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Abstract—This paper presents an integration of Federated
Learning (FL) with Big Data Analytics (BDA) for Intelligent
Transportation Systems (ITS). By leveraging the decentralized
nature of FL, the framework enhances privacy, reduces latency,
and improves scalability, addressing key limitations of traditional
BDA approaches. This research demonstrates the potential of
FL to revolutionize data analytics in ITS by enabling real-
time applications and facilitating personalized insights. The key
contributions of this research include the integration of FL with
BDA to tackle traditional BDA challenges, the implementation
of FL algorithms within the proposed integrated framework,
and a comprehensive performance and scalability analysis. Ad-
ditionally, the paper presents the development and validation of
a specialized ITS dataset designed for FL environments. These
contributions collectively highlight the transformative potential
of FL in optimizing traffic management and public transporta-
tion systems through efficient and scalable data analytics. We
demonstrate FL’s capability to efficiently manage and analyze
ITS data while maintaining user privacy and scalability. Our
findings reveal that FedProx achieved the highest global accuracy
at 79.61%, surpassing FedSGD at 79.10% and FedAvg at 78.01%.

I. INTRODUCTION

The Internet of Things (IoT) has transformed many sec-
tors, including Intelligent Transportation Systems (ITS), where
connected devices generate vast amounts of Big Data related
to transportation activities [1], [2]. This data can improve
traffic management and enhance travel experiences, but it also
presents significant challenges, particularly around privacy,

and the scalability. Traditional methods struggle to manage the
diverse and large-scale data generated by ITS, leading to inef-
ficiencies, high latency, and privacy concerns [3]. Centralizing
sensitive transportation data increases the risk of breaches,
while the volume and variety of data complicate real-time
decision-making and personalized insights. Transferring large
data volumes also limits bandwidth, hindering timely model
training and inference [4].

FL addresses these challenges by performing computations
locally on devices and sending only model updates to a central
server, reducing the need to transfer raw data [5]. This decen-
tralized approach improves privacy, security, and efficiency,
making FL a valuable alternative to centralized methods. FL
allows data to remain on local devices while only sharing
model updates, which enhances privacy, reduces latency, and
better suits the distributed nature of ITS data sources [6],
[7]. Algorithms like FedAvg, Fed-SGD, and FedProx address
challenges related to non-identically distributed data, making
them well-suited for managing Big Data in ITS environments
[8], [9].

This paper integrates FL with BDA to overcome classi-
cal BDA challenges. It effectively utilizes FL to optimize
traffic management and implements FL algorithms within an
integrated BDA framework to enhance public transportation
systems. Additionally, we contribute by developing and val-
idating an ITS dataset for FL environments and conducting
comprehensive performance and scalability analyses of FL
algorithms to improve urban transportation efficiency and
accessibility. This paper also evaluates the performance of
various FL algorithms in handling ITS Big Data. By curat-
ing and preparing an ITS dataset for FL for collaborative
model training, this study explores the impact of different
FL algorithms, including Fed-SGD, FedAvg, and FedProx.
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The findings demonstrate the potential of FL in modernizing
transportation systems through real-time, scalable analytics.
The key contributions of this research are:

• Integration of FL with BDA to Overcome Classical BDA
Challenges

• Effective Utilization of Federated Learning
• Implementation of FL Algorithms in an Integrated BDA

Framework
• Development and Validation of ITS Dataset for FL En-

vironment
• Comprehensive Performance Analysis of FL Algorithms
• Scalability Analysis

II. RELATED WORK

The IoT has transformed many industries by enabling
billions of devices to communicate and share data in real
time [10]. IoT is pivotal in improving traffic management,
reducing accidents, and enhancing the overall travel experience
for commuters [11]. IoT-enabled ITS generates vast amounts
of Big Data, encompassing vehicle telemetry, traffic patterns,
passenger behaviors, and environmental conditions, which can
be leveraged to optimize transportation systems [13]. BDA
in ITS is essential for enabling real-time decision-making,
predictive modeling, and system optimization [14]. Big Data
in ITS presents numerous challenges, especially concerning
privacy and data management. The data collected is often
personal and location-sensitive, raising serious privacy con-
cerns about unauthorized access or misuse. Moreover, data
heterogeneity from various sources and the need for real-
time processing make it challenging to use ITS Big Data
[15] efficiently. Traditional methods struggle with these vast,
diverse datasets, leading to inefficiencies and high latency,
making them unsuitable for real-time analytics in ITS [16].

FL has emerged as a promising solution to these issues. FL
enables decentralized model training, allowing data to remain
on local devices while sharing only model updates with a
central server, preserving privacy and reducing the need for
large-scale data transfers [17]. This approach aligns well with
the distributed nature of ITS data sources, reducing latency and
ensuring scalability as ITS networks grow [18]. FL provides
a flexible framework that helps mitigate privacy risks and
computational inefficiencies while ensuring timely decision-
making in ITS. Several FL algorithms have been developed
to address specific challenges. FedAvg is widely used for
aggregating local model updates and training global models
[19]. Its weighted and unweighted versions enable nuanced
model updates based on the significance of individual data
sources. FedSGD simplifies the process by using a single-step
update per client. FedProx, on the other hand, is designed
to handle non-identically distributed data, a common issue
in real-world datasets [20]. The adaptability of FedAvg with
various optimizer schedules further enhances its versatility,
making it suitable for large-scale, complex ITS environments
[21]. These algorithms collectively provide a powerful toolkit
for managing Big Data challenges in IoT-enabled ITS, ensur-
ing both scalability and efficiency.

III. CLASSICAL BDA FRAMEWORK

BDA frameworks are designed to manage the processing,
analysis, and storage of large datasets. This streamlined frame-
work supports the entire BDA process from data collection
to visualization, enabling effective decision-making. The key
stages are highlighted in Table I. The stages include:

• Data Collection: Data is gathered from various sources
like IoT devices, sensors, and online platforms.

• Data Integration: This step merges data from multiple
sources into a unified format, involving data integration,
cleaning, and transformation.

• Data Storage: Collected data is stored efficiently us-
ing Data Lakes or Warehouses with cloud storage and
Hadoop often utilized for this purpose.

• Data Preprocessing: This stage involves cleaning and
transforming data to remove inaccuracies and prepare it
for analysis.

• Data Processing and Analysis: This phase extracts
insights from the data using techniques like descriptive,
predictive, and prescriptive analytics.

• Data Visualization: It involves presenting the analy-
sis through visualizations like charts, graphs, and dash-
boards.

The data framework begins with the Data Collection phase,
where data is gathered from a variety of sources such as
IoT devices, sensors, and online platforms. This phase often
faces challenges in managing the volume and variety of data,
ensuring that the data is of high quality and suitable for
further processing. Ensuring consistency and accuracy during
collection is critical, as data that is not properly gathered
can lead to complications in later stages. The data moves
to the Data Integration phase after collection, where it is
merged from multiple sources into a unified format. This
step includes integrating, cleaning, and transforming the data
to ensure consistency and compatibility across different data
formats and sources. Tools such as ETL (Extract, Transform,
Load) and middleware solutions play a crucial role here,
helping to overcome challenges like format inconsistencies,
data redundancy, and quality issues. Effective data integration
ensures that the data is reliable and can be processed efficiently
in subsequent steps.

Data Storage is used to stored data in systems like Data
Lakes or Data Warehouses. These storage solutions must
be scalable to handle large datasets and secure to protect
sensitive information. Cloud storage solutions and distributed
storage systems like Hadoop are frequently used to meet these
demands. Proper storage infrastructure enables efficient access
to data, allowing for smooth data processing. In the Data
Preprocessing stage, the stored data is cleaned and transformed
to prepare it for analysis. This involves handling missing or
incomplete data, removing inaccuracies, and converting the
data into a usable format. Python and R are standard tools used
during this phase to automate and streamline data-cleaning
tasks.
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In Processing and Analysis, insights are extracted from
the data using various analytical techniques. Analyzing large
datasets requires specialized skills to apply these algorithms
effectively, making this stage one of the most critical for
deriving actionable insights. Analysts must choose the proper
methods and algorithms to interpret the data accurately. The
final stage is Data Visualization, where the insights gained
from the analysis are presented in a visually accessible format,
such as charts, graphs, and dashboards. This is essential in
communicating findings to non-technical stakeholders who
may need to become more familiar with complex data analysis.
Effective data visualization turns raw data into a story that can
guide business strategies and actions.

A. Classical BDA Challenges

Big Data presents technical, ethical, and organizational
challenges. Ensuring data quality is a primary hurdle, as the
unstructured and diverse data from multiple sources often
contains inaccuracies, making analysis difficult and leading to
potential misinformed decisions [22]. Data integration across
various formats and systems is essential yet challenging for
accurate insights. Despite reduced storage expenses, managing
costs remains significant when considering the entire infras-
tructure required [23]. Technological advancements necessitate
organizations to rapidly adapt to new tools and methods for
processing growing data volumes. Privacy is a significant con-
cern, especially with the risks of data breaches in centralized
systems [24]. Bias and discrimination are also concerns, as
unrepresentative data can lead to skewed analytics, impacting
decisions in areas like hiring or law enforcement.

In ITS, the complexity of managing large-scale data and
ensuring the privacy of sensitive travel information is a no-
table challenge. Processing this data in real-time demands
significant infrastructure investment. Moreover, protecting in-
dividual privacy becomes even more critical as ITS expands,
particularly with the advent of connected and autonomous
vehicles, contributing to smart cities and sustainable urban
mobility. Federated Learning (FL) offers a promising solution
to many challenges by decentralizing data processing, address-
ing privacy concerns, and improving scalability, latency, and
bandwidth use. FL allows models to be trained on diverse
datasets without compromising data integrity, fostering a se-
cure and efficient Big Data ecosystem that supports innovation
in analytics. The key challenges are highlighted in Table II.
Key challenges include:

• Privacy Concerns: Centralized data raises risks of
breaches, especially in sectors like ITS.

• High Latency: Centralized processing leads to delays in
real-time applications, such as ITS.

• Limited Scalability: Scaling machine learning across
many devices is complex without FL.

• Lack of Personalization: Traditional centralized models
can compromise privacy in personalized applications.

• Homogeneity of Data Sources: Centralized approaches
may fail to handle diverse data sources effectively.

• Bandwidth Constraints: Transferring large datasets
without FL consumes significant bandwidth.

• Delayed Real-time Learning: Centralized models can
slow down dynamic decision-making.

• Inefficient Resource Utilization: Without FL, computa-
tional resources are often underutilized.

• Limited Data Inclusivity: Traditional models may miss
data from remote devices, affecting model performance.

• Stagnation in Innovation: Without collaborative frame-
works like FL, innovation in Big Data analytics can be
limited.

IV. FEDERATED LEARNING FOR BDA IN ITS

The integration of FL with IoT-enabled ITS addresses key
Big Data challenges in these systems [25], as shown in Figure
1. Due to bandwidth limitations and privacy concerns, the
immense volume and variety of data generated by IoT devices
and ITS make traditional centralized data processing impracti-
cal. IoT devices and ITS infrastructure, like traffic sensors and
vehicular systems, produce continuous data streams. FL offers
a solution by enabling on-device learning, where local models
are trained, and only aggregated model updates are shared with
a central server, reducing data transmission and preserving
privacy [26]. FL can facilitate real-time traffic management
in ITS by processing data from various local traffic sources,
allowing timely predictions and adjustments. Similarly, in IoT,
FL enables devices to adapt in real-time while minimizing
large-scale data transfers and protecting user privacy [27].
As IoT and ITS ecosystems expand, FL will be crucial in
improving efficiency and addressing privacy concerns [28].

This study explores the use of large-scale data in ITS,
focusing on privacy protection and scalability. With increas-
ing privacy concerns and the complexity of Big Data, FL
emerges as a practical solution [29]. Our research evaluates
the performance of various FL algorithms applied to ITS data,
aiming to balance privacy, efficiency, and scalability. Using
a dataset of 15,000 high-quality images from Udacity and
Roboflow optimized for the YOLO object detection system,
we conduct experiments in collaborative learning with trans-
portation imagery [30]. The study highlights the effectiveness
of FL algorithms in processing ITS Big Data through col-
laborative learning rounds, showing promising scalability. We
assess algorithms such as Fed-SGD, FedAvg, and FedProx,
examining their performance with different optimizations. The
study provides insights into how FL can be applied to ITS
environments, focusing on privacy and real-time processing
needs.

The main contributions include:

• Big Data Preparation for FL: Curated and tailored an
ITS dataset specifically for FL experiments.

• Decentralized Data Processing: Demonstrated the effec-
tiveness of FL for privacy-preserving, decentralized data
processing.

• Collaborative Learning: Showed promising scalability
and adaptability of FL across communication rounds.
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TABLE I
CLASSICAL BDA FRAMEWORK

Stage Description
Data Collection Data is gathered from various sources like IoT devices, sensors, and online platforms. The main

challenge is managing the volume and variety of data while ensuring quality.
Data Integration This step merges data from multiple sources into a unified format, involving data integration,

cleaning, and transformation.
Data Storage Collected data is stored efficiently using Data Lakes or Warehouses. Challenges include ensuring

scalability, security, and integrity.
Data Preprocessing This stage involves cleaning and transforming data to remove inaccuracies and prepare it for

analysis. Python and R are commonly used to handle missing or incomplete data.
Data Processing and
Analysis

This phase extracts insights from the data using techniques like descriptive, predictive, and
prescriptive analytics and machine learning.

Data Visualization The final step involves presenting the analysis through visualizations like charts, graphs, and
dashboards, making insights accessible to non-technical stakeholders.

TABLE II
CLASSICAL BDA CHALLENGES

Concern Description
Privacy Concerns Centralized data raises risks of breaches, especially in sectors like ITS.
High Latency Centralized processing leads to delays in real-time applications, such as ITS.
Limited Scalability Scaling machine learning across many devices is complex without Federated Learning (FL).
Lack of Personalization Traditional centralized models can compromise privacy in personalized applications.
Homogeneity of Data Sources Centralized approaches may fail to handle diverse data sources effectively.
Bandwidth Constraints Transferring large datasets without FL consumes significant bandwidth.
Delayed Real-time Learning Centralized models can slow down dynamic decision-making.
Inefficient Resource Utilization Without FL, computational resources are often underutilized.
Limited Data Inclusivity Traditional models may miss data from remote devices, affecting model performance.
Stagnation in Innovation Without collaborative frameworks like FL, innovation in Big Data analytics can be limited.

Fig. 1. Federated Learning on Big Data for Intelligent Transportation Systems

• Exploration of FL Algorithms: Investigated various FL
algorithms, including Fed-SGD, FedAvg, and FedProx,
with different optimization techniques.

• Evaluation of Collaborative Learning: Provided an
evaluation of learning processes, examining the impact
of collaborators and epochs on FL performance in ITS.

V. METHODOLOGY

In this study, each device initially trains models locally
using Deep Learning techniques, including Multi-Layer Per-
ceptrons (MLP) and Convolutional Neural Networks (CNN).
CNNs were particularly effective in identifying complex pat-
terns in the ITS dataset. The central server then aggregates
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the locally trained model parameters using Federated Learning
(FL) algorithms like Fed-SGD, FedAvg, and FedProx. These
aggregated updates are returned to the devices for further
training rounds, ensuring continuous model improvement. The
workflow is depicted in Figure 2.

A. Data Preparation for FL

We prepared the ITS dataset by organizing and partitioning
it for efficient use in FL. Meta-data files were generated to
map the vast data, and the dataset was divided into ”shards”
to simulate decentralized environments. This structure allowed
efficient data distribution and training across client devices,
ensuring balanced data access and consistent classification
results.

B. Client Setup for Collaborative Learning

We established multiple virtual client nodes, each repre-
senting a real-world data distribution. Data was allocated to
nodes using an adaptive algorithm to ensure diversity. The
clients processed the data in parallel, mimicking real-world FL
setups. Post-training, model updates were aggregated, refining
the overall global model.

Algorithm 1 Federated Learning with Multiple Clients
1: Input: Number of clients K, initial global model W0,

total communication rounds T , dataset D
2: Output: Final global model WT

3: Setup:
4: Prepare the dataset D and corresponding meta-information

for FL
5: Divide D into K distinct subsets, one for each client
6: Initialize the global model W0

each round t = 1, . . . , T
7: Client-Side Local Training: each client k = 1, . . . ,K

(in parallel)
8: Receive the global model Wt−1

9: Train local model W t
k on client k’s data using MLP/CNN

10: Send local model update ∆W t
k to the central server

11: Server-Side Model Aggregation:
12: Aggregate the local updates ∆W t

k using a method such as
FedAvg or FedProx to update the global model Wt

13: Distribute the updated global model Wt to all clients
13: Return: Final global model WT =0

C. Training with Deep Learning Models

Both MLPs and CNNs were employed for training across
client nodes. MLPs served as foundational models, while
CNNs were used for more complex image recognition tasks.
CNNs, with their convolutional and pooling layers, excelled at
extracting features from transportation imagery, and dropout
layers helped mitigate overfitting. This approach allowed for
practical evaluation of the FL process in real-world scenarios.

D. Global Aggregation Using Federated Learning Algorithms

In Federated Learning (FL), global model aggregation com-
bines updates from multiple clients to create a unified global
model. This process aims to represent the data distribution
across clients while accounting for the variations in their data,
ensuring balanced training. Various techniques, from basic to
advanced, are used to achieve this. Simple aggregation treats
all client updates equally, while weighted averaging gives
more significance to updates based on the importance of each
device’s data and scales them accordingly. A more refined
method, such as Fed aggregation, adjusts the weights based
on the accuracy of local updates and the data volume at each
node. The global aggregation process using FL algorithms is
as follows:

1) A central server initializes a global model.
2) The model is distributed to a subset of devices or nodes

for local training.
3) Each device updates the model using its local data.
4) The updated local models are sent back to the server.
5) The server averages these updates.
6) The global model is then updated with the aggregated

data.
7) Steps 2-6 are repeated iteratively over several rounds.

VI. RESULTS AND DISCUSSION

Our experiments utilized the Udacity Self Driving Car
Dataset [29], [30], containing 15,000 high-resolution images
annotated across 11 categories, formatted for YOLO object de-
tection. This dataset, shared by Roboflow, is widely recognized
in ITS research due to its comprehensiveness and precision,
making it an ideal choice for vehicle recognition in our fed-
erated learning experiments. Our experiments were conducted
on an Intel Core i7 processor, 32 GB RAM, and TensorFlow
Federated (TFF) as the main framework for implementing FL
algorithms. The Kaggle API facilitated smooth data integration
into our Google Colab environment, with Python code running
in Jupyter Notebooks.

Analyzing the performance of three FL algorithms, includ-
ing FedAvg, FedSGD, and FedProx, across 40 epochs in a
10-node simulation environment reveals distinct learning be-
haviors and efficiencies. The 10-node environment is preferred
due to resource limitations. It can be increased to more nodes
if we have more resources. The experiments in this paper used
the Udacity Self-Driving Car dataset, valuable for controlled
testing of FL algorithms. However, real-world ITS testing
introduces complexities, including data diversity, large-scale
deployment, and practical constraints. Real-world ITS data is
more diverse, involving various vehicle types, infrastructure,
and environmental conditions, requiring datasets from mul-
tiple sources. Large-scale deployments in ITS systems, with
thousands of nodes, may cause latency and bandwidth issues.

The comparative analysis is done in the context of global
accuracy, achieved by the global aggregation of all the nodes.
Initially, FedAvg has the highest global accuracy in the early
epochs, as shown in Figure 3. For example, at epoch 1,
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Fig. 2. Methodology

FedAvg achieves an accuracy of 85.46%, surpassing both
FedSGD (83.74%) and FedProx (81.60%). This suggests that
FedAvg quickly adapts to the dataset, which is crucial in
FL applications requiring rapid initial learning and adaptation
across distributed nodes. FedSGD shows steady improvement
as training progresses, gradually closing the accuracy gap
with FedAvg. By epoch 3, FedSGD reaches an accuracy of
86.82%, slightly outperforming FedAvg’s 86.27%, highlight-
ing its capacity for consistent learning over time in a federated
environment.

Fig. 3. Performance of FL Algorithms using 10 Nodes.

Despite starting with lower accuracy, FedProx outperforms
FedAvg and FedSGD in the later epochs. By epoch 5, FedProx
reaches an accuracy of 87.89%, the highest among the three

algorithms. This improvement can be attributed to FedProx’s
design, which is particularly effective at handling non-IID
data. A key observation from the loss data is FedProx’s
initially high loss value of 0.814 at epoch 1, significantly
higher than FedSGD’s 0.517 and FedAvg’s 0.514, as shown in
Figure 4. This aligns with its lower initial accuracy, suggesting
that FedProx requires more iterations to adapt effectively in
the early stages. However, FedProx significantly improves
as training progresses, reducing its loss to 0.495 by epoch
5. Despite early challenges, FedProx is highly effective at
optimizing its learning process.

Fig. 4. Loss using 10 Nodes.

In contrast, FedAvg and FedSGD start with relatively lower
loss values, with FedAvg maintaining a slight advantage over
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FedSGD. For example, at epoch 5, FedAvg records a loss of
0.411 compared to FedSGD’s 0.439, further supporting its
higher early accuracy. While FedAvg performs well in the
initial epochs, combining these insights with the accuracy data
reveals that FedProx’s ability to overcome its early limita-
tions and improve significantly makes it a strong contender,
especially in scenarios that benefit from extended training.
FedSGD, though consistent, does not reach the optimization
level of the other two algorithms, making it less ideal in
settings where rapid adaptability and efficiency are crucial.

The results of our experiments highlight the performance
of three FL algorithms: FedAvg, FedSGD, and FedProx. Fed-
Prox outperforms the others in later epochs, offering superior
accuracy due to its proximal term stabilizing the learning
process. This makes it ideal for heterogeneous data in ITS,
where data from various vehicles and infrastructures differ.
FedAvg, however, excels in early epochs, quickly adapting
to emerging traffic patterns, making it suitable for real-time
ITS scenarios. FedSGD shows steady improvement over time,
offering consistency, which is useful in long-term traffic
management and large, diverse datasets. A hybrid approach
combining FedAvg’s early adaptation and FedProx’s stable
convergence could benefit dynamic traffic conditions. In con-
clusion, the choice of FL algorithm depends on specific ITS
needs—whether quick adaptation, stability, or high accuracy
is required. These insights will guide practitioners in selecting
the right algorithm for balancing immediate response and long-
term system stability in ITS deployments.

Scalability is a critical challenge for implementing FL in
large-scale ITS. As the number of nodes and dataset size
grows, issues like cost, computational resources, and latency
emerge. High infrastructure costs can be reduced using edge
computing and model compression, where data is processed
locally and model updates are compressed. FL can address
computational limitations using lightweight models or offload-
ing tasks to more powerful edge devices or the cloud. Latency
and bandwidth problems in real-time ITS can be mitigated
with a hybrid approach, combining local training with cen-
tral computation. Adaptive learning rates can prioritize faster
devices in early training to manage load imbalances and
scale work to slower devices later. These strategies can help
effectively scale FL in real-world ITS systems.

VII. COMPARATIVE ANALYSIS

Table III highlights the advantages of the proposed BDA
framework integrated with FL compared to traditional BDA
methods. The proposed framework offers a distributed ap-
proach that significantly enhances privacy by keeping data on
local devices, reducing the risk of central data breaches. Addi-
tionally, it lowers latency by processing data locally, making it
ideal for real-time applications. In contrast, traditional systems
face higher latency and privacy risks due to data centralization.
Another key advantage of the proposed framework is its
scalability, which allows it to handle increasing data volumes
across many devices without centralizing data.

This proposed distributed approach enables efficient band-
width usage, as only model updates, not raw data, are transmit-
ted. Traditional systems, in comparison, struggle with scaling
and bandwidth efficiency due to the need to transfer large
datasets. The proposed framework also excels in personaliza-
tion, allowing tailored applications while maintaining privacy,
a challenge for traditional methods. It draws from diverse
data sources, making models more robust than conventional
systems that rely on homogeneous data. Local processing
enables real-time learning, providing faster insights critical
for dynamic environments. Furthermore, the proposed system
optimizes computational resource use and ensures inclusivity
by integrating data from various devices, even remote areas.
By fostering innovation through secure collaboration, the pro-
posed framework addresses the limitations of traditional BDA,
offering a more efficient and scalable solution for modern data
analytics.

VIII. CONCLUSION

This study underscores the transformative role of FL in
addressing the challenges of managing vast, decentralized data
in ITS. By integrating FL with BDA, privacy is preserved as
the data resides on the nodes, and only parameters are passed
for global training purposes using FL. Using the Udacity Self-
Driving Car Dataset, we highlighted the efficiency of FL in
optimizing data across diverse sources without sacrificing user
privacy or system performance. Our results suggest that FL can
become a cornerstone of future ITS architectures, particularly
in environments that demand collaboration and data security.
However, real-world deployments will inevitably introduce
new challenges. While our framework performed well in a
controlled, simulated environment, scaling FL to real-world
ITS scenarios requires further exploration, especially under
varying network conditions and hardware limitations. Future
research should focus on testing with larger, more heteroge-
neous datasets, exploring novel FL algorithms, and extending
the integration to edge computing and emerging technologies
such as 6G. These advancements could unlock even greater
potential for FL, driving innovations in traffic management,
autonomous vehicles, and urban mobility systems.
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