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Abstract—Space systems are critical assets and protecting
them against cyberattacks is a paramount challenge that has
received limited attention. In particular, it is fundamental to
secure spacecraft communications by identifying and removing
potential vulnerabilities in the implementations of space (com-
munication) protocols, which could be remotely exploited by
attackers. This work reports our preliminary experiences when
fuzzing five open-source implementations of four space protocols
using two approaches: grammar-based fuzzing and coverage-
guided fuzzing. To enable the fuzzing, we created grammars for
the protocols and custom harnesses for the targets. Our fuzzing
identified 11 vulnerabilities across four targets caused by typical
memory-related bugs such as double-frees, out-of-bounds reads,
and the use of uninitialized variables. We responsibly disclosed
the vulnerabilities. To date, 5 vulnerabilities have been patched
and 4 have been awarded CVE identifiers. Additionally, we
discovered a discrepancy in how one target interprets a protocol
standard, which we reported and has since been fixed.

I. INTRODUCTION

Space systems are integral to modern society, facilitating a
vast array of critical services such as global communications,
navigation, weather forecasting, environmental monitoring,
and national security. Given their far-reaching impact and cost,
protecting space systems is paramount. Historically, cyberat-
tacks on space systems were a secondary concern, focusing
on achieving mission objectives [33]. However, an increasing
number of studies emphasize that protecting space systems
against cyberattacks should become a primary concern [26],
[44], [45]. Those works highlight an increasing attack surface,
for example as a result of exponential launch cadences and
interest in reducing development costs by using commercial
off-the-shelf (COTS) software and hardware.

Communication protocols are an integral element of space
systems enabling command uplink, data relays, and platform
and payload telemetry downlink from spacecraft (e.g., satel-
lites, rovers). As for terrestrial systems, such protocols are also
a potential vector for cyberattacks [12], [34]. Experience shows
that implementations of communication protocols are often
affected by coding defects, especially if those implementations
are written in memory-unsafe languages like C and C++, which
are widely used in space systems. Furthermore, space systems
typically use dedicated protocols that have received relatively
little scrutiny from the security community [44]. For example,
protocols standardized by the Consultative Committee for

Space Data Systems (CCSDS) [7] such as the Bundle Protocol
(BP) [39], [6] are critical for initiatives that aim to build
communication networks beyond Earth like Moonlight [11],
LunaNet [38], and the Solar System Internet [1].

Fuzzing is a popular software testing technique for dis-
covering vulnerabilities by feeding large amounts of inputs
to a target program [27]. While there exists a wealth of
research on fuzzing [25], [47], most research focuses on
fuzzing software that takes files as inputs, with the research on
fuzzing network protocols being comparatively smaller [36],
[3], [30], [4]. Few works have explored the fuzzing of space
systems [17], [37]. Gutierrez et al. [17] developed a custom
fuzzer for the SUCHAI CubeSat platform, Scharnowski et
al. [37] fuzzed three satellite firmware images, and Willbold
et al. [43] discussed the challenges fuzzing satellite firmware.
Those works fuzzed the satellites’ telecommand interfaces, but
many other space (communication) protocols exist.

This work reports our preliminary experiences when
fuzzing five open-source implementations of four space
protocols using two fuzzing approaches: grammar-based
fuzzing with Peach [19] and coverage-guided fuzzing with
AFL++ [13]. To enable the fuzzing, we developed grammars
for the protocols and custom harnesses for the targets. Our
fuzzing campaigns identified 11 vulnerabilities in four targets.
The vulnerabilities have been disclosed responsibly to the
affected projects. So far, 5 vulnerabilities have been patched
and 4 have been assigned CVE identifiers. We also found a
discrepancy in how one target interpreted the protocol standard,
which we reported to the project and has since been fixed.

II. SELECTION PROCESS

This section describes our selection process for (1) space
protocols to be tested, (2) open-source implementations of
those space protocols to use as fuzzing targets, and (3) fuzzing
techniques to apply for finding vulnerabilities in those targets.

A. Protocol Selection

The main protocol selection criteria were that the protocols
were used by currently flying satellites and that they operate at
the network layer and above, avoiding link layer protocols that
may require radio interfaces. We focus on three network layer
standardized protocols from CCSDS [7], which are utilized
by member space agencies (e.g., NASA, ESA). We also
include a protocol that, while not standardized, has an official
implementation that has been operated in multiple missions.
Figure 1 shows the stacking of the selected protocols.

BPv6 and BPv7. The Bundle Protocol (BP) is a key protocol
of the Delay/Disruption-Tolerant Networking (DTN) architec-
ture, designed for reliable data transmission across networks
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Figure 1: Protocol stack with the selected protocols (in black).

with intermittent connectivity and long delays. By bundling
data into packets that can be stored and forwarded through
intermediate nodes, BP ensures information can eventually
reach its destination even if direct end-to-end communication
is temporarily unavailable. Two versions of BP (BPv6 and
BPv7) are documented in RFCs [39], [6] and are included
in the CCSDS protocol suite.

SPP. The Space Packet Protocol (SPP) is a CCSDS protocol
that transfers data between spacecraft and ground system
processes. It wraps telecommands and telemetry Protocol Data
Units transferred by lower protocols. SPP is a much simpler
protocol than BP. Two of the three satellites analyzed by
Willbold et al. use SPP [44].

CSP. The CubeSat Space Protocol (CSP) is a lightweight
network protocol designed for small satellites, particularly
CubeSats [21]. CSP was developed in collaboration between
Aalborg University and GomSpace and was first deployed in
the GOMX-1 CubeSat in 2012 [2]. In November 2018, Klofas
identified 23 CubeSats using CSP [20]. The SUCHAI CubeSat
analyzed by Gutierrez et al. [17] and one of the three satellites
analyzed by Willbold et al. use CSP [44].

Two challenges for fuzzing the selected protocols are the
encodings used in both BP versions and the checksums used in
BPv7 and SPP. In BPv6, integer fields are encoded using Self-
Delimiting Numeric Values (SDNV) [10], while BPv7 encodes
all fields using the Concise Binary Object Representation
(CBOR) [5]. Due to the per-field encoding, it is not possible
to separate decoding from parsing or encoding from building
new inputs, as those are intertwined. Regarding checksums,
BPv7 optionally uses X-25 CRC-16 or CRC32C (Castagnoli),
and SPP uses a CCSDS-specified 16-bit CRC. We discuss how
we address these challenges in Section III-B.

B. Target Selection

We searched for open-source implementations of the se-
lected protocols, prioritizing those developed by space agen-
cies or private organizations, those deployed in space, and

Target Org. Lang. SLOC BPv6 BPv7 SPP CSP
ION-DTN [29] NASA C 814K ✓ ✓
HDTN [28] NASA C++ 81K ✓ ✓
µD3TN [15] D3TN C 51K ✓ ✓ ✓
libcsp [21] OSS C 9K ✓
python-spp [22] LibreCube Python 275 ✓

Table I: Targets used in evaluation.

those that are maintained (i.e., at least one update in the
last year). We selected the five targets shown in Table I.
They include two BP implementations from NASA (ION-
DTN [29] and HDTN [28]), both tested in the International
Space Station (ISS) [9]. We also include µD3TN, developed
by the D3TN company, which supports both BP and SPP and
is space-tested [8], [42]. For CSP, we select the official libcsp
implementation, deployed in numerous CubeSat missions [21].
Finally, we include python-spp, which is written in Python and
thus not designed to run on spacecraft but allows us to test
non-C/C++ implementations.

For all implementations, we set up a node that receives
packets, typically by encapsulating the target protocol over
UDP (TCP for python-spp). µD3TN provides stand-alone ex-
ecutables to run the protocol parsers on files, which simplifies
the setup. ION-DTN is the most complex target, with 814K
Source Lines Of Code (SLOC). Furthermore, it is multi-
process, spawning eight processes on startup.

C. Fuzzer Selection

Grammar-based fuzzing [16] leverages protocol specifica-
tions for fuzzing. Two popular grammar-based network fuzzers
are Peach [19] and BooFuzz [35]. These fuzzers do not have
grammars for space protocols. To evaluate grammar-based
fuzzing, we developed Peach grammars (called pits) for the
four selected protocols, as described in Section III-A. We use
the GitLab Protocol Fuzzer CE based on Peach Pro [19]. We
also tried developing protocol grammars for BooFuzz, but this
fuzzer does not handle fields shorter than 8 bits, which are
common in the selected protocols [23].

Other network fuzzers focus on making coverage-guided
fuzzing [46] state-aware by prioritizing inputs that dis-
cover new protocol states (e.g., AFLNet [36], SGFuzz [3],
StateAFL [30]). We did not evaluate them since the selected
protocols do not allow long message interactions. Bleem [24]
uses a man-in-the-middle (MITM) approach that modifies the
traffic in-flight between client and server, but the fuzzer is
not publicly available. Recently, Fuzztruction-Net [4] proposed
introducing faults during the execution of a peer, letting the
peer handle the generation of inputs after the fault. This
approach is the only one that could potentially handle the
encoding in BP, but it was published at the end of our work.

We also evaluate AFL++[13], arguably the leading
coverage-guided fuzzer. Since AFL++ does not support net-
work protocol fuzzing, we only apply it for fuzzing two targets:
the µD3TN executables that read inputs from files and HDTN
through a custom harness that de-socketizes the code. AFL++
is significantly faster at producing inputs than Peach, but in the
presence of encoding and checksums it may generate many
invalid inputs that are quickly dropped by the parsers. Our
Peach pits address those issues, but Peach’s slowness compared
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to AFL++ means those improvements may not compensate for
the speed difference. We use AFL++ version 4.21a.

III. FUZZING SETUP

This section describes how we set up the fuzzing by
developing protocol grammars and custom harnesses.

A. Peach Pits

To enable fuzzing with Peach we had to create pits for
each protocol. Peach pits include a data model describing
the format of the messages and a state model describing the
sequence of messages to send to the target. For each message,
the data model captures the sequence of fields with their
type and length, and which fields capture relations to other
fields, such as length fields (used in all four protocols) and
offset fields that capture the start offset of other fields (used
in BPv6). To generate valid inputs, we developed C# Peach
plugins that encode the fields and compute checksums. In
particular, we developed Transformers for encoding fields with
SDNV (BPv6) and CBOR (BPv7) and Fixups for computing
the SPP and BPv7 checksums. Peach fixups are applied before
transformers, but the BPv7 checksum is calculated over the
CBOR-encoded fields. To address this issue, we added the
checksum computation into the CBOR transformer.

For all targets except libcsp, the state model simply requires
the fuzzer to send the built input to the target on top of either
UDP or TCP. Instead, libcsp employs the ZeroMQ (ZMQ)
publish-subscribe protocol. Thus, the state model requires the
fuzzer to complete the ZMQ handshake prior to sending the
CSP message. We added the ZMQ handshake messages to the
data model, marking them as immutable so that only the CSP
message would be fuzzed.

In theory, only one pit is needed for each protocol. In
practice, we had to keep multiple similar pits for some
protocols due to target differences and protocol features. For
example, we found that µD3TN computed the value for the
BPv6 Primary Block Length field differently than ION-DTN
and HDTN. The issue is caused by a potentially confusing
description in RFC 5050: “The Block Length field is an SDNV
that contains the aggregate length of all remaining fields of
the block.” [39]. Both ION-DTN and HDTN interpreted this
as excluding the fields preceding Block Length and the Block
Length field itself, while µD3TN included those three fields
in the length value. We reported this issue to µD3TN and it
has been patched to match the interpretation of ION-DTN and
HDTN [18]. We also created a separate BPv6 pit because if
the BPv6 fragmentation flag is set, two additional fields are
added to the BPv6 bundle structure.

B. Target Setup

We used Peach to fuzz all targets over the network. We
used AFL++ to fuzz µD3TN and HDTN using input files
with network message payloads. µD3TN provides stand-alone
executables for its parsers. For HDTN, we implemented a
harness that calls the main parsing function with the payload
read from a file. We did not de-socketize other targets as it
was not easy to pinpoint a function to use as an entry point for
parsing. Furthermore, ION-DTN is multi-process and cannot
be fuzzed with the off-the-shelf AFL++.

When fuzzing with AFL++, we leveraged its afl-cc/afl-
c++ compilers with default settings, relying on the built-in
coverage tracking and crash and hang detection capabilities.
For µD3TN, we used sample network inputs provided in the
project’s repository as seeds. For HDTN, we set up two nodes,
captured the exchanged messages, and used them as seeds.

When fuzzing with Peach, we did not use Peach’s oracles
because we could not compile our targets to run on Ubuntu
16.04 (the latest OS supported by Peach), thus having to run
the targets on a separate machine. Instead, we created custom
harnesses that fork the target and detect if it terminates. Since
python-spp is written in Python, its harness also checks for
uncaught exceptions. The harnesses also save the application
logs, run tcpdump to collect network traces, and use Val-
grind [31] to identify bugs that may not cause a crash. We
tried using Address Sanitizer (ASan) [40] instead of Valgrind
but could not get ION-DTN to compile with ASan. To get
coverage data, we compiled the targets with gcov [14] support.

ION-DTN was especially challenging to set up, perhaps un-
surprisingly, as its deployment guide states, “ION is generally
optimized for continuous operational use rather than research...
Unfortunately, this can make ION somewhat painful for new
users to work with...” [29]. The main issues were that the ION
core uses eight processes and, when terminated, it does not
entirely release its resources. To address this issue, we had to
customize its harness with custom reset scripts that released
resources that prevented ION-DTN from restarting.

IV. EVALUATION

Table II summarizes our fuzzing campaigns. We fuzzed
the latest version of each target at the time. When patches
for vulnerabilities we discovered were released during our
experiments, we also fuzzed the patched version. We tried
running 24-hour fuzzing campaigns. However, we had stability
issues with the Peach harnesses for ION-DTN and HDTN,
which caused their campaigns to terminate earlier. In the case
of ION-DTN this is likely due to memory leaks caused by an
incomplete reset process. Peach generated 77K–85K inputs per
hour and AFL++ 12.7M–35M inputs per hour, two orders of
magnitude more. Our campaigns found from zero (libcsp) up
to 3M (µD3TN) crashes. We tested crashing inputs on a full
target node with Valgrind to validate the crashes and generate
stack traces. We bucketed similar stack traces into 11 unique
vulnerabilities, summarized in Table III.

The 11 vulnerabilities belong to common categories of
software security issues such as out-of-bounds reads, double-
frees, and use of uninitialized variables. The vulnerability in
python-spp was notably different. Malformed packets caused
an exception, and the thread responsible for receiving packets
would terminate silently while the main server continued
running, unaware that it was no longer receiving data. All
vulnerabilities scored 7.5 on the CVSS v3 rating. These high
scores are due to the network attack vector, the low attack
complexity, and the absence of any requirements for privileges
or user interaction. Each vulnerability, at a minimum, results
in a denial-of-service (DoS) for the affected network service.

All vulnerabilities have been responsibly disclosed. For
µD3TN, we directly reported the issues through the Git-
Lab private reporting functionality. For the other targets, we
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Target Version Protocol Fuzzer Inputs Time GCOV Coverage AFL++ Coverage Crashes Vulnerabilities
ION-DTN [29] 4.1.3 BPv6 Peach 155k 2 hrs 13.9% - 10 3

4.1.3 BPv7 Peach 510k 6 hrs 18.3% - 123 2
HDTN [28] 1.3.1 BPv6 Peach 1.1M 13 hrs 1.9% - - -

1.3.1 BPv6 AFL++ 21.1M 24 hrs - 1.8% 4,215 3
1.3.1 BPv7 Peach 642k 10 hrs 2.2% - - -

µD3TN [15] 0.13.0 SPP AFL++ 306M 24 hrs - 1.2% - -
0.13.0 SPP Peach 1.7M 24 hrs 1.2% - - -
0.13.0 BPv6 AFL++ 693M 24 hrs - 4.9% - -
0.13.0 BPv6 Peach 1.8M 24 hrs 4.6% - - -
0.13.0 BPv7 AFL++ 648M 24 hrs - 7.9% 387 1
0.13.0 BPv7 Peach 1.7M 24 hrs 6.0% - - -
0.14.1 BPv7 AFL++ 849M 24 hrs - 6.6% 3.0M 1
0.14.2 BPv7 AFL++ 843M 24 hrs - 6.9% - -

libcsp [21] 2.0 CSP Peach 1.8M 24 hrs 30.2% - - -
python-spp [22] 5cbffe SPP Peach 401K 24 hrs - - 1 1

Table II: Fuzzing campaigns conducted for each target.

Target Ver. Prot. Status Vulnerability Type
ION-DTN 4.1.3 BPv7 CVE-2024-54130 CWE-457: Use Uninitialized Variable
ION-DTN 4.1.3 BPv7 CVE-2024-54129 CWE-665: Improper Initialization
ION-DTN 4.1.3 BPv6 reported CWE-125: Out-of-bounds Read
ION-DTN 4.1.3 BPv6 reported CWE-20: Improper Input Validation
ION-DTN 4.1.3 BPv6 reported CWE-125: Out-of-bounds Read
HDTN 1.3.1 BPv6 reported CWE-122: Heap Buffer Overflow
HDTN 1.3.1 BPv6 reported CWE-457: Use Uninitialized Variable
HDTN 1.3.1 BPv6 reported CWE-789: Uncontrolled Mem. Alloc.
µD3TN 0.13.0 BPv7 CVE-2024-10455 CWE-617: Reachable Assertion
µD3TN 0.14.1 BPv7 CVE-2024-12107 CWE-415: Double Free
LibreCube 5cbffe SPP fixed CWE-248: Uncaught Exception

Table III: Vulnerabilities found and reporting status.

approached the developers privately asking them how they
wanted the issue reported. For ION-DTN, we guided the re-
sponsible NASA team on enabling the private reporting options
in GitHub. Five vulnerabilities have already been patched and
4 vulnerabilities have been assigned CVE identifiers.

We briefly describe two vulnerabilities that have already
been patched by the developers.

Double-Free in µD3TN BPv7. A double-free vulnerability
could be triggered in µD3TN through malformed BPv7 End-
point Identifiers (EIDs). In our setup, the glibc tcache memory
protection detected the double-free and aborted the process,
resulting in a DoS. However, given resource constraints, space-
craft may use lightweight C standard libraries like uClibc [41]
or newlib [32], which may lack such memory protections. In
such environments, a double-free might go undetected, poten-
tially leading to undefined behavior and further exploitation.

Use of Uninitialized Variables in ION-DTN. Setting the
Destination Endpoint Identifier (EID) of a BPv7 bundle to
“dtn:none” caused ION-DTN to crash. Essentially, the EID
was treated as valid, but the subsequent logic did not handle
the special “none” case correctly, leading to some variables
being left uninitialized. This resulted in a segmentation fault
when those uninitialized variables were later accessed.

V. DISCUSSION

Fuzzer comparison. Both fuzzers found similar numbers of
vulnerabilities: 6 for Peach in two targets (ION-DTN, python-
spp) and 5 for AFL++ in two targets (HDTN, µD3TN). How-
ever, AFL++ showed its superiority by generating two orders
of magnitude more inputs per hour and finding vulnerabilities
that Peach did not find, which agrees with prior results [36],

[3], [30]. However, fuzzing network protocols with AFL++
required de-socketizing the targets and was problematic with
the multi-process ION-DTN, with LibreCube’s Python im-
plementation, and for libcsp that required an initial message
handshake. Thus, we found value in using both fuzzers.
Furthermore, Peach’s limitations may not be intrinsic to its
grammar-based approach but to its lack of coverage-guided
support and its outdated implementation. Furthermore, the
developed protocol grammars could enable other applications
such as intrusion detection and anomaly detection.

Source code availability. We have fuzzed open-source targets.
Source code is typically available to the developers, but it may
not be available to external analysts. Its availability allows
more straightforward modification of a target, e.g., to create
the harness that de-socketizes HDTN. Creating such stand-
alone executables is harder without source code. For example,
Willbold et al. [43] failed to create a stand-alone executable of
the telecommand parsing code from the firmware of the Flying
Laptop satellite.

Fuzzing setup. Most of our time was spent setting up the
targets for fuzzing, which was difficult due to the steep
learning curve and the limited documentation of some targets.
We observe that developers can greatly assist in the process
of security testing their software by providing stand-alone
executables for the protocol parsers, better documentation,
and making sure that all used resources are released upon
termination. Facilitating the security testing process results in
more resilient implementations.

VI. CONCLUSION

We have reported our experiences when fuzzing open-
source space protocol implementations using two popular
fuzzing approaches. We identified 11 remotely exploitable
vulnerabilities in four out of five targets. Our results highlight
that security testing of space systems should be a priority.
A clear avenue to improve this work would be expanding
its coverage by examining more space protocols (e.g., link
layer, application layer), fuzzing more targets (e.g., closed-
source implementations), and evaluating more fuzzers (e.g.,
AFLNet [36], Fuzztruction-Net [4]).
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