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Abstract—Wearable devices, often used in healthcare and
wellness, collect personal health data via sensors and share it
with nearby devices for processing. Considering that healthcare
decisions may be based on the collected data, ensuring the privacy
and security of data sharing is critical. As the hardware and
abilities of these wearable devices evolve, we observe a shift
in perspectives: they will no longer be mere data collectors,
rather they become empowered to collaborate and provide users
with enhanced insights directly from their bodies with on-
device processing. However, today’s data sharing protocols do
not support secure data sharing directly between wearables.

To this end, we develop a comprehensive threat model for
such scenarios and propose a protocol, SecuWear, for secure
real-time data sharing between wearable devices. It enables
secure data sharing between any set of devices owned by a
user by authenticating devices with the help of an orchestrator
device. This orchestrator, one of the user’s devices, enforces
access control policies and verifies the authenticity of public
keys. Once authenticated, the data encryption key is directly
shared between the data provider and data consumer devices.
Furthermore, SecuWear enables multiple data consumers to
subscribe to one data provider, enabling efficient and scalable
data sharing. In evaluation, we conduct an informal security
analysis to demonstrate the robustness of SecuWear and the
resource overhead. It imposes latency overhead of approximately
1.7s for setting up a data sharing session, which is less than 0.2%
for a session lasting 15 minutes.

I. INTRODUCTION

Wearable devices have become an integral part of daily
life, blending seamlessly into routines from morning to night.
Ranging from fitness trackers to smartwatches, these devices
track physical activity, monitor sleep patterns, and provide
real-time health metrics like heart rate and calorie expendi-
tures. Beyond fitness, wearables support continuous health
monitoring, offering insights into vital signs and aiding in
chronic condition management [1], [2]. Their ubiquitous pres-
ence highlights their role as both personal wellness tools and
critical components in healthcare.

*This work was done while the author was an intern at Nokia Bell Labs.

Fig. 1. Data sharing between wearable devices.

The wearable landscape is evolving. Wearable devices are
developed in various forms, such as rings [3] and earbuds [4],
and the number of wearable devices owned per person is
growing. In these multi-wearable environments, combining
data from multiple devices can enrich services [5], [6], [7]
and boost inference accuracy [8], [9], as each device captures
unique aspects of the human body. The integration of tiny
AI accelerators (e.g., Analog MAX78000 [10], Google Coral
Micro [11]) has enhanced computational capabilities, allowing
fully local AI execution without depending on a smartphone’s
processing power [5], [12], [13] Thus, applications will soon
run directly on wearables, using data collected from multiple
devices across the user’s body. For example, as shown in
Figure 1, a user may have an activity detection application
running on a smartwatch and a fatigue detection application
running on smart earbuds, both of which rely on data collected
from multiple user devices.

Given the sensitive nature of the data collected by wear-
able devices, there is a critical need for secure data sharing
protocols between wearable devices. Without robust security
measures, data could be intercepted, altered, or accessed by
unauthorised parties, leading to privacy breaches [14], [15],
data tampering [16], or even identity theft [17]. Further-
more, data injection attacks on health monitoring devices, like
glucose monitors, can critically impact users by influencing
medication decisions such as insulin dosage [16].

Unfortunately, existing methods for data sharing between
wearable devices are not suitable in scenarios where these
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devices require data from other devices. Currently, Samsung’s
Health SDK [18] and Apple’s HealthKit [19] accumulate
data from wearable devices on a smartphone and mobile
applications make requests to the smartphone to receive neces-
sary data. This “data hub” approaches introduces two critical
limitations. First, from a security perspective, it introduces a
single point-of-failure where a compromised smartphone not
only renders all applications non-usable but also potentially
enables an attacker to gain access to user data collected from
all wearable devices. Second, from an application’s perspec-
tive, such smartphone-relayed data sharing incurs significant
overhead in terms of energy consumption and latency when
remote data needs to be processed on wearable devices.

To support more secure and sustainable data sharing be-
tween wearable devices, we design a comprehensive threat
model and propose SecuWear, a protocol for secure data shar-
ing between wearable devices. In this work, we consider all
devices that a user possesses when carrying out daily activities
(ex. smartphone, smartwatch, smart ring, smart earbuds) to be
wearable devices. In SecuWear’s architecture, we introduce the
concept of an orchestrator device, the most computationally
capable device in the set of available user devices and respon-
sible for setting up a data sharing session between user devices.
With SecuWear, user data is securely and directly shared with
devices that need the data and not with the orchestrator device.
Moreover, the role of the orchestrator can be handed over to
another device in case the original orchestrator device runs out
of battery or becomes compromised.

The key difference of SecuWear from existing data sharing
protocols is that it decouples trust establishment from data
exchange. A central device, the orchestrator, acts as a trusted
third party when setting up a data sharing session. Specifically,
the public keys of each involved device are shared through the
trusted orchestrator device, guaranteeing authenticity. Within
a data sharing session, the data provider device directly sends
the data to the data consumer device. While the orchestrator
design does not entirely eliminate the single point-of-failure, it
addresses the critical issues inherent in “data hub” approaches.

Through an informal security analysis, we identify scenarios
where SecuWear remains secure and where it falls short,
ultimately demonstrating that it can offer reasonable security
guarantees against an active local adversary. We also imple-
ment a prototype and show that SecuWear imposes minimal
system overhead suitable for resource-constrained wearable
devices. When evaluated with Raspberry Pi 4 and Raspberry
Pi Zero devices, setting up a data sharing session takes 1.7s
on average, which is less than 0.2% latency overhead for a
15-minute data sharing session.

In summary, the paper makes the following contributions:
1. We develop a comprehensive threat model for data sharing

framework for wearables communicating sensitive data.
2. We design and implement a prototype of SecuWear, which

provides secure and efficient data sharing for wearable de-
vices by decoupling trust establishment from data sharing.

3. We conduct an informal security analysis of SecuWear to
outline the security guarantees it provides and when it fails.

4. We also conduct a system overhead evaluation to demon-
strate that SecuWear imposes acceptable overhead to be
integrated into resource-constrained wearable devices.

II. MOTIVATION

Collaboration between wearables is becoming a reality with
the advancement of tiny AI accelerators enabling fully local
execution of applications on wearable devices [5], [12]. This
move is prompting research into new security protocols to
facilitate collaboration in a secure and private way, such as
sandboxing approaches [13], user identification or authen-
tication approaches for devices without user interface [20].
Our goal is to develop a secure data sharing protocol for
collaboration between wearable devices.

The target scenario involves multiple devices with varying
computational power, typically including a smartphone and
several wearable devices with limited processing capabilities.
Each device is equipped with multiple sensors to collect user
data. Each device can run various applications fully locally
and those applications may use local data and also request data
from other devices owned by the same user. Therefore, these
devices must wirelessly share data while meeting strict latency
requirements for real-time processing. However, accumulating
all collected data in a single device is unnecessary.

A naive way to support secure data sharing in this scenario
would be establishing secure one-to-one communication each
time data sharing occurs. However, such an approach has two
limitations. First, an authentication mechanism is necessary to
establish trust between devices, which may require a trusted
third party or additional user involvement. Second, duplicate
data streams (i.e., identical data transmitted from the same
device) significantly reduce efficiency.

Existing data sharing methods often resolve the above con-
cerns by accumulating user data in a centralized storage, such
as a smartphone [18], [19] or cloud storage [21], [22]. How-
ever, such “data hub” approaches introduce significant security
risks. A compromised smartphone can halt collaboration and
potentially leak data from all connected devices, and storing
sensitive data in cloud storage is not ideal in terms of privacy.
Moreover, some applications enable direct data sharing be-
tween user devices running the same application [23], but this
approach is also limited. It relies on the application developer’s
ability to implement secure communication and can incur
duplicate data streams. These limitations, discussed in greater
detail in the appendix, underscore the need for a data sharing
approach that balance security, privacy and efficiency without
over-reliance on a central device or application developers.

III. RELATED WORK

Numerous works suggest secure data sharing protocols in
various scenarios [24], [25], [26], [27]. However, only a
handful focus on secure data sharing for resource-constrained
wearable devices [28], [29], and direct data communication
between wearable devices was not the focus of such works.
Data sharing between wearable devices and cloud servers.
Some works suggest data sharing frameworks for wearable
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devices and the cloud [28], [29]. These works share the
common goal of designing a secure data sharing protocol
for resource-constrained devices. However, their focus is on
sharing data between user devices and a remote cloud server
and enforcing access control for different parties involved
with the data, such as patients supplying data and medical
staff. Meanwhile, SecuWear focuses on data sharing between
devices owned by one user and enforcing access control for
different applications running on the user devices.
Data sharing between IoT devices. Although wearable de-
vices also fall into the category of IoT devices, existing IoT
data sharing schemes are unsuitable for our target scenario
that focuses on direct data sharing between wearable devices.
For example, JEDI [30] proposes a many-to-many end-to-end
encryption protocol for IoT devices. Our target scenario is
similar in that the protocol needs to support many-to-many
communication between resource-constrained IoT devices.
However, JEDI focuses on scenarios involving a hierarchical
structure among devices, such as IoT devices spread across
different rooms in a building, and includes decentralized del-
egation as a core component. Meanwhile, SecuWear focuses
on scenarios involving data sharing between devices without
any hierarchical structure. Mollah et al. [31] also suggest a
secure data sharing framework for IoT devices, but the frame-
work relies on nearby edge servers to offload computationally
expensive security operations. Such assumptions cannot be
made in our target scenario. Furthermore, some works focus
on creating a shared database among IoT devices [32], [33]
or among applications running IoT devices [34], [35], rather
than maintaining a continuous stream of shared data.

IV. ADVERSARIAL MODEL

To address possible threats in wearable data sharing, we
develop a realistic adversarial model considering relevant
stakeholders and attacker goals.

A. Stakeholders

We list stakeholders in the wearable device ecosystem and
our assumptions about their capabilities and intentions, which
serve as the foundation for constructing the adversarial model.
Users. Users are individuals who regularly wear the devices
on or in close proximity to their bodies, as well as interact
with the applications on the devices. Users are not expected
to possess advanced technical expertise, which makes them
dependent on the underlying system for security assurances.
The primary concern of users is the seamless operation of their
devices without compromising personal data.
Application developers. Application developers are respon-
sible for creating and deploying applications that run on
wearable devices. These applications may request data from
one or more devices. While developers generally have tech-
nical expertise, expecting them to implement secure data-
sharing mechanisms in a multi-device environment is unreal-
istic. Moreover, some developers may be malicious, with the
intention of collecting user data surreptitiously.

OS developers. Operating system (OS) developers are trusted
entities and are expected to provide the necessary security
features required for secure data sharing across devices. These
developers play a crucial role in ensuring that the OS supports
the necessary secure communication protocols.
Hardware manufacturers. Hardware manufacturers are
trusted entities. They are not expected to incorporate spe-
cialised security hardware, such as Trusted Execution Environ-
ments (TEEs). Our protocol is designed to work with standard
commodity wearable devices without relying on advanced
security features at the hardware level.

B. Adversarial goals

AG1 – Unauthorised Data Access:. The adversary aims to
access user data without consent by requesting data without
necessary permissions or by intercepting and decrypting wire-
less transmissions. The adversary is successful only if they
obtain unencrypted data or the necessary decryption keys.
AG2 – Data Injection:. The adversary attempts to introduce
false or misleading data into a benign application, potentially
by masquerading as a legitimate data provider or by intercept-
ing and altering data in transit.
AG3 – Data Corruption:. The adversary aims to corrupt data
in transit. Even minor alterations, such as flipping a single bit,
constitute a successful attack. This can be achieved through
packet injection or manipulation during transmission.

Denial-of-service (DoS) attacks are excluded from the scope
of this model, as the focus is on preserving data integrity and
confidentiality rather than availability.

C. Adversary model

We thus assume the following strong active local adversary:
1) The adversary can monitor and record all communication

between user devices.
2) The adversary can inject packets in an attempt to override

legitimate traffic, allowing the adversary to introduce
malicious data into the communication stream.

3) The adversary can selectively alter packets during trans-
mission, leading to data corruption or disruption.

4) The adversary may gain temporary physical access to one
of the user’s devices, such as a wearable involved in data
sharing or even the smartphone acting as the orchestrator,
allowing direct manipulation without the user’s knowl-
edge. However, simultaneous access to multiple devices
without user awareness is beyond the scope of this model.

This is a realistic threat model for an adversary that wishes
to attack and disrupt the normal operation of a collaborative
wearable environment of a user. A survey [36] indicated
that wearables are becoming highly personal devices, with
about 40% of respondents stating that they wear them all
the time. Therefore, it is highly unlikely for an adversary to
gain simultaneous access to multiple user devices without the
user noticing. We use this model in §VI-A to show that in
the absence of the mitigations proposed by SecuWear, the
adversary succeeds in their goals to undermine the correct
operation of wearable collaboration.
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Fig. 2. SecuWear overview.

D. Security goals

SecuWear aims to achieve the following key security goals
in the presence of such an adversary.
G1: Confidentiality. The adversary is unable to read user data
sent between the wearable devices.
G2: Integrity. The adversary cannot modify data fed into user
applications.
G3: Transparency. The protocol is transparent such that users
can review which data is being shared with which application
and between which devices.

V. SECUWEAR

A. Overview

The overall process of data sharing through SecuWear is
described in Figure 2. When setting up a data sharing session,
the orchestrator device helps establish trust between the data
consumer and the data provider by providing the public key
of the other party to both of them. With asymmetric key
encryption, the data provider securely shares the symmetric
data encryption key with the data consumer. In a data sharing
session, the orchestrator device is no longer involved and the
data provider directly shares data with the data consumer by
using the data key shared earlier.

B. Assumptions

In designing SecuWear, we made the following assumptions.
The orchestrator maintains long-term authenticated chan-
nels with every participating device. We assume that the
wearable devices have the capability to establish and maintain
long-term authenticated channels with the orchestrator device.
This is a realistic assumption of the wearables on the market,
which authenticate and establish Wi-Fi or Bluetooth/Bluetooth
Low Energy (BLE) connections with a smartphone when the
user sets them up. Therefore, we assume that in a user’s set of
devices, there is one device powerful enough to establish and
maintain authenticated and secure channels with every one of
the other wearable devices.
All data sharing operations are exclusively handled by a
system service, not delegated to applications. To facilitate
secure data sharing between wearable devices, we suggest
that wearable OSes implement a system service, namely a
data manager, that handles inter-device data sharing. For

instance, when an application requests data that is not available
locally, the local data manager will communicate with the data
manager processes of other devices to acquire and deliver the
data to the application. This way, the burden on application
developers to implement secure inter-device data transmission
is reduced, providing a layer of abstraction and lowering the
chance for implementation mistakes. Hence, in SecuWear we
assume that each wearable device is running a data manager
service to handle all inter-device data sharing. The tasks on
the orchestrator device, the data consumer device, and the data
provider device are carried out by the data manager service
running on each device.

C. Protocol Components

In SecuWear, a device can assume three roles. One of the
user’s devices, most likely the smartphone, takes on the role
of the orchestrator to facilitate the establishment of secure
data sharing sessions between the user’s wearable devices.
Other devices can act as either a data consumer or a data
provider. As the name suggests, a data provider is a device that
shares data upon request from a data consumer who receives
the shared data. We explain in further detail the tasks of the
orchestrator, data consumer and data provider below.

1) Orchestrator: One of the user’s devices assumes the
role of the orchestrator to facilitate data sharing sessions
between data consumers and data providers. The smartphone
would be the most intuitive choice as it already maintains
long-term connections with wearable devices. However, any
device that can establish and maintain authenticated and secure
communication channels with every other user device can
assume the role of the orchestrator.
Necessity of the orchestrator. Wearable devices are resource-
constrained, hence they cannot be expected to keep track of
all other available devices and establish secure communication
channels every time data needs to be shared. We propose the
use of an orchestrator, the device that oversees all involved
devices and facilitates data sharing sessions by establishing
secure communication channels.
Mitigating the single point-of-failure. The “data hub” ap-
proaches suffer from a single point-of-failure by creating a
central repository of user data and only allowing data sharing
through the central repository. The design of having an orches-
trator also introduces a single point-of-failure. However, unlike
the “data hub” approach, SecuWear includes mechanisms that
help mitigate against the single point-of-failure. First, Se-
cuWear decouples data transmission from trust establishment.
Data is directly shared between data consumers and data
providers, eliminating a central data repository. Second, with
SecuWear, wearable devices can still share data after the
orchestrator becomes unavailable by replacing the orchestrator
with another device.
Establishing a new orchestrator. Upon realising that the
original orchestrator device is unusable or compromised, the
user can designate another device to assume the role of the
orchestrator. A new orchestrator is established by setting up
secure authenticated channels between it and all other devices.
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TABLE I
KEYS GENERATED AND RECEIVED BY EACH ENTITY INVOLVED IN A DATA

SHARING SESSION; DC AND DP REPRESENT A DATA CONSUMER AND A
DATA PROVIDER, RESPECTIVELY.

Entity Generated Keys Received Keys

Orchestrator pubDC , pubDP

Data Consumer pubDC , privDC pubDP , Kdata

Data Provider pubDP , privDP , Kdata pubDC

The orchestrator device must have sufficient computing power
to maintain these channels and facilitate user interactions
for managing access control policies. Given the computa-
tional capabilities of current wearable devices, smartphones
and smartwatches are ideal candidates for the orchestrator
role. However, as wearable devices continue to evolve, other
devices, such as smart glasses, could also fulfil this role.
Responsibilities of the orchestrator. The orchestrator listens
to incoming data requests and connects data consumers to data
providers. It is assumed that the orchestrator knows all the data
available from each device, which allows it to connect data
consumers to appropriate data providers. It also verifies access
control policies, tracks existing sessions to avoid duplicates,
and logs valid access requests for transparency.

2) Data Consumer: A device becomes a data consumer
when the data manager running on the device receives a data
request from a local application for (sensor) data not available
locally. Then, the data manager running SecuWear forwards
the request to the orchestrator device, which will establish a
data sharing session with the appropriate data provider. In the
established data sharing session, the data consumer device will
receive data and share the data with the application.

3) Data Provider: A device becomes a data provider when
it receives a data sharing request from the orchestrator. Upon
receiving the request, the data provider will aid in establishing
the data sharing session and transmit the requested data.
Furthermore, the orchestrator may add another data consumer
to an existing data sharing session. The data provider should
also listen to such requests. In addition, the data provider also
logs data accesses for transparency.

D. Protocol flow

In this section, we describe the protocol flow of SecuWear.
1) Cryptographic Materials: SecuWear uses both symmet-

ric and asymmetric key encryption to establish secure data
sharing. The keys generated by each device and keys received
by each device are shown in Table I. Both data consumer
and data provider devices generate a private (priv) and public
(pub) key pair to be used in establishing a data sharing session.
The data provider also generates a symmetric key Kdata to
encrypt data before sharing.

Inspired by the standard in secure messaging approaches,
SecuWear adopts a session-based approach. The keys involved
with a data sharing session are only valid for a 15-minute
session. Once the 15-minute session is over, a new session
needs to be established with a new set of keys. We suggest
a length of 15 minutes because the Bluetooth specification
suggests the device MAC address to be randomised at least

Fig. 3. Data consumer and data provider setting up a data sharing session
through the orchestrator.

once every 15 minutes [37]. Once the session is over, all the
keys are discarded and a new set of keys is generated in each
device for the next session.

Key rotation rather than long-term keys is more suitable to
our target scenario. If a user revokes a data sharing permission,
the cryptographic keys have to reflect such change in the
access control policy. Rotating keys per session makes it easy
to revoke access as SecuWear can simply not share the keys in
the next session. Furthermore, when a key is compromised, the
impact of the compromise is contained to that specific session,
providing forward and backward secrecy.

2) Setting Up a Data Sharing Session: The steps involved
with setting up a data sharing session are shown in Figure 3.
The orchestrator device is trusted during this process. When
an application requests for data not available in the local
device 1 , the data manager running on the device will initiate
the process of establishing a data sharing session. First, it
will generate an asymmetric key pair (pubDC and privDC)
and send a data sharing request to the orchestrator along
with the public key, pubDC 2 . The orchestrator will then
check whether the application has permission to access the
data it requested and if valid, the orchestrator sends a data
sharing request to a user device that can provide the requested
data. Along with the data sharing request, the public key of
the data consumer, pubDC is also forwarded 3 . The data
provider device will generate an asymmetric key pair of its
own (pubDP and privDP ) and share the public key, pubDP ,
to the orchestrator 4 . The orchestrator then shares pubDP

with the consumer device 5 . Since the orchestrator device is
trusted and the communication between each device and the
orchestrator device is authenticated and secure, the public keys
shared through the orchestrator are considered genuine.

Once the public keys are shared, the data provider generates
a symmetric key for encrypting data, Kdata. Then, the data
provider encrypts Kdata with pubDC (i.e., EncpubDC

(Kdata))
and also signs Kdata with privDP (i.e., SignprivDP

(Kdata))
and shares it to the data consumer 6 . The encryption is needed
to ensure that only the intended data consumer, the owner of
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Fig. 4. Adding a data consumer to an existing data sharing session.

Fig. 5. Data consumer and data provider sharing data in a data sharing session.

privDC can access Kdata. Upon receiving the encrypted data
key and the signature, the data consumer verifies that the key
has been shared from the intended data provider device, the
owner of privDP by verifying the appended signature with
pubDP 7 . As a result, the data consumer and the data provider
have exchanged a symmetric encryption key by relying on a
trusted third party–the orchestrator– but not sharing the key
itself with the trusted third party.

Furthermore, when an application requests data for which
a data sharing session already exists, the orchestrator guides
the additional data consumer to join the existing data session.
The steps involved with allowing an additional data consumer
to join an existing data sharing session are shown in Figure 4.
The additional data consumer goes through a similar process
as Figure 3, except that step 4 in Figure 3 is skipped. This
is because the orchestrator already knows pubDP .

3) Sharing Data in a Session: Once the data sharing session
is set up, the data provider device and data consumer device
share data through the procedure shown in Figure 5. The data
provider encrypts the data to be shared with Kdata and broad-
casts the encrypted packets 1 . The data consumer subscribes
to the encrypted broadcast 2 . The data manager running on
the data consumer device receives the data, decrypts it with
Kdata, and feeds the raw data to the correct application 3 .
All the data packets that are broadcast include a checksum for
the data consumer to verify the integrity of received data.

SecuWear employs a pub-sub approach where multiple data
consumers subscribe to the same encrypted data broadcast.

This design choice makes SecuWear efficient and scalable as
additional data consumers do not place any additional burden
on the data provider in a data sharing session. The only
additional burden is sharing the existing data key with the
additional data consumer. However, most common broadcast
protocols, such as UDP and BLE broadcast, do not guarantee
reliable packet delivery. We leave for future work the investi-
gation into reliable broadcast protocols.

E. Access Control

Wearable OSes should implement a cross-device access
control policy to allow users to have control over what
data is shared to which applications. In our context, access
control refers to the user selectively granting permission for
an application to access one type of data in each device. For
example, if an application running on a smartwatch wants to
access microphone data from another device, the data manager
running on the smartwatch will send a data sharing request to
the orchestrator, and the orchestrator will see that microphone
data from earbuds is available and ask the user whether it
should grant the application access to microphone data from
earbuds. Through SecuWear, users can have centralised control
for inter-device data sharing as all the inter-device data sharing
requests are sent to and organised by the orchestrator device.

F. Transparency

To support the goal of providing transparency, SecuWear
logs all data accesses in the orchestrator device and each data
provider device. When a data sharing session is established,
the orchestrator records the following information in the access
log: access time, application name, data provider device and
data type. When the data provider starts broadcasting data
in a data sharing session, the data manager running on the
data provider device records the following information in the
access log: access time, application name, and data type. To
prevent any tampering with access logs, the access logs should
be only accessible to the data manager and other privileged
processes, not applications. We duplicate access logs in both
the orchestrator and data provider devices so users can trace
leaked data via the orchestrator log or the data provider logs
if one of them is compromised.

VI. EVALUATION

Our evaluation of SecuWear is twofold. First, we perform an
informal security evaluation to validate that SecuWear achieves
the security goals outlined in §IV-D against an adversary
described in §IV-C. Second, we implement a prototype and
measure the performance overhead introduced by SecuWear.

A. Security Analysis

In this section, we assess whether SecuWear meets the
security goals described in §IV-D. We discuss each case with
reference to an adversary which tries to defeat each security
goal and justify why they fail.
Setup. We assume an adversary with capabilities outlined in
§IV-C. Alice has four wearable devices and a smartphone.
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Alice’s devices employ SecuWear to share data to provide her
with insights into her health. We assume that one wearable
device acts as a data consumer DC, requesting access to sensor
data that another wearable device has, acting as a data provider
DP. The smartphone acts as the orchestrator Orc. Adv can
attack this data sharing transaction at different key times in
the transaction: Ta when DC sends the request to Orc, Tb
when the request is forwarded from Orc to DP, Tc when DP
shares data key K with DC, and lastly, Td during the data
sharing session. At any point in time, Ta , Tb , Tc , Td ,
Adv can gain possession of any one of the devices.

1) Defeating SecuWear security goals: First, G1–
confidentiality for the messages sent at Ta and Tb are
guaranteed because of the assumption that the orchestrator
device maintains secure and authenticated channels with every
participating device. SecuWear provides confidentiality at Tc
using public key encryption. The authenticity of the public
key is guaranteed by the orchestrator device. Furthermore,
the confidentiality of the data stream (i.e., at time Td ) is
protected by SecuWear using symmetric key encryption.
The participant devices generate ephemeral keys that get
refreshed every 15 minutes, limiting any possible compromise
to the vulnerability window. Second, SecuWear provides the
G2–integrity for messages in flight by using a checksum to
detect if any errors were introduced. Furthermore, at Tc
the protocol uses cryptographic signatures to ensure the
authenticity of the message carrying the the data stream key.
Last, SecuWear provides the G3–transparency by having
Orc and DP log data accesses. At Ta , when Orc receives
the data request, Orc logs the access, provided it is valid
and allowed by the access control policy. Similarly, at Tb ,
when DP receives the data request, DP logs the request being
granted and data shared with DC. By protecting the integrity
of the messages, the transparency of the protocol is also
protected as Adv cannot trick either Orc or DP to write the
wrong entry in the transparency logs.

2) Person-in-the-middle: Adv can attempt person-in-the-
middle attacks by pretending to Orc to be a legitimate device
in Alice’s set of devices. However, Orc maintains secure
and authenticated communication channels with all of Alice’s
devices as per our assumptions in §V-B, which guarantees the
authenticity of the devices participating in SecuWear.

3) Physical compromise: Adv can gain temporary physical
access to one of Alice’s devices. When a device is physically
compromised, Adv has access to data stored on the com-
promised device. In this analysis, we examine the additional
exposure Alice faces due to data sharing. If Adv gains access
to DC, they have access for a limited amount of time to the
data being shared by DP either until Alice discovers the device
is missing and takes measures to revoke permission, or in the
worst case until the sharing session expires. Similarly, if Adv
can gain access to DP, then they can manipulate the active
data streams, or delete the transparency log. In the former
case, the tampering is limited to the 15 minute window, and if
Alice notices the compromise before the session expires, she
can prompt DC to request data again and have Orc direct it

to a different data provider device. In the latter case, should
the transparency log be deleted, there is a complementary log
being stored on Orc, which can be used by the user to analyse
the status of data sharing. Last, if Adv gains access to Orc,
Adv can compromise G1–confidentiality and G2–integrity
by arbitrarily establishing data sharing sessions. However,
the user can recover from such compromises by designating
another device as Orc. Furthermore, G3–transparency is not
compromised. Even if Adv deletes the log on Orc, the user
can reconstruct it by referencing the logs from other devices.

B. Overhead Analysis

1) Protocol Implementation: We implemented a prototype
of SecuWear in Python on Raspberry Pi platforms. For encryp-
tion algorithms, we used a 2048-bit key RSA for asymmetric
encryption and a 256-bit key AES for symmetric encryption.

For wireless communication, we used Wi-Fi to cover a
wide range of wearable devices. Nonetheless, SecuWear is
independent of the communication medium and can be easily
extended to other communication channels such as Bluetooth
and Bluetooth Low Energy (BLE).

2) Experimental Setup: We evaluate SecuWear using a
Raspberry Pi 4 Model B as the orchestrator and two Raspberry
Pi Zero 2 as participant devices. Due to the difficulty of
covering all wearable device heterogeneity, these devices were
chosen as representatives: the Raspberry Pi 4 for its processing
power comparable to smartphones, and the Raspberry Pi Zero
2 for its limited computational capacity and energy efficiency
similar to wearables. We measured system overhead in a
scenario where an orchestrator sets up a data sharing session
between two devices, which then securely share data.

3) Latency: For the latency analysis, we run the aforemen-
tioned scenario five times and report the average values. For
each run, we measured the latency of all operations involved
in SecuWear. The latency for data transmission over Wi-Fi
varied greatly for many reasons irrelevant to the design of
SecuWear, such as signal interference and network congestion.
For a standardized view of SecuWear’s latency, we replaced all
data transmission latency values with an average Wi-Fi latency
measured over multiple runs. Wi-Fi latency was measured 20
times in a lab environment at different times of day, yielding
an average of 58.61ms (σ = 97.64ms).
Setting up a data sharing session. Overall, SecuWear takes
1687ms (σ = 639.41ms)1 to set up a data sharing session.
Considering that this operation needs to be performed only
once for each 15 minute-long data sharing session, SecuWear
imposes less than 0.2% latency overhead to set up a data
sharing session. The latency breakdown graph is shown in
Figure 6. The exact measurement values are available in
the appendix. The results show that the data consumer and
the data provider each generating a public and private key
pair take up the majority of the latency overhead, 31.73%
and 47.95%, respectively. The next dominant factor is data

1This standard deviation does not account for the standard deviation of data
transmission latency.
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Fig. 6. Latency breakdown for setting up a data sharing session.

Fig. 7. Latency breakdown for sharing a data packet in a data sharing session.
TABLE II

POWER AND ENERGY CONSUMPTION OF ENCRYPTION ALGORITHMS USED.

Power (mW) Time (ms) Energy (mJ)

RSA Key Generation 400.55 749.47 300.20
RSA Public Key Encryption 434.42 3.79 1.65
RSA Private Key Decryption 401.95 17.98 7.23

AES Key Generation 509.57 0.04 0.02
AES Encryption 566.74 1.84 1.04
AES Decryption 557.42 1.50 0.84

communication over Wi-Fi, which is the sum of five data
transmissions between devices (17.37%). All the other tasks
involved with setting up a data session, such as asymmetric
key encryption, enforcing access control policy, and checksum,
take up less than 50ms or 3% of the overall protocol overhead.
Within a data sharing session. In a data sharing session, Se-
cuWear incurs 0.32 ms of latency overhead, which is 0.52% of
end-to-end latency with 62.10ms (σ = 0.32)1 to transmit 1024
bytes of a data packet from the data provider device to the
data consumer device. The latency breakdown graph is shown
in Figure 7. The exact measurement values are available in
the appendix. The results demonstrate that SecuWear imposes
negligible latency overhead for data exchange.

4) Power: To demonstrate that SecuWear imposes accept-
able power overhead, we measure the power consumption of
encryption algorithms on a Raspberry Pi Zero 2 device with
a Monsoon power monitor. Please note that these encryption
algorithms may be replaced with other more lightweight ones.

Table II shows the power and energy overhead of encryption
tasks. For power measurements, we report the additional power
consumption from running the encryption algorithms. This is
because the base (idle) power of a Raspberry Pi Zero device is
around 600 mW, which is relatively high compared to a typical
wearable device due to the lack of support for a low power
mode. Establishing a data session, which involves RSA key
generation, encryption, decryption, and AES key generation,
consumes around 309.10 mJ of energy per session. With
15-minute intervals, the energy overhead seems negligible.
Considering a typical wearable device operating with a battery
capacity of 100 mAh and voltage of 3.7 V, 309.10 mJ is
around 0.02% 2 of the battery capacity, which is 1.9% 3 of

the battery capacity per a full day’s operation of SecuWear.
During a secure data sharing session, AES encryption and
decryption tasks are constantly required. However, it only
consumes 1.88 mJ per packet and any data sharing mechanism
with encryption will require the same or similar workload.

5) Storage: As described in §V-F, SecuWear generates logs
of data access in the orchestrator device and each data provider
device. The prototype implementation records the logs in a
CSV format. For each data access, 57 bytes were added to the
orchestrator log and 49 bytes were added to the data provider
log. Considering a typical wearable device with 16MB storage
space, it can store around 30,000 entries of data access logs,
which covers data sharing for more than 300 days.

VII. CONCLUSION AND FUTURE WORKS

In the near future, we anticipate wearables to dynamically
share data to support applications running across multiple de-
vices simultaneously. To facilitate this collaboration, a secure
and efficient data sharing protocol is essential. To address
this need, we developed a comprehensive threat model and
introduced a secure data sharing protocol for wearable devices
named SecuWear. The key innovation of SecuWear lies in
decoupling trust establishment from data flow, eliminating the
need for a centralized ”data hub” found in many existing
approaches. Furthermore, by allowing multiple data consumers
to subscribe to the same encrypted broadcast, SecuWear
enables more scalable and resource-efficient data sharing.
Our informal security analysis demonstrates that SecuWear is
resilient against an active local adversary. We also evaluated
the resource overhead with a prototype implementation, show-
ing that SecuWear imposes acceptable overhead for wearable
devices in terms of latency, power, and storage.

SecuWear has several limitations. First, it regenerates fresh
keys for every session rather than using key ratcheting. While
this approach simplifies access revocation, key ratcheting
could be more efficient if we incorporate an effective method
for managing access revocation. Second, SecuWear utilizes a
pub-sub model for efficiency, but popular broadcast protocols
may lead to packet loss. Integrating reliable broadcast pro-
tocols without compromising efficiency would be beneficial.
Lastly, SecuWear requires users to make all access control
decisions on the orchestrator device, which may negatively
impact usability. We hope to address these limitations for a
more robust data sharing protocol for wearable devices.

20.02% = 309.10 mJ / (100 mAh × 3.7 V × 3600 seconds)
31.92% = 0.02% × (24 hours × 60 minutes / 15 minutes)
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APPENDIX

A. Existing Data Sharing Methods for Wearable Devices

Commercial wearable devices typically come with a coun-
terpart smartphone application component through which use-
ful features and insights are provided to users. In these we
observe three types of data sharing approaches, based on the
sharing mechanism: (Type 1) collecting and sharing all data
in a smartphone, (Type 2) collecting and sharing all data
in a cloud server, and (Type 3) direct data sharing between
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TABLE III
METHODS FOR AN APPLICATION TO SHARE DATA WITH ANOTHER DEVICE.

Type 1 Type 2 Type 3 Ours

Security Goals Features Apple HealthKit
[19]

Samsung Health SDK
[18]

Health Sync
[38]

Garmin Connect
[21]

Mi Fitness
[22]

Direct Data Sharing
Between Apps SecuWear

Confidentiality
Data encrypted in transit Yes Yes Yes Yes Yes Depends* Yes
Does not create a central data repository No No No No No Yes Yes
Data stored locally in user devices Yes Yes Yes No No Yes Yes

Integrity Resilience to random bit flip attack Yes Yes Unknown Unknown Unknown Depends* Yes
Resilience to Man-In-The-Middle Attack Yes Yes Unknown Unknown Unknown Depends* Yes

Transparency App data access log available No No No No No No Yes
Centralised control of app data access Yes Yes Yes Yes Yes No Yes

*Type 3 refers to each application implementing its own inter-device data sharing mechanism. Hence, whether or not some features are implemented cannot
be generalised and is dependent on the specific implementation.

applications [23]. We analyse each commercial approach from
information widely available on the company websites, rele-
vant papers, as well as app analysis and provide a best-effort
comparison of SecuWear against each of the data sharing
methods in Table III.

Type 1 sharing mechanism refers to utilising a platform or
an application that collects all user data from wearable devices
in the smartphone and allow other applications to access data
from the smartphone. Native health platforms, such as Apple
HealthKit [19] and Samsung Health SDK [18], are examples
of such platforms. Since such native platforms only support
a closed ecosystem of devices from the Apple and Samsung
manufacturers respectively, third-party applications, such as
Health Sync [38], have been developed to share user data to
the native health platforms and other applications when an
unsupported device is worn by the user. The native health plat-
forms employ necessary cryptographic primitives to provide
secure data communication and stored user data is encrypted
when the smartphone is locked [39], [40]. However, these data
sharing schemes introduce a powerful single point-of-failure.
If the adversary gains access to an unlocked smartphone, the
adversary can gain access to all user data collected from all
devices. Furthermore, the data sharing schemes do not function
without a smartphone.

Alternatively, in Type 2 approaches, all the user data is
centrally collected in the cloud and other applications are
granted access to the data directly from the cloud. Garmin
Connect [21] and Mi Fitness [22] are examples of such
applications that enable data sharing through the cloud. This
method not only suffers from the similar single point-of-
failure issue, but also introduces additional concerns regarding
sensitive data being stored in cloud storage.

Last, Type 3 approaches refer to having the application
run on both the device collecting data and the other device
requesting access to the collected data. The application can
then directly share data between the two devices. Such a
data sharing scheme is not ideal for several reasons: it relies
on the application developers to accurately implement secure
data transmission, which is impractical; it can confuse users
in terms of what permissions they granted to each applica-
tion [23]; or there may be redundant data streams due to a lack
of an orchestrator device organising all data sharing schemes.

With SecuWear, all raw user data can continue to be stored

locally in user devices, which enables private processing on
device, without accumulating all the user data in one device.
While SecuWear does not create a central data repository,
SecuWear does enable centralised control over user data
collected with various user devices. Hence, unlike Type 3
approaches, SecuWear can take into account that different
devices have access to unique vantage points on the body,
as well as different types of sensor data, and facilitate more
efficient and collaborative data sharing. Since SecuWear is a
protocol developed to be integrated at the OS layer, we do
not rely on individual application developers to accurately
implement secure inter-device communication. In addition, to
allow users to be more knowledgeable about how their data
is being shared, we create transparency logs for data accesses
from applications.

B. Evaluation Results

TABLE IV
TOTAL TIME TAKEN TO CARRY OUT DIFFERENT TASKS WHILE SETTING UP

A DATA SHARING SESSION.

Task Latency (ms) Proportion (%)

Generate pub/priv key (Data Producer) 808.80 47.95
Generating pub/priv key (Data Consumer) 535.18 31.73
Data transmission over Wi-Fi 293.05 17.37
Decrypt with private key 20.36 1.21
Sign with private key 18.60 1.10
Others 5.72 0.34
Log data access 1.88 0.11
Verify signature 1.31 0.08
Encrypt with public key 0.98 0.06
Generate checksum 0.47 0.03
Verify checksum 0.51 0.03
Generate data key 0.06 0.003

Total latency 1686.91 100.00

TABLE V
TOTAL TIME TAKEN TO CARRY OUT DIFFERENT TASKS WHILE SHARING A

DATA PACKET IN A DATA SHARING SESSION.

Task Latency (ms) Proportion (%)

Data transmission over Wi-Fi 58.61 94.37
Encrypt with data key 1.59 2.55
Decrypt with data key 1.59 2.55
Generate checksum 0.22 0.36
Verify checksum 0.10 0.16

Total latency 62.10 100.00
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