WIP: Towards Privacy Compliance by Design
in the Matter Protocol

Yichen Liu*, Jingwen Yanf, Song Liaof, Long Cheng' and Luyi Xing*
*Indiana University Bloomington
fClemson University
iTexas Tech University
*{liuyic, luyixing} @iu.edu, T{jingwey, Icheng2} @clemson.edu, ¥song.liao@ttu.edu

Abstract—Privacy compliance has become a significant concern
for IoT users as the popularity of diverse IoT devices continues to
grow. However, the heterogeneous nature of IoT brings challenges
in designing effective privacy-preserving mechanisms. While
Matter is a promising unifying connectivity protocol for IoT, it
currently offers limited privacy compliance features. In this po-
sition paper, we propose the MATTERCOMPLIANCE framework,
which achieves privacy compliance by design within the Matter
protocol. The design of MATTERCOMPLIANCE follows three
principles: providing reliable and proactive privacy disclosure for
users, offering interfaces for developers to conveniently integrate
privacy mechanisms, and enabling users to manage their privacy
settings. By integrating privacy-preserving capabilities in the
Matter protocol, MATTERCOMPLIANCE fills the gap in offering
a unified solution for privacy compliance in IoT systems.

I. INTRODUCTION

Privacy violations and compliance challenges have raised
significant concerns among regulators and users. Many reg-
ulations and policies have been made to address the widely
rising privacy concerns, such as the European General Data
Protection Regulation (GDPR) [1] and the California Con-
sumer Privacy Act (CCPA) [2]. The regulators define users’
privacy rights such as the right to view current data collection,
the right to be forgotten, and the right to control the data
collection process.

Internet of Things (IoT) is a field raising privacy compliance
concerns, as the devices are equipped with a bunch of sensors
to detect and collect information from the surrounding envi-
ronment and the users (e.g., user weight, motion, environment
temperature). Unauthorized information exposure from IoT
devices through network traffic can lead to privacy breaches
[3], [4]. Besides, recently several works propose methods to
detect privacy incompliance by analyzing IoT companion apps
[5], [6] or devices [7]. For example, GDPR defines what kind
of data is considered to be personal data, and the work [5]
summarizes privacy-sensitive data items in IoT contexts, and
detects improper disclosures. In the meanwhile, some works
focus on designing privacy-preserving mechanisms to enforce

Workshop on Security and Privacy in Standardized IoT (SDIoTSec) 2025
24 February 2025, San Diego, CA, USA

ISBN 979-8-9919276-6-6
https://dx.doi.org/10.14722/sdiotsec.2025.23048

www.ndss-symposium.org

the regulations in IoT. For example, works [8], [9] propose
solutions for privacy disclosure such as security and privacy
labels for IoT devices. Other works [10] introduce methods to
guide developers to design privacy compliant IoT applications.
To achieve the privacy goal in such a scenario, it relies
on the device vendors and app developers to provide such
privacy disclosure mechanisms. However, there are challenges
in existing solutions. First, there is a lack of unified privacy
disclosure mechanisms for both IoT devices and companion
apps, making it difficult for developers to correctly enforce the
regulations in diverse IoT scenarios. Second, there are neither
effective ways to dynamically notify end-users about current
privacy collections, nor to dynamically configure the privacy
settings of their devices.

Matter is an emerging IoT application layer standard [11]
introduced by the Connectivity Standards Alliance (CSA),
which provides unified mechanisms for better enhancing in-
teroperability across devices and vendors. It has been widely
adopted by large companies such as Google home [12], Apple
Home [13], and Amazon Alexa [14]. Although Matter supports
application layer secure connection, it by design does not
directly support privacy disclosure mechanisms for product
developers to design privacy-preserving applications.

To address the current challenges, in this position paper,
we present the MATTERCOMPLIANCE framework based on
Matter, leveraging its inherent interoperability across different
devices and vendors. The key idea is to extend the current
Matter Data Model to carry additional privacy disclosure, and
provide interfaces (commands) for controllers and users to
access and configure. The framework follows three design
principles: 1) proactive privacy disclosure, 2) unify interfaces
for developers that are easy to integrate with various devices,
and 3) configurable privacy settings.

II. BACKGROUND
A. Matter Device Data Model

The architecture of Matter protocol is divided into layers for
different responsibilities [11] (see Figure 1). To better support
the functionality of the application layer-which contains logic
to display the characteristics of IoT devices or control them-
Matter introduces the Data Model layer which defines data and
elements into structures that the application layer can operate
on. To extend the Matter protocol to support proactive privacy

/ Matter stack | Fabric
Application Node A Node
Data Model Endpoint 0 Endpoint ...

Cluster 1

Interaction Model .
Attribute

Attribute(Event)
Command

Action Framing

Security

Cluster 2
Message Framing and Routing uster

Transport Layer

Cluster ...

Fig. 1: Matter Protocol Stack and Data Model.

disclosure, it is necessary to understand how the device data
is structured and managed.

In the Data Model layer, the specification defines elements
and access qualities. Primary elements include fabric, node,
endpoint and cluster. A fabric is a security domain in which
set of nodes can be identified and communicate with each
other by accessing Data Model elements. A node represents
a unique instance of a Matter device in a fabric with an IP
address. A full product such as a smart camera or speaker
can be abstracted as a node. A node is a collection of one
or more endpoints, where endpoints are used to indicate
device types such as a sensor device or light device, and
the different endpoints support different functions. Clusters
are the lowest independent functional building block elements.
Different endpoints contain collections of different clusters. A
cluster defines a client and server side that correspond with
each other during interactions. It contains elements including
attributes, events and commands. The server cluster provides
attribute data, events and commands, and the corresponding
client cluster initiates interactions such as invoking commands.

Cluster attributes, events and commands shall define their
access and privilege. The specification defines three types of
access, including read, write and invoke access. Read access
for an element means a client cluster can make a request for
data values associated with it. Write access means a client
cluster can request to modify attribute data. Invoke access
enables a client cluster to execute a predefined command.

B. Privacy Definition Under IoT

To achieve the goal of designing the privacy-preserving
framework, it is essential to identify and define privacy-
sensitive data within the IoT usage context. Following the
approach of the previous study [5], we adopt the categories
of privacy-sensitive data items in IoT devices, including
device tracking data (e.g., device id, hardware id, IP address),
sensor data (e.g., lock location, body weight, air quality) and
device-attached data (e.g., device name, camera image, turn
on time). According to the GDPR [1], device tracking data
and biometric data (a subset of sensor data) are classified as
personal data because they can identify or represent a natural
person. While other data items in these categories such as
the device-attached data (e.g., device metadata like device
name and Bluetooth information, device usage data like door
status and favorite shows, and timing data like turn on time,

driving speed, and bed time) are not explicitly addressed in
the regulation, prior works [15], [16], [17], [18] indicate that
such information can be exploited by vendors or attackers
to understand or infer user preferences and privacy norms or
behaviors associated with these devices.

The clusters defined by the Matter protocol can include
these three categories of privacy-sensitive data. For example,
the Basic Information cluster includes attributes such as Ven-
dorID and ProductID, while the WiFi Network Diagnostics
cluster contains BSSID, all of which are considered device
tracking data. The Temperature Measurement cluster includes
attributes like MeasuredValue, the Door Lock cluster includes
attributes such as LockState, AutoRelockTime, and DoorState
attributes, and the Window Covering cluster includes Current-
PositionLift. These attributes are considered sensor data or
device usage data. Therefore, the Matter Data Model serves
as a suitable foundation for privacy disclosure.

III. FRAMEWORK DESIGN
A. Overview

To achieve the privacy goal, we follow three key design
principles when integrating privacy mechanisms into Matter-
enabled systems: 1) enhancing privacy data disclosure mecha-
nisms, 2) enabling aggregation across multiple devices, and 3)
incorporating configurable privacy features. These principles
ensure precision, transparency, scalability, and maintain com-
pliance with current privacy regulations such as the GDPR [1].

First, the system is designed to provide accurate and proac-
tive privacy disclosure by leveraging the Data Model of the
Matter protocol. The Data Model layer is below the application
layer, and organizes device data in a will-defined structure, en-
abling precise data collection. Unlike current solutions that are
integrated by developers after app development, we propose
a privacy compliance by design framework. that more focus
on collecting privacy data usage on the application level and
suffer from precision issues (e.g., [5]), the Matter framework
systematically transfers device data to controllers. Second, the
system supports aggregation across multiple devices, which
aligns with the multi-device nature of real-world IoT envi-
ronments. While maintaining compatibility with the current
Matter framework, the privacy design minimizes efforts to de-
velopers and provides flexibility to integrate or disable privacy-
related features as needed. It ensures that developers can
incorporate the privacy extensions into their products without
significant modifications to their workflows, and even when
for multiple devices usage scenarios. The ability to aggregate
privacy data disclosure mechanism across devices enhances
usability. Finally, the design incorporates configurable privacy
features to help users better control their data. In compliance
with current regulations, our design provides mechanisms to
configure privacy settings (e.g., disabling the collection of
device location data). Matter provides such capabilities by
commands. The controller can use commands to configure
current privacy settings.

Following the three design principles, we propose the MAT-
TERCOMPLIANCE framework (see Figure 2). On the device side,

Device v

[

Device Application [
1

Controller

N 1

1 1

| 1

! Commarlds Privacy Manager !

— Command Handler& Application Logic
1 T | 1
Results
: : I Privacy Disclosure Collector —» Privacy Notice Generator 5 Display :
1

1 i 1 1! 1

! Device Node . : . ‘ ot .

" 1y . . Configuration 1! . 1

| Endpoint 1 Endpoint 0 1y Privacy Setting Manager T Configure 1

1 1 I I

: - i! !

I Cluster 1 Cluster 1 LS - ’

| W R ERGEEE LT L L PP EEPP SR PP PR .

1

: Cluster 2 Cluster 2 : 1 Privacy-Sensitive |

| .

| 1| ZAP File Attributes 1

| Cluster 3 Cluster 3 I z‘? Privacy Disclosure —* o !

! i Generator « T — :
1 : 1 rivacy-Nonsensitive)

Privacy Cluster f - Y Predefined |

: Y N P! Classifier Attributes Clust |

|) : usters |

Fig. 2: MATTERCOMPLIANCE Framework Overview.

we introduce a new privacy cluster which contains all cluster

attributes and indicates whether they are privacy-sensitive. To
support configurable privacy settings, new commands related ;

to the privacy clusters should be added, which introduce new
application logic and handlers in the device application in the
Matter stack. On the controller side, based on the user query,
the component Privacy Notice Generator should be able to
generate privacy notice and send to users. The Privacy Data
Collector can use commands to read the attributes and values
in the privacy cluster, and gather the privacy data for the
Privacy Notice Generator. Users can also configure current
privacy settings (e.g., stop collecting the device location infor-
mation), and the configurations will be replaced by commands
to enforce the settings.

B. Privacy Disclosure Generator

The Matter protocol supports incorporating custom clusters
and commands, referred to as extensions. To implement these
extensions, first we need to define the extended Data Model,
including the basic information about the cluster, custom
Matter attributes and commands. The definition should be
placed in an XML file. For the custom privacy cluster, each
attribute is defined by combining the cluster name with the
attributes name (e.g., “BasicInformation_VendorID”). The at-
tribute value type is set to enum8 (see List 1 as attribute type
design). All attributes are categorized into privacy-nonsensitive
data and privacy-sensitive data. After defining the Data Model,
privacy cluster related source code should be implemented.
Methods including Read(), Write(), InvokeCommand() should
be overridden to handle incoming commands. Additionally,
necessary references to the cluster such as XML parsing
tests, JSON file used by ZAP GUI, must be added, followed
by regenerating all code. After all these steps, the privacy
cluster can be added to the device’s ZAP file by enabling it
within ZAP, a tool used for configuring enabled clusters and
commands.

enum PrivacyDisclosureEnum: enum8 {
not-privacy-sensitive-data = 0;
privacy-sensitive-data = 1;

Listing 1: Attribute Type Design.

In our privacy cluster design, we want to set the attributes
and values to data items and the corresponding privacy disclo-
sures. To do so, we introduce another component named Pri-
vacy Disclosure Generator. It first collects the current clusters
and attributes. The clusters enabled by the device can be found
in a ZAP file, which is a JSON format file containing enabled
clusters selected by device vendors/developers. In this file, it
might contain some of the predefined clusters, and vendor
customized clusters. The Privacy Disclosure Generator collects
all enabled clusters and the attributes. Then, the collected data
will be sent to a classifier, which has already been trained to
mark the input data as privacy sensitive data or nonsensitive
data in IoT contexts. Predefined clusters and attributes in XML
format in Matter specification which can be found in the Mat-
ter repository [19] can serve as materials to train the classifier.

C. Privacy Cluster Design

The MATTERCOMPLIANCE framework introduces a novel
privacy disclosure mechanism. This is achieved by the design
principles outlined in subsection III-A. Following the second
principle, the integrating component is designed to avoid sig-
nificant implementation changes to the existing Matter frame-
work, ensuring seamless integration with various vendors and
devices. Additionally, the framework design should provide
configurable capability to controllers and users.

To enable privacy disclosure, MATTERCOMPLIANCE intro-
duces an additional cluster, referred to as the Privacy Cluster,
which is under Endpoint 0. Endpoint O is reserved for the
Utility Clusters that contain management and diagnostic fea-
tures of a Matter node, and every Matter node includes such
an endpoint. Utility Clusters serve special purposes, providing

functionalities such as device paring and software update.
Other clusters are Application clusters, which are specific to
different applications (e.g., Door Lock cluster, Fan Control
cluster). The Privacy Cluster can serve as a utility cluster to
provide privacy disclosure. Matter protocol supports adding
customized clusters building on top of the Matter stack, and
the Privacy Cluster can be implemented this way. The process
involves designing the cluster’s attributes and values. This
design requires first aggregating the attributes and values into
an XML file to define the cluster data structures. Then the
ZAP file of the device, which is a JSON file containing all
enabled clusters, needs to be updated to include the new
clusters. Finally, the modified ZAP file is used to generate the
corresponding C++ code, which aggregate the newly defined
Privacy Clusters into the system.

The Privacy Cluster by design is on the device side. To
provide configurable capabilities to users, MATTERCOMPLI-
ANCE introduces commands to help controllers and users to
configure the current privacy practice. To support privacy-
related commands, application layer handling logic should
be implemented. Then, controllers will be able to access
and control the privacy related data and settings through the
predefined commands. After enabling the new clusters, the
privacy disclosure collector (part of the privacy manager)
should be able to read the attributes of the new Privacy
Cluster, gather all privacy-sensitive data and send it to Privacy
Notice Generator to generate user notice. Additionally, users
can control the privacy setting manager to send commands to
the privacy cluster, to adjust privacy settings in the real time
(detailed design see subsection III-E).

D. Privacy Notice Generator

To deliver privacy notice to users, we designed Privacy
Notice Generator. In this paper, we use Alexa Skill as an
instance to illustrate the Privacy Notice Generator design. The
skill first asks the Component Privacy Data Collector to send
commands to the device and retrieve the attributes and values
of the privacy cluster, which contains all privacy-sensitive data
related to the device. Next, the skill integrates Large Language
Model (i.e. ChatGPT) to generate privacy notices using trained
prompt and predefined template based on the the attributes and
values of the privacy cluster. Moreover, we add serval Intents
to capture users’ verbal requests in the skill’s front-end code
and corresponding IntentHandlers to provide a response to
user and execute skill functions in the backend code. This
mechanism ensures a seamless and interactive way for users
to access privacy-related information.

E. Privacy Settings Manager

This subsection discusses how MATTERCOMPLIANCE satis-
fies the third design principle: enabling configurable privacy
settings. To achieve this, several components are introduced,
including the privacy setting manager, commands for the
privacy cluster and associated command handlers and logic.

The privacy setting manager is located within the controller
and takes user queries as inputs (e.g., ‘Stop collecting my

device’s product id’). Users may want to configure the current
privacy settings (e.g., whether to provide location information
or VendorID to the controller), and the privacy setting manager
processes these configure queries by sending corresponding
commands to the device application layer, which enables the
fine-grained management of specific privacy-sensitive data.

As illustrates in subsection III-C, commands to the Privacy
Cluster and the corresponding application layer handler and
logic should be implemented on the device side to provide
configurable capabilities. Designing commands to control pri-
vacy settings requires considering three key conditions: 1)
users must be able to control the collection of specific privacy-
sensitive data at runtime; 2) managing privacy-sensitive data
must not interfere with the device commissioning or secure
connection process; 3) managing privacy-sensitive data must
not disrupt the functional logic on the controller side. The
reasons to the three requirements are as follows: First, enabling
users to control the collection of privacy-sensitive data at
runtime is convenient. If users are required to repair or power
off the device to configure privacy settings, they may unwilling
to do so. Therefore, updating the corresponding ZAP file and
recompiling it into C++ code to configure privacy settings
would create usability issues for end-users. Second, some
privacy-sensitive data, such as vendor id, is closely tied to
the commissioning process. Modifying this data could prevent
the device from connecting to the Matter fabric. Third, the
controller’s functional logic, such as controlling a light or
an air purifier, should be carefully managed. As incorrectly
disabling such functions might lead to errors or crashes in the
applications like the Google Home app.

We propose a design for commands and logic that adheres
to these conditions. For the first condition, controlling
the collection of data at runtime, the device application
layer should implement command handlers (e.g., the
HandleDisableProductNameCommand function), logic and
necessary callback functions to support commands. These
commands will manage the values of corresponding attributes
(e.g., ProductName), disable entire privacy-sensitive cluster
if needed, and prevent attribute values from being updated
by the original logic. To meet the second and the third
conditions, the framework introduces a blacklist mechanism
to mark commissioning-related privacy-sensitive data and
controller application-related functional data as uncontrollable
(e.g., users should not disable thermometer temperature or
light on/off by commands). Items included in the blacklist
should be validated through real-world device testing. The
mechanism ensures users cannot take control of such data,
maintaining the integrity of the device’s core functions.

IV. CONCLUSION

Our research introduces MATTERCOMPLIANCE, a privacy
compliance framework within the Matter Protocol. It intro-
duces a new Privacy Cluster and related components to pro-
vide a unified solution aligned with regulations and policies.
The framework follows three principles: providing proactive
privacy disclosure for IoT devices, unifying interfaces for

developers to integrate across diverse IoT devices from dif-
ferent vendors, and enabling configurable privacy settings.
Additionally, we design privacy notices to users over voice and
user interfaces to manage current privacy settings. For future
work, we aim to develop additional mechanisms to enhance
privacy-preserving features. These include richer privacy dis-
closure items, improved privacy notice for users, and more
user-friendly configurations for greater control over privacy
settings.

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[9]

[10]

(11]
[12]
[13]
[14]
[15]
[16]

[17]

(18]

[19]

REFERENCES

“General data protection regulation,” https://gdpr-info.eu/, 2024.
“California consumer privacy act,” https://oag.ca.gov/privacy/ccpa, 2024.
J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and
H. Haddadi, “Information exposure from consumer iot devices: A multi-
dimensional, network-informed measurement approach,” in Proceedings
of the Internet Measurement Conference, 2019, pp. 267-279.

D. Y. Huang, N. Apthorpe, F. Li, G. Acar, and N. Feamster, “Iot
inspector: Crowdsourcing labeled network traffic from smart home
devices at scale,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 4, no. 2, pp. 1-21, 2020.
Y. Nan, X. Wang, L. Xing, X. Liao, R. Wu, J. Wu, Y. Zhang, and
X. Wang, “Are you spying on me?{Large-Scale} analysis on {IoT}
data exposure through companion apps,” in 32nd USENIX Security
Symposium (USENIX Security 23), 2023, pp. 6665-6682.

D. Schmidt, C. Tagliaro, K. Borgolte, and M. Lindorfer, “lotflow:
Inferring iot device behavior at scale through static mobile companion
app analysis,” in Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, 2023, pp. 681-695.

P. Liu, S. Ji, L. Fu, K. Lu, X. Zhang, J. Qin, W. Wang, and W. Chen,
“How iot re-using threatens your sensitive data: Exploring the user-data
disposal in used iot devices,” in 2023 IEEE Symposium on Security and
Privacy (SP). 1EEE, 2023, pp. 3365-3381.

P. Emami-Naeini, Y. Agarwal, L. F. Cranor, and H. Hibshi, “Ask the
experts: What should be on an iot privacy and security label?” in 2020
IEEE Symposium on Security and Privacy (SP). 1EEE, 2020, pp. 447—
464.

P. Emami-Naeini, J. Dheenadhayalan, Y. Agarwal, and L. F. Cranor, “An
informative security and privacy “nutrition” label for internet of things
devices,” IEEE Security & Privacy, vol. 20, no. 2, pp. 31-39, 2021.
N. Alhirabi, S. Beaumont, J. T. Llanos, D. Meedeniya, O. Rana,
and C. Perera, “Parrot: Interactive privacy-aware internet of things
application design tool,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 7, no. 1, pp. 1-37, 2023.
“Matter,” https://csa-iot.org/all-solutions/matter/, 2024.

“Google home app,” https://home.google.com/welcome/, 2024.

“Apple Home App,” https://www.apple.com/home-app/, 2024.
“Amazon Alexa,” https://developer.amazon.com/en-US/alexa, 2023.

G. Chu, N. Apthorpe, and N. Feamster, “Security and privacy analyses
of internet of things children’s toys,” IEEE Internet of Things Journal,
vol. 6, no. 1, pp. 978-985, 2018.

T. Davenport and J. Lucker, “Running on data: Activity trackers and the
internet of things,” Deloitte Review, vol. 16, pp. 5-15, 2015.

N. Apthorpe, Y. Shvartzshnaider, A. Mathur, D. Reisman, and N. Feam-
ster, “Discovering smart home internet of things privacy norms using
contextual integrity,” Proceedings of the ACM on interactive, mobile,
wearable and ubiquitous technologies, vol. 2, no. 2, pp. 1-23, 2018.
N. Abdi, X. Zhan, K. M. Ramokapane, and J. Such, ‘“Privacy norms
for smart home personal assistants,” in Proceedings of the 2021 CHI
conference on human factors in computing systems, 2021, pp. 1-14.
“Matter Repository,” https://github.com/project-chip/connectedhomeip/
tree/master/data_model/1.4/clusters, 2024.

https://gdpr-info.eu/
https://oag.ca.gov/privacy/ccpa
https://csa-iot.org/all-solutions/matter/
https://home.google.com/welcome/
https://www.apple.com/home-app/
https://developer.amazon.com/en-US/alexa
https://github.com/project-chip/connectedhomeip/tree/master/data_model/1.4/clusters
https://github.com/project-chip/connectedhomeip/tree/master/data_model/1.4/clusters

	Introduction
	Background
	Matter Device Data Model
	Privacy Definition Under IoT

	Framework Design
	Overview
	Privacy Disclosure Generator
	Privacy Cluster Design
	Privacy Notice Generator
	Privacy Settings Manager

	Conclusion
	References

