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Abstract—Low Earth Orbit (LEO) satellites are becoming
increasingly popular with private companies launching them to
build vast networks that cover the globe. As these satellite systems
expand, questions about their performance, security, and privacy
are rising. To address these questions, researchers need to study
these systems in real-world conditions. To support this kind of
empirical research, we developed LeoCommon, an experimental
network of ground stations. This network is designed to work
with multiple satellite constellations such as Iridium, Globalstar,
Starlink, and others. The LeoCommon system only uses open-
source software and affordable hardware components that are
easily accessible to academic researchers. We set up an initial
network of ground stations in Central Europe, consisting of 10
stations. Using this setup, we have managed to collect over 500
synchronized recordings from the Iridium satellites, totaling more
than 3,400 hours of data. This paper discusses the design of
LeoCommon, our experiences in setting up the stations, and the
initial results from testing the system with the Iridium network
constellation.

I. INTRODUCTION

The field of satellite communication received significantly
growing public and academic attention over the past few years.
The development of new satellite systems, particularly in low-
Earth orbit (LEO) such as Starlink, OneWeb, and Kuiper,
has injected new momentum into satellite communication. In
addition to these new players, long-established LEO systems
such as Iridium and Globalstar continue to be widely used.

As these LEO satellite systems and their applications are
expanding, questions about performance, security, and privacy
are rising. To address these questions, researchers have started
experimenting with these systems from various angles. How-
ever, as LEO satellites are moving quickly relative to the
Earth and their communication beams can be quite narrow,
experiments with LEO satellites can be a complex endeavor.

To facilitate data collection, several crowdsourcing initia-
tives have emerged over the years. The SatNOGS network [2,

19] was founded in 2014 aiming to develop and push open
technologies for satellite ground stations. Connected ground
stations become a shared resource in a global network of
amateur radio ground stations. In 2015, the Electrosense [15]
network emerged as a distributed system to monitor the wide-
band spectrum and decode arbitrary radio frequency signals.
In 2019, the TinyGS1 crowdsourcing network was created to
collect LORA IoT signals from CubeSats.

While these systems provide useful satellite data collection
capabilities, they lack features that are often necessary for
experimental research with LEO systems. For example, these
networks heavily rely on the RTL-SDR USB dongle as a radio
receiver frontend, which severely limits the frequencies and the
bandwidth of the signals that can be observed. Furthermore,
these systems are not designed for high-quality measurements
as needed in research but mainly aim to decode signals oppor-
tunistically. Finally, they do not allow for time-synchronized
measurements across different ground stations, a feature that is
often needed in research to compare recordings and for signal
localization purposes.

To support the research in this field, we developed LeoCom-
mon, a network of common ground stations. LeoCommon is
designed to observe data communication from various satel-
lite constellations such as Iridium, Globalstar, Starlink, and
others, allowing researchers to run measurement campaigns
in various frequency bands, using different modulations and
encodings. LeoCommon supports distributed, synchronized,
and high-quality measurements using open-source software
and commercially available hardware components. This makes
the system suitable and affordable for researchers.

Currently, we are running an instance of the network
consisting of 10 ground stations distributed across several
European countries. We have successfully tested the system
for collecting data from the Iridium constellation. For instance,
we can record all Iridium messages and collect raw samples
of Iridium Ring Alert (IRA) headers. We are further extending
our system to support a larger variety of hardware and cover
more satellite communication systems.

1https://tinygs.com/
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As the research interest in the satellite domain is growing,
we have decided to develop and provide a software solution
solely based on open-source software and hope to grow the
community around LeoCommon. The code for the project
with setup manual and extensive documentation is available
on GitHub: https://github.com/LeoCommon.

II. GOAL AND RESULTING REQUIREMENTS

The goal of LeoCommmon is to provide researchers with an
easy-to-deploy and use platform to perform distributed LEO
satellite communication research. For example, researchers
leveraged empirical satellite data to devise and test a GNSS
spoofing detection system [12], to fingerprint LEO satel-
lites [13, 17, 21], and to assess the security as well as
privacy threats of terminal users [5]. More research efforts
are currently ongoing worldwide, and we expect a significant
rise in studies in the future.

To support these research efforts, the goal of this work
is to design a ground station observatory network with the
following properties:

• Multi-constellation: We aim to support multiple interest-
ing LEO constellations, shown in Table I. In this way,
we can support the applicability of new approaches in
research on a variety of satellite systems such as [4, 9].

• Distributed and synchronized measurements: LEO satel-
lites are more dynamic compared to GEO satellites since
they have a smaller antenna footprint and wander across
the sky. So distributed measurements can provide valu-
able insights into a system, as shown by [7, 20]. It is
also important to capture the time of a measurement,
to recreate the conditions of the satellite constellation
afterwards.

• Decoded and raw signals: Depending on the field of
research, the recordings have to meet different require-
ments: for signal fingerprinting [13, 17, 21] raw record-
ings are used, while for traffic content focused re-
search [5, 7, 12] decoded messages are utilized.

• High-quality data: In many research applications, reliable
signal recordings with good SNR are necessary for their
methods to work, as [5, 13, 17] explain.

• Open source and low cost: In setups with multiple ground
stations, as [8, 20], a cost-efficient solution that can be
adapted to the specific requirements is preferred.

III. SYSTEM ARCHITECTURE

A high-level overview of the network architecture and its
major components is shown in Figure 1. A central server
is responsible for controlling the ground stations (shown as
satellite dishes). The stations regularly pull tasks from the
server, execute them, and upload the results. A researcher
can use the web interface to schedule new tasks for the
ground stations, view and download results from previous
experiments, and configure the ground station.

In the following subsections, we describe the ground station
and server software architecture.

Fig. 1: High-level overview of the network.

Fig. 2: Overview of the ground station systems architecture.

A. Ground Station Architecture

The operating system consists of three major parts shown
in Figure 2: two independent Linux instances (Linux A and B,
in green and gray) and an underlying updater (in blue). The
two available Linux instances operate independently. During
ground station operation, only one instance is active at a time.
For example, as shown in Figure 2, Linux A is booted while
Linux B remains inactive. This design allows the updater to
perform updates on the inactive instance (Linux B) without
disrupting the operation of the active system. Once the update
is complete, the active instance (Linux A) is notified to
schedule a reboot. Upon reboot, the bootloader switches to
the updated instance (Linux B).

If the updated instance works correctly, it is marked as
“healthy” and becomes the new default for subsequent boots.
In the event of a permanent failure with the new instance, the
system automatically reboots and reverts to the previously op-

Fig. 3: Signal processing flow inside the ground station.

System Satellites Forward-Downlink Freq. Return-Uplink Freq.
Iridium 66 LEO 1620 MHz 1620 MHz

Globalstar 48 LEO 2490 MHz 1615 MHz
Orbcomm 36 LEO 137 MHz 148 MHz
Starlink +6,700 LEO 12 GHz 26 GHz
OneWeb +600 LEO 12 GHz 26 GHz
Kuiper 3200 LEO 12 GHz 26 GHz

TABLE I: Interesting LEO communication systems.
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Platform
CPU RAM CPU Mark

cores Clock Rate Score Floating Point Math ARM NEON Extended Instructions
[GHz] [GB] [MFLOPS] [106Matrices/s]

BeagleBone Black∗ 1x ARM Cortex-A8 1.0 0.5 - 73.7 -
Raspberry Pi 3B+ 4x ARM Cortex-A53 1.4 1 198.6 1289.7 164.1

Rock Pi 4B+ 2x ARM Cortex-A72 1.8 4 997.5 3513.7 469.14x ARM Cortex-A53 1.4
Raspberry Pi 4B 4x ARM Cortex-A72 1.5 4 515.6 3777.3 649.5

Odroid-XU4∗ 4x ARM Cortex-A15 2.1 2 1274.6 2867.8 824.64x ARM Cortex-A7 1.4

Odroid-N2+ 4x ARM Cortex-A73 2.4 4 1476.4 6437.7 953.14x ARM Cortex-A53 2.0
Raspberry Pi 5B 4x ARM Cortex-A76 2.4 8 1813 10559 1609
Raspberry Pi 5B (w. Fan) 4x ARM Cortex-A76 2.4 8 2177 10470 2034

TABLE II: Results of PassMark PerformanceTest on ARMv8 (64b). Platforms marked with ∗ only support ARMv7 (32b).

erational instance (Linux A) if three consequent boot or health
check attempts fail. This approach ensures seamless updates
while maintaining a highly reliable operational environment.

The update client communicates with a dedicated update
server that operates independently of the command and control
(C&C) server. This ensures the separation of concerns and
enhances system robustness.

The components related to information flow and signal
processing within the ground station are shown in Figure 3.

Once a signal is recorded, using the SDR, it is filtered to
the frequency band of interest. A frame detector analyzes
the incoming signal to identify parts that contain message
transmissions. Depending on the requirements, the following
signal processing chain can vary: One possibility is to store
the raw signal. For this case, the raw frames are filtered for
the important frames of interest (e.g., only header frames).
After this, compression is applied to the frames of interest
before they are stored [3, 11]. In case the message content
is of importance, a decimator is used to trim the signal to
the required sample rate after the frame detection stage. This
is followed by demodulation and decoding which extract the
transmitted symbols and bits. Different receivers, like an Irid-
ium message receiver, an Iridium Ring Alert (IRA) header raw
recorder, or a Globalstar message decoder, are implemented
by using a combination of the provided functionalities. Once
a receiving task has finished its execution, the locally stored
result is uploaded to the C&C server.

B. C&C Server Software

As previously mentioned, there are two servers in our
network. One update server and one central command and
control server. The update server is a separate component, not
interacting with the C&C server.

The central command and control server is the core of the
network. It waits for requests from the ground stations and
allows users to access the functionalities of the network. We
utilize a database to store all the data received from the ground
stations, user accounts, and access credentials. On top of this, a
REST API provides access to the data. A web server serves the
static content and load balances requests for dynamic content
to the backend. For security reasons, we ensure that the server

is only accessible over an encrypted and authenticated TLS
connection.

IV. SYSTEM DESIGN

When designing the ground station network, we had two
major goals in mind: providing a cost-efficient solution for
researchers and creating a system with high reliability. The
first point is achieved by selecting appropriate off-the-shelf
hardware, while the second goal is met by setting up a
redundant, robust, and modular distributed software system.

A. Ground Station Hardware

We use modular components with different requirements:
The radio frontend must be able to receive a frequency in
which, ideally, as many satellite constellations as possible
operate. During the design phase, we specifically considered
the satellite systems, shown in Table I. In our network, we
focus on Iridium and Globalstar reception. Other satellite
systems such as Orbcom, Starlink, OneWeb, and Kuiper are
future candidates for potential integration. While open-source
decoders are available for certain constellations, such as Or-
bcomm, others, including Starlink [6], lack publicly available
decoders and necessitate additional integration efforts.

1) Receiver Frontend: As potential receiver options, we
evaluate three primary software-defined radios (SDRs). The
RTL-SDR family, while cost-effective and widely used in
ground station networks such as OpenSky and Electrosense,
is limited to frequencies up to 1700 MHz with a bandwidth
of 3.2 MHz, rendering it insufficient for our requirements. In
contrast, the ADALM-PLUTO SDR supports reception up to
3800 MHz with a bandwidth of 20 MHz, while the HackRF
One extends up to 6000 MHz at the same bandwidth. Both
devices were viable choices; however, we opted to begin with
the HackRF One due to its widespread adoption within the
research community. Future work may explore the integration
of other commonly used SDRs.

2) Processing Unit: Seven single-board computers were
evaluated as potential processing units for running a ground
station, including three variants of the Raspberry Pi, the
BeagleBone Black, the Rock Pi 4B+, and two Odroid variants.
Each device has a price below 100 Euro, ensuring cost
efficiency and supporting network scalability.
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To assess the raw CPU and memory performance of
these devices, we conducted benchmarks using the “Perfor-
manceTest” suite from PassMark2. Technical specifications
and benchmarking results for the tested devices are provided
in Table II. The benchmarks represent the average of 10
CPU and memory test iterations executed on each device with
standard settings ./pt_linux_arm64 -i 10 -r 1. The
Linux PerformanceTest version used was v11.0 Build 1002.
Furthermore, all Raspberry Pi devices used the ARMv8 (64-
bit) Linux kernel 6.12.4 LTS. BeagleBone Black and Odroid-
XU4 were evaluated only with ARMv7 (32-bit) systems, as
their CPUs do not support 64-bit instructions. Benchmarks
were carried out in a controlled environment with an ambient
temperature of 21oC to take thermal throttling after consecu-
tive iterations into account.

This approach ensures uniformity and repeatability and
provides a reliable comparison of computational performance
across all devices. The measured results drive the selection
process for the ground station’s processing unit.

ARM NEON Single Instruction Multiple Data (SIMD)
performance is of particular importance, as these extended
instructions allow for optimized mathematical functions during
signal processing tasks performed by GNU Radio (Volk) [18]
and other system software like NumPy. Accordingly, Table II
is sorted by performance in this category. The results demon-
strate that the Odroid-N2+ and Raspberry Pi 5 perform best,
whereas the BeagleBone Black and Raspberry Pi 3B+ ex-
hibit the lowest performance metrics. Due to the BeagleBone
Black’s significantly worse results and the absence of 64-
bit instruction support in both the BeagleBone Black and
Odroid-XU4, these devices have been excluded from further
consideration.

3) Supplementary Hardware: To operate a ground sta-
tion, an Iridium antenna, the Taoglas IMA.01.1053, a
combined GPS-LTE-module SIM7600E-H 4G HAT4, a mi-
croSD card and a USB stick are used. The Iridium antenna is
a professional weather-proof passive outdoor Iridium antenna,
tuned to the appropriate frequency range with a peak gain
of 3.9 dBi. The GPS LTE module provides reliable location
information and flexibility in ground station placement. The
combination of a microSD card and a USB stick is chosen
as a cheap alternative to platform-dependent SSD extension
boards. Also, this provides the benefit of a clear separation of
concerns: the microSD card only stores the operating system
and bootloader, while the USB stick holds the ground station
configuration, credentials, and recorded data.

B. Ground Station Software

The ground station software is an embedded Linux system
developed with the help of Buildroot5, a versatile tool de-
signed for generating embedded Linux systems. The primary
objective was to create a reliable, easily updateable and secure

2https://www.passmark.com/products/pt linux/index.php
3https://www.taoglas.com
4https://www.waveshare.com/wiki/SIM7600E-H 4G HAT
5https://buildroot.org/

system. To achieve this, a custom Linux distribution was de-
veloped, incorporating only the essential software components.
This approach minimizes the system’s codebase, thereby re-
ducing potential vulnerabilities while enhancing performance
and maintainability.

1) Updates: To implement the Updater as outlined in
Figure 2, the lightweight Robust Auto-Update Controller6

(RAUC) is used. It seamlessly integrates with Buildroot and
is used in conjunction with Hawkbit7, an update management
framework, to check for and deploy over-the-air (OTA) system
updates. The fact that RAUC only allows the installation of
signed updates provides an added layer of security imple-
mented across all ground stations. Together, Buildroot, RAUC,
and Hawkbit form a cohesive ecosystem, ensuring reliability,
security, and ease of maintenance.

2) Main System: Each Linux instance is configured with
only the essential software components required for opera-
tion. These include GNU Radio 3.108, receiver and decoder
functionalities, and the ground station client. Additionally,
lightweight services such as the GPS daemon (GPSD) and the
time synchronization daemon (Chrony) are included. Startup
and service management is handled by the systemd init
system, while wired and wireless network connectivity is man-
aged through NetworkManager. For cellular backup con-
nectivity (4G, 5G, etc.), ModemManager is used to configure
and manage supported modems. This streamlined approach
focusing on already available software packages minimizes
complexity and reduces the attack surface by limiting the
number of exploitable components. Notably, an SSH server
is intentionally excluded from the ground station to enhance
security. Any necessary reconfiguration of the ground station
can only be performed through tasks issued by the central
server or via software updates delivered through RAUC.

Another key aspect of the system’s reliability is that both
Linux instances are read-only and cannot be modified on the
fly. This is achieved by using EROFS (Enhanced Read-Only
File System)9, which is inherently read-only by design. This
approach prevents microSD card writes, reducing the risk of
corruption, a common issue in long-running devices due to the
wear caused by frequent writes and unstable power conditions.
To enable data storage, essential data like the ground station
configuration, logs from the different modules, and recording
job results are saved on a writeable USB Stick.

3) Receiver & Decoder Modules: The Iridium message
decoder module is a slightly modified version of the open-
source Iridium receiver software “gr-iridium”[16]. It observes
a configurable part of the Iridium frequency band and demod-
ulates the received messages. To provide reliable timestamps
and avoid accumulation of timing errors we modified the
timing calculation by using system calls, utilizing the system
time. The effect and reason for accumulating timing errors are
discussed later in Section V.

6https://rauc.io/
7https://eclipse.dev/hawkbit/
8https://www.gnuradio.org/
9https://docs.kernel.org/filesystems/erofs.html
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Sample Rate [MSPS] 2 3 4 5 6 7 8 9 10
Raspberry Pi 3B+ 0.74 64.45 73.50 76.11 82.69 84.34 90.87 91.89 92.57
RockPi 4B+ 0 0.91 0.54 0 0 8.74 16.66 22.1 31.83
Raspberry Pi 4B 0.1 0.04 0.05 0 0 0.02 2.7 27.14 38.97
Odroid-XU4 0 0 0 0 0 0 0 3.81 13.29
Odroid-N2+ 0 0.03 0 0 0 0 0 0 0
Raspberry Pi 5B (w. Fan) 0 0 0 0 0 0 0 0 0

TABLE III: Testing different software by measuring the amount of dropped frames [in %] when receiving satellite signals at
different sample rates.

Fig. 4: Overview of the server design.

The raw IRA header recorder enables the capture of raw
samples from Iridium Ring Alert headers. These messages,
transmitted every 4.32 seconds by each Iridium satellite an-
tenna, include the ID of the sending satellite and antenna. Such
messages are frequently utilized in research on fingerprinting,
as discussed in Section VII. The software implementing this
functionality is derived from research conducted at the Uni-
versity of Oxford [17].

The Globalstar message decoder is currently under devel-
opment and is further described in section VIII.

C. Server Software

For the update server, we utilize Hawkbit, which offers
excellent integration with the RAUC updater of the ground
station software, providing a reliable, secure, and user-friendly
update mechanism. Since Hawkbit is a fully functional, out-of-
the-box software module, further description is not necessary
at this stage.

The central command and control server architecture is
illustrated in Figure 4. MongoDB10 is used for storing data and
user accounts, selected for its flexibility and superior perfor-
mance with large datasets, as highlighted by Parker et al. [14].
The REST API is implemented using FastAPI11, chosen for
its emphasis on scalability and high-performance connections.
Additionally, a nginx12 server runs on top, configured to accept
only encrypted TLS connections.

User and ground station authentication is implemented
using JSON Web Tokens13, in compliance with the OAuth2.0

10https://www.mongodb.com
11https://fastapi.tiangolo.com/
12http://nginx.org/
13https://jwt.io/

standard14. The system employs a combination of refresh and
access tokens for authentication. The access token is used
to authenticate communication with the server, and when it
expires, the refresh token is used to obtain a new pair of
access and refresh tokens. Each refresh token can be used
only once, providing a balance between security and usability.
Each ground station is configured with a unique access-refresh
token pair stored on its USB stick.

Users initially log in with a username and password, and
upon successful authentication, they are issued an access-
refresh token pair. Once the access token expires, a background
script automatically acquires a new access token using the
refresh token. Consequently, all server requests, except for the
initial login, are authenticated using the access token.

V. CAPABILITIES AND RECEIVER QUALITY

To assess the performance of different processing units,
we evaluate their ability to receive Iridium messages. This
involves using the Iridium message decoder connected to a
HackRF One and measuring the percentage of dropped frames
at varying sample rates. The results are presented in Table III,
with values representing the average of three repetitions. To
ensure consistency across measurements within each repeti-
tion, we pre-recorded the raw signals at the respective sample
rates. These recorded signals were then replayed to each
platform to maintain comparability in the measurements.

The evaluated sample rates begin at 2 MSPS, as the receiver
software’s minimum sample rate is 1.75 MSPS. Therefore,
measurements below this threshold do not represent a realistic
scenario.

When comparing the results, the Odroid-N2+ and Raspberry
Pi 5 stand out, demonstrating excellent performance with no
issues even at higher sample rates. The Odroid-XU4 and
Raspberry Pi 4B follow in third and fourth place, respectively,
performing well without any dropped frames up to 9 MSPS
and 8 MSPS. These results offer valuable insight into the
computational limits of the processing units within the scope
of our analysis.

To assess the receiver performance in terms of timing,
potential warnings for dropped frames are incorporated into
the measurement results and uploaded to the server. This
allows for a reliable evaluation of the quality of each reception.

14https://oauth.net/2/
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(a) Accumulating time offset with gr-iridium. (b) Time offset of modified timing measurement, no accumulation.

Fig. 5: Timing offset of multiple 1 h recordings.

As shown in Table III, significant frame dropping occurs
when using hardware close to its maximum computational
capacity, but it can also happen sporadically at lower per-
formance levels. In the original gr-iridium software, this
causes issues in time calculations, as the receiving time of
messages is derived from the frame counter. When frames are
dropped, this leads to cumulative timing errors, as illustrated
in Figure 5a. This figure displays the growing timing offsets
over several 1-hour recordings, with the errors exceeding 60
seconds. The timing offset represents the difference between
the timestamp of a recorded message from gr-iridium and a
timestamp provided by the Iridium satellite through Iridium
Broadcast messages. Such inaccurate receiving timestamps can
pose challenges for research when the recorded messages are
used. Given the bursty nature of Iridium signals, occasional
frame dropping must be accounted for in reliable long-term
observations. Our modified software addresses this issue by
using system time for timing each individual frame, which
is much more stable, as shown in Figure 5b. The remaining
offsets are consistently within a 60 ms range and no longer
accumulate. However, there is still a small amount of jitter to
investigate in future work (Section VIII).

In addition to the timestamp, the data includes frequency
and SNR estimations of the received message, along with
meta-information such as dropped frames, the ground station’s
GPS location, and recording parameters like center frequency,
sample rate, and receiver gain.

VI. DEPLOYMENT AND COVERAGE

We deployed a network of 10 ground stations across Europe,
as shown in Figure 6. Since the network’s launch in 2022, we
have conducted over 500 recordings totaling more than 3400
hours, resulting in a data collection of 80 GB.

When deploying the ground stations, ensuring an unob-
structed view of the sky is crucial to allow the reception of
messages from a wide range of satellite positions.

The heatmap in Figure 7 illustrates the areas where an
Iridium satellite can be received by a ground station, with
brighter regions indicating more reliable reception. Figure 7a
shows a sub-optimal ground station placement, located at
the corner of a building and surrounded by tall trees. This

Fig. 6: Map of the currently placed ground stations.

(a) Sub-optimal ground station
placement.

(b) Near-optimal ground station
placement.

Fig. 7: Heatmap of receivable Iridium satellite locations.
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Fig. 8: Map of the Iridium downlink observation area as seen
by a ground station. As the distance between the terminal and
the ground station increases, the ability to observe messages
decreases.

station has limited coverage, and during one hour of typical
Iridium traffic, it will only receive about one or two thousand
messages, equating to roughly 2 MB of demodulated data.
Figure 7b (on the right) shows the coverage area of a well-
placed ground station, capable of receiving messages from
satellites across central Europe. It can capture up to 100
MB of demodulated Iridium messages in one hour of typical
traffic. The data is compressed to about 15 MB before being
uploaded to the server. After post-processing, this results
in approximately 120,000 Iridium messages, including 1500
Iridium Ring Alert messages. This underscores the importance
of optimal receiver placement.

The highlighted areas in Figure 7 represent the satellite
positions during the reception of an Iridium message. This
is not the earth surface that is reliably observed by a receiver,
meaning the area where a ground terminal is located and the
forward-downlink traffic from the satellite to the terminal is
reliably received by the ground station. This area is influenced
by the footprint size of the satellite antennas. For Iridium,
the average antenna footprint diameter is about 400 km.
The observation area is illustrated in Figure 8. If an Iridium
terminal is located within the inner blue circle (35 km radius),
a ground station (located at the red dot in the center) can
observe at least 90% of the forward-downlink traffic to the
terminal. As the distance increases, observed traffic decreases:
70% within the red circle (105 km), 50% within the green
circle (180 km), 30% within the orange circle (270 km), and
10% within the purple circle (500 km). Forward-downlink
traffic is receivable when both the ground station and terminal
are within the same satellite antenna beam, but as the distance
grows, the time spent in the shared beam decreases.

VII. USE CASES IN EXISTING WORK

A. Recreation of previous measurements

With its capabilities of receiving Iridium messages, Leo-
Common can be used to recreate measurements of several
publications: In the GNSS spoofing detection work by Oligeri
et al. [12], Iridium Ring Alert (IRA) messages were exten-
sively collected to develop a model for location estimation
to detect GNSS spoofing. Our network can reliably record
IRA messages at one or multiple locations simultaneously.
Additionally, the integrated GPS receiver provides a location
reference for the ground station. In previous work of ours [7],
IRA messages were used to develop a model of satellite
antenna beams, which, when combined with further traffic
recordings, helps estimate the location of Iridium ground
terminals. Our network is capable of receiving IRA messages
alongside other Iridium traffic. It delivers reliable timing infor-
mation for each message reception and is capable of receiving
traffic on multiple locations in parallel. In the work of Gurren
et al. [5], an Iridium ground terminal and its connections
via WiFi and the Iridium satellite network were analyzed to
identify security vulnerabilities. To support this application,
our ground stations can receive the forward-downlink (from
the satellite to the user terminal) and also the return-uplink
(from the user terminal to the satellite), provided the terminal
is within line of sight of a ground station. This capability
allows us to apply the same tools used by Gurren et al. for
further security analysis of the recorded Iridium traffic.

Using the capability to record raw IQ (in-phase & quadra-
ture) samples, several research projects that trained neural
networks for authenticating a satellite can be reproduced:
Three notable works are from Oligeri et al. [13], Zhu et al. [21]
and Smailes et al. [17]: Oligeri represents the IQ samples
as 224x224 pixel grayscale images fed into a Convolutional
Neural Network (CNN) for classification. Combined with an
autoencoder, this achieves an accuracy between 0.8 and 1,
depending on the scenario. Zhu enhances Oligeri’s approach
by using a 3D CNN with the temporal property as the third
feature, reducing the required sample rate to 42% while
maintaining an accuracy of 0.92. Smailes takes a different
approach using a Siamese Neural Network that compares two
signals to determine the likelihood they were sent from the
same transmitter, achieving an accuracy of 0.95. LeoCommon
supports this method by capturing raw IQ samples of IRA
headers and uploading them to the server.

In addition to using raw samples of IRA messages for
fingerprinting, they can also enhance the accuracy of location
estimation for an Iridium terminal, as demonstrated by Liang
et al. [10] and Kassas et al. [9]. Liang employs a combined
delay-Doppler estimation algorithm, working on raw samples
of IRA message headers to obtain accurate values to estimate
the receiver’s location with a precision of 200 m. By recording
IRA message headers, these measurements can be directly
reproduced, and the calculated location can be compared to
the GPS-provided ground station position. Kassas uses signals
from four LEO satellite constellations: Starlink, OneWeb, Or-
bcomm, and Iridium, to calculate the receiver’s location using
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Doppler measurements for extracting navigation information.
In a stationary scenario, they achieved location accuracy within
5 meters, while in a dynamic scenario, the average error was 10
meters. This highlights the importance of combined receiving
capabilities from multiple constellations for research.

B. Enhancing existing work

There are also research projects that can directly benefit
from LeoCommon by supporting their work with additional
real-world measurements:

In the work of Xiao et al. [20], the focus is on the
secrecy capacity of the forward-downlink of a satellite in non-
geostationary orbit. The satellite provides services to a fixed
earth station, while a fixed eavesdropper attempts to intercept
the communication. Their paper presents a theoretical analysis
of secure communication performance, along with extensive
simulations to validate their approach. LeoCommon could be
used to set up such a scenario and evaluate the theoretical and
simulated results under real-world conditions.

As a possible complement to this, Aigul et al.[1] demon-
strated improvements in signal reception reliability through the
use of Kalman filtering. Their simulations show that Kalman
filters are effective even at a negative signal-to-noise ratio
for identifying a signal. By incorporating their findings into
our software, it would be possible to evaluate these results
under real-world conditions across multiple satellite systems.
This improvement could also enhance the reliability of signal
reception in our ground stations.

Another previous work of ours [8] conducted simulations
on using TDOA-based fingerprints of satellite messages to
authenticate the sending satellite. LeoCommon could support
this research by providing a measurement platform to receive
Iridium messages simultaneously at different locations and
providing accurate timestamps to each message.

The scenario of combining multiple LEO communication
satellite constellations for precise location calculation is ex-
plored by Farhangian et al. [4]. They use “signals of op-
portunity” from various constellations to perform Doppler
measurements, enhancing the location estimations of an in-
ertial navigation system. By simulating signals from different
satellite systems for their calculations, they highlight the need
for a receiver system capable of reliably receiving signals from
multiple satellite systems.

VIII. FUTURE DEVELOPMENT

We began by implementing a cost-efficient solution for
receiving Iridium signals and aim to expand to a platform
supporting more constellations. Currently, the ground station
software can receive Iridium satellite signals, demodulate
all received messages, or process the raw headers of IRA
messages. Moving forward, we plan to integrate more LEO
systems, starting with the Globalstar message decoder. This
decoder will function similarly to the Iridium message re-
ceiver, demodulating and collecting all messages received from
this system. Next, we aim to integrate receiving capabilities

for Orbcomm and evaluate the feasibility of receiving signals
from Starlink and OneWeb.

It is also worth noting that supporting more SDRs beyond
the HackRF One will enhance the platform’s adaptability to
specific tasks. Additionally, to accommodate different satellite
systems, multiple antennas will be required. To streamline this
process, we plan to connect all antennas to a switch that can
be controlled via software, allowing the necessary antenna to
be selected for each receiving task without requiring manual
changes to the setup.

Currently, we are using Raspberry Pi 4B and 5B due to their
widespread adoption and good support for hardware modules
and software. However, with the increasing availability of
affordable x64 mini-PCs, it is promising to explore their
performance. If they prove suitable, they can be added to the
list of supported devices. Additionally, finding alternatives for
the combined GPS-LTE board would offer more flexibility,
allowing the platform to be better adapted to specific require-
ments. For instance, a standard GPS-USB stick could suffice
for locations with a reliable LAN connection, while an LTE-
USB stick could provide connectivity as an alternative to the
combined GPS-LTE board.

To further enhance the quality of recordings, we aim to
investigate and eliminate the cause of the remaining jitter in
time measurements. Recent theoretical improvements in signal
reception reliability, as demonstrated by Aigul et al. [1], offer
a potential method for improving signal detection, which still
needs to be explored in a large-scale real-world environment.

IX. CONCLUSION

In this paper, we introduced LeoCommon, an open-source
ground station observatory network designed for experimental
research in LEO satellite communications. It is available
on GitHub: https://github.com/LeoCommon. We outlined its
architecture, design, and implementation, all driven by the
goal of providing a low-cost, extensible, multi-constellation
experimental platform with high-quality recorded data. Leo-
Common focuses on minimizing data loss and ensuring time-
synchronized measurements at distributed ground stations,
both critical for empirical research in satellite networks. We
presented the current capabilities of the platform, including
coverage and observation areas, which demonstrate its favor-
able characteristics. Additionally, we explored the potential
use cases of LeoCommon in existing satellite communications
research and highlighted its potential for further develop-
ment. We aim to extend LeoCommon’s capabilities concerning
additional constellations, supported hardware, and increased
flexibility for conducting distributed measurement campaigns.
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