M. Prvulovic. Fase: Finding amplitude-modulated
side-channel emanations. ACM SIGARCH Computer Architecture News,
43(3S):592–603, 2015.

[5] M. G. Khun. Compromising emanations: Eavesdropping risks of com-
puter displays. The complete unofficial TEMPEST web page, 2003.
http://www.eskimo.com/∼joelm/tempest.html.

[6] E. De Mulder et al. Electromagnetic analysis attack on an fpga imple-
mentation of an elliptic curve cryptosystem. In EUROCON 2005 - The
International Conference on ”Computer as a Tool”, pages 1879–1882,
Belgrade, Serbia, 2005.

[7] M. Vuagnoux and S. Pasini. Compromising electromagnetic emanations
of wired and wireless keyboards. In USENIX security symposium,
volume 8, pages 1–16, 2009.

[8] B.B. Yilmaz, R.L. Callan, M. Prvulovic, and A. Zajić. Capacity of the em
covert/side-channel created by the execution of instructions in a processor.
IEEE Transactions on Information Forensics and Security, 13(3):605–
620, 2017.

5

