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Abstract—An increase in availability of Software Defined
Radios (SDRs) has caused a dramatic shift in the threat landscape
of legacy satellite systems, opening them up to easy spoofing
attacks by low-budget adversaries. Physical-layer authentication
methods can help improve the security of these systems by
providing additional validation without modifying the space seg-
ment. This paper extends previous research on Radio Frequency
Fingerprinting (RFF) of satellite communication to the Orbcomm
satellite formation. The GPS and Iridium constellations are
already well covered in prior research, but the feasibility of
transferring techniques to other formations has not yet been
examined, and raises previously undiscussed challenges.

In this paper, we collect a novel dataset containing 8992474
packets from the Orbcom satellite constellation using different
SDRs and locations. We use this dataset to train RFF systems
based on convolutional neural networks. We achieve an ROC
AUC score of 0.53 when distinguishing different satellites within
the constellation, and 0.98 when distinguishing legitimate satel-
lites from SDRs in a spoofing scenario. We also demonstrate the
possibility of mixing datasets using different SDRs in different
physical locations.

I. INTRODUCTION
A. Motivation

Over the past decades Software Defined Radios (SDRs)
have proliferated and in the process have invalidated previ-
ously sensible wireless threat model assumptions. Nowadays,
commonly available and cheap hardware enables attacks that
were, just a few decades prior, firmly in the domain of nation
state actors. In fact, many such wireless attacks are now
occurring in the wild, such as GPS spoofing [1], and recent
research even demonstrated arbitrary code execution through
wireless signal injection [2]. While these developments are
likely to precipitate improved wireless security in the future,
some systems, such as satellite constellations, cannot simply
be replaced due to accessibility, legacy, or cost considerations.

In the domain of satellite communication security, security
measures that rely on the physical layer and are deploy-
able purely in the ground segment provide valuable tools
to improve the security of legacy systems. Physical-layer
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identification techniques have shown promising results for
satellite identification [3]], [4], [5]. These works tend to focus
on the GPS and Iridium constellations due to the ease and
ubiquity of receiving signals from these satellites using off-
the-shelf hardware and open-source software.

In this paper, we extend existing satellite fingerprinting
techniques to work with the Orbcomm satellite constellation.
These satellites present a typical example of the legacy systems
that RFF is suited to securing. The Orbcomm constellation
brings a number of unique challenges not present in the
Iridium system:

o Communication channels are low-bandwidth and differ
between satellites;

« Small frequency spacing between channels prevents high
levels of oversampling;

o Messages contain identifying information which, if im-
properly masked, could allow the model to cut corners.

B. Contributions

In this paper we provide the first application of RF finger-
printing to the Orbcomm constellation. In order to achieve
this, we collected a dataset of 8992474 samples that were
collected from multiple locations and SDRs. Using this dataset
we demonstrate the effectiveness of RFF to authenticate
communication, and separate legitimate communication from
spoofing via attacker-controlled SDRs. We also introduce a
novel preprocessing technique to anonymize messages without
reducing the number of samples available to the fingerprinting
model. Finally, we show the stability of the fingerprints over
time, and evaluate transferability between SDRs.

II. BACKGROUND
A. Software Defined Radios

SDRs are radio devices that digitize the received signal,
offloading the bulk of (traditionally analog) signal processing
to a computer. SDRs utilize IQ demodulation in order to
downconvert the signal and split it into I (In-phase) and Q
(Quadrature) components. The I and Q signals, together with
the original carrier frequency, can be used to fully reconstruct
the received signal. After the IQ signals are sampled and
digitized, they are commonly represented as a complex number
where the real part corresponds to the in-phase component.

We focus on two commonly used off-the-shelf SDRs.
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Fig. 1. Structure of an Orbcomm synchronization packet.

1) HackRF One: The HackRF One is a Semi-Duplex SDR
that covers a frequency range from 1 MHz to 6000 MHz with
a maximal bandwidth of 20 MHz and a resolution of 8 bits [6].

2) RTL-SDR: The RTL-SDR is a receive-only family of
SDR devices that covers a frequency range from 500 kHz to
1.75 GHz with a maximal bandwidth of around 3 MHz and
an effective resolution of 7 bits [7]. The RTL-SDR is notable
due to its very low price point, in the range of 30 USD.

B. Radio Frequency Fingerprinting

Radio Frequency Fingerprinting (RFF) aims to identify an
emitter based on imperfections in the Electromagnetic (EM)
signal [8]. These imperfections stem from variations in the
fabrication of the RF chain and are thus hard to avoid. These
variations can be used to discriminate signals from transmitters
of the same model, and in particular can distinguish attacker-
controlled transmitters from legitimate ones. This may be used
to provide an extra security layer [8] against spoofing, which
may be implemented independently of existing infrastructure.

There are two main approaches to RFF, which focus on
either the transient of the signal (the beginning of the signal
as the transmitter powers up) or the steady state during normal
transmission [8]. Within each of these, some approaches use
a classifier (in which all transmitters are known and messages
are labeled) and some use similarity-based techniques (in
which fingerprints are compared to a database) [9].

RFF is used in the literature to identify transmitters operat-
ing various protocols, including WiFi [9], [10], [L1], [12f], or
aviation communication [9], [12], as well as various satellite
systems. Among these the Iridium constellation [3]], [S], [13]
and Global Navigation Satellite Systems (GNSSs) [14] stand
out, in addition to some study of simulated CubeSats [15].

C. Triplet Loss

The triplet loss function [16]] is a measure of similarity
between sparse representations and is calculated from a triplet
of embeddings. It compares the distances from an anchor to a
positive sample (same label as the anchor) and to a negative
sample (different label). The triplet loss characterizes how
much closer the positive example is to the anchor than the
negative example. Triplet loss encourages a model to map
semantically close inputs to metrically close embeddings [17]].

Mathematically, the triplet loss L is calculated as described
in [16] where p is the embedding of the anchor,
py+ is the embedding of the positive example, and p_ is
the embedding of the negative sample. The function d(z,y)
describes a distance between two embeddings = and y. The
margin m is a hyperparameter that describes the minimal
desired difference between embeddings of different labels. Due

to the max(-) term, differences beyond the margin do not
contribute to the loss anymore.

L = max(m +d(p,p+) — d(p,p-),0) (D

D. Orbcomm

The Orbcomm satellite constellation was established from
1995 to 2000 [18] and provides communication services. The
space segment consists of 30 satellites that communicate in
the 137 MHz to 150 MHz (VHF) band [18] with a right-
hand circular polarization. Not all of these satellites appear
to be functional [19]]. In practice, only 13 channels between
137 MHz to 138 MHz are used [20], one of which is not a
user channel but a gateway channel [21].

The signal is encoded with Symmetrical Differential Phase
Shift Keying (SDPSK), with 8 bits to a word and 600 words
in a minor frame [18]. Minor frames consist of 12 or 24
word-long packets. Each packet contains a two word Fletcher
checksum [22]. Orbcomm satellites transmit continuously [[19]]
and with a transmission rate of 4800 bps.

There are several different types of used packets.
ure 1| shows the structure of a synchronization packet that
contains a synchronization header (0x65A8F9), the satellite
ID, a Downlink Channel Number (DCN), a Minor Frame
Counter (MFC), as well as a fletcher checksum (FCS) and
four fixed words [22]]. Both the ID and the DCN field (and
the checksum too since only ID and DCN change between
different synchronization packets) can be used to infer the
identity of the satellite.

E. Related Work

While there is an abundance of prior work [3l], [4]], [S], [9],
[L3], [L14)], [L5]), [23]] using RFF on satellite communication
(real or simulated), to the best of our knowledge there is no
prior work evaluating the Orbcomm constellation. However,
several papers do use Orbcomm to provide opportunistic
positioning [19], [20], [21].

Some previous RFF works pre-process IQ samples into an
image (or multiple images) to produce heatmaps, which are
used in classifiers pre-trained on image recognition models [4],
[S]. Other works such as SatlQ [3]] perform 1D convolutions
on the raw signal, similar to conventional signal processing.
We use this approach in this paper.

Another important difference is into what space the model
projects the input. Some previous works use a classification
approach [4)], [S)], [11l], whereas other works [3] opt for
a more extendable similarity-based approach, enabling new
transmitters to be added without retraining. The methodolog-
ical difference to SatlQ [3]] lies in not using a synchronized



Fig. 2. Turnstile antenna for the data acquisition system deployed on a rooftop
in Zurich.

signal as input for the proposed model and making more use
of shared weights in processing.

III. THREAT MODEL

Satellite systems (especially GPS) are commonly spoofed
in the wild [1]. Cheap, transmit-capable SDRs are readily
available (e.g. HackRF for around 300 USD [6]]) and are more
than sufficient to perform many attacks. An attacker with rea-
sonably low budget (2000 USD) is able to overshadow satellite
systems or even take over user ground stations [2]).

Thus, we can assume the adversary has the capability
to overshadow the legitimate signal or replay signals from
the transmitter. Due to the low power of legitimate satellite
signals on the ground, the attacker is assumed to be able to
overshadow a satellite despite the user potentially utilizing a
highly directional antenna. Alternatively the attacker might
target a sidelobe, which has been shown to be practical for
small aperture (user segment) satellite dishes [2].

Compared to prior work [3l], we also consider non-terrestrial
adversaries, because even a low-budget attacker can use an
Uncrewed Aerial Vehicle (UAV) to carry an SDR and a Single
Board Computer (SBC) above a receiver and thus fool systems
based on detecting terrestrial links (e.g. via fading process [3]).

The user is unable to distinguish attacker messages from
legitimate ones on the logical layer (e.g. due to absent/broken
cryptography or leaked key material). Thus the user must
attempt to authenticate the signal on the physical layer.

A sufficient test of this capability consists of distinguish-
ing different transmitters of the same constellation. Previous
work indicates that the performance against a replay
attacker (over a wired link) is better than the performance
in distinguishing legitimate transmitters.

Out of scope for the purpose of this work is an adversary
capable of hijacking the actual satellite hardware, thus taking
over the transmitter. Neither is the adversary able to inject
malicious samples into our training data. Such a capability
would enable the adversary to create a backdoor in the
machine learning model [23].

IV. DATA COLLECTION

Data was collected from two physical locations. [Figure 2|
shows a turnstile antenna designed for frequencies from
135 MHz to 152 MHz and right-hand circular polarization [26]]
deployed on a rooftop in Zurich. It is connected via a coaxial
cable to an RTL-SDR and a computer inside a weatherproof
closet. Another turnstile antenna was deployed in St. Gallen
and connected to a HackRF One. Preliminary experiments
were also carried out with other antenna types (Dipole, V-
Dipole, QHF) at St. Gallen. However, the turnstile antenna
was found to deliver the best results.

The computer runs a custom python script that acquires
the samples. The script uses the Soapy abstraction library to
ingest the 1Q samples. Much of the decoding logic is based
on an open-source project that implements the decoding.
It leverages ephemeris data for the satellite detection and
prediction of the used channels, as well as the Doppler offset.
If the receiver is able to synchronize to the incoming bitstream
(i.e., estimate where word and packet boundaries are), all
fletcher checksums are checked. This is used to calculate the
Packet Error Rate (PER). Packets are only accepted into the
dataset if the receiver validates its checksum.

The possible oversampling is limited by the separation of
the channels to a value such that no neighboring channel is
included. That would be undesirable, because the presence
or absence of neighboring bands could help an ML model
to identify the transmitter, taking advantage of the variable
spacing between downlink channels among the Orbcomm
satellite fleet. While the satellites could be programmed to
transmit in steps of 2.5 kHz [22]], only a few are actually used.
Various online forums report frequencies in use by Orbcomm
and the smallest channel separation found was 20 kHz. With
a bitrate of 4800bps and a root raise cosine filter with
a = 0.4 [22], the captured bandwidth should not be more
than 20kHz — (2.4kHz * (1 + o)) = 16640Hz. To account for
non-ideal filers, the signal is oversampled by a conservative
factor of two.

The stored signal undergoes coarse frequency correction
(Doppler shift prediction with ephemeris), fine frequency
correction, but not timing nor phase recovery. The IQ samples
and associated metadata (Signal to Noise Ratio (SNR), RX
location, timestamp, used antenna, used SDR) are stored in a
tfrecord file. This data and the associated data collection code
will be made available on publication.

Overall the data collection ran intermittently for 3 months
(1.5 months thereof from two locations) and collected a total
of 8992474 packets with 192 1Q samples each. This represents
50.0h of continuous IQ recordings. The average SNR is
8.1dB. summarizes the dataset and the distribution
of the metadata of the collected samples.

V. SYSTEM DESIGN
A. Data Augmentation

Because of concerns raised in previous research regarding
the transferability of fingerprinting models across different
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Fig. 3. Breakdown of collected dataset

SDR reboots [28]], the data collected for this dataset stems
from two different locations with two different physical SDRs.

The data is then augmented in the dataset pipeline. We apply
the following operations: random phase shift (A¢ € [0, 27)),
random scaling (« € [0.9,1]), and a random frequency shift
(Af/ fsampling € [—0.01,0.01]). These transformations are

illustrated in The intent is to improve training and
prevent overfitting.

B. Machine Learning Model

To provide an extendable system that can handle new
categories without requiring extensive retraining, an encoder
architecture is chosen that maps the received waveform (IQ
samples) into an embedding space.

1) Loss Function: The triplet loss with a semi-hard online
batching strategy is used. Semi-hard batching considers all
positive samples in a batch but only the hardest negative
example and was found to provide more stable training [29].
The chosen distance metric is the L2 metric with a margin of
0.7, because this performed best in preliminary experiments.

Comparison of un/augmented data
Phase shifted
%0°

Reference unaugmented data
00°

sampling index

Fig. 4. Illustration of data augmentation

2) Data Preprocessing: To improve model performance
and increase the model size, the signal is interpolated during
preprocessing. This increases the input size of the model and
enables bigger Conv + Maxpool layers with more parameters.
The following list shows the preprocessing layers (and output
tensor shapes) that are applied before the encoder.

1) Input (Batch size, 192, 2)

2) Interpolation (x64) to (Batch size, 12288, 2)

3) Random Bit Transition Shuffling (Batch size, 12288, 2)

Many Orbcomm packets contain fields with information
that identifies the specific satellite (ID field or ephemeris
data) or narrow down the possible satellites (e.g. information
about used transmit frequencies) [22]], further preprocessing is
needed in order to prevent the model from learning to decode
the Orbcomm signal. The data portion of the signal is easily
spoofed by the attacker, so we must ensure the model cannot
extract any identifying information from it.

To achieve this, the signal is split into different bit tran-
sitions and shuffled randomly. Afterwards the different bit
transitions are stitched back together. This happens as a
preprocessing layer inside the Keras model and is configured
to only happen during training. This step decreases the quality
of the signal since it introduces discontinuities but is vital to
prevent the model from learning logical-layer features that do
not offer any protection against replay or spoofing attacks.

3) Embedding Network: For the embedding network, a
convolutional neural network is chosen. It consists of two
separate branches of ConvlD, MaxPool1D and Dropout layers
that apply to the I and Q part of the signal, respectively. Using
weight sharing on the convolution kernels, the model size is
reduced. This weight sharing is motivated by the fact that the
received 1Q signal can have any phase shift due to the wireless
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Fig. 5. Proposed Model Architecture

channel, and thus the IQ parts can be swapped (and one of
them multiplied by —1) if the phase shift is 7/2.

After 10 convolutional layers, the processed I and Q signals
pass through a dense layer that transform them to the desired
embedding dimension. The final embedding dimension is
256. The signals from the I and Q branch are added and
passed through a final dense layer. The full model architecture
(excluding preprocessing layers) is shown in The
final model contains 1091348 trainable parameters (4.2 MB).

4) Training: The model is implemented in Tensorflow with
the help of Keras for many of the standard layers. Non-
standard layers include the triplet loss function (where code
from the now-deprecated tensorflow-addons project is used)
as well as the preprocessing layers (both the interpolation and
the bit transition shuffling layers are custom).

Of the available samples, 27% were used for testing and
9% for validation. The plots in Section were generated
with validation data if not otherwise mentioned.

Training was performed on an Nvidia A100 Graphical
Processing Unit (GPU) with the adam optimizer [30]. A total
of 25 epochs were trained over a time of 50 hours. The used
batch size was 450. During training, every epoch that achieves
a new best Area Under Curve (AUC) metric is saved, such that
early stopping can be simulated. Actual early stopping was
unhelpful as the AUC metric did not evolve monotonically.

VI. EVALUATION

A. Accuracy

We provide initial results of our approach. The Receiver
Operating Characteristic (ROC) characteristics are calculated
by taking the pairwise distance metric between a batch of
N = 1024 validation examples and then varying the detection
threshold. This method yields (N?— N)/2 binary comparisons
per batch. The threshold decides if the pairwise distance is
classified as belonging to the same transmitter or not. The
threshold is evaluated over the entire validation dataset. The
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Fig. 6. EER of model

overall ROC AUC is 0.53 with an Equal Error Rate (EER) of
0.48. shows the EER of the ROC curve.

Figure 7| shows that the classification performance improves
for higher SNR until it decreases again. We postulate that our
SNR measurement is affected by interference which creates
false entries with high SNR.

To improve the performance of the classifier, a signal can
not only be compared to a single anchor (a ground truth em-
bedding from a known satellite) but to several anchors instead.
The anchors are randomly sampled and the mean distance
between the tested embedding and the anchors. shows
performance for different amounts of anchors. This scenario is
different from the baseline performance, in that the model is
used to decide if a message belongs to the same transmitter as
the anchor or not. In the previous baseline scenario, a sampled
subset of all pairwise distances is used to decide whether two
signals belong to the same satellite.

The achievable baseline accuracy (at EER) is 1 — EER =
0.52. When using three anchors the AUC is improved to 0.62
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and an accuracy of 0.54.

B. Security

To assess the security of the proposed scheme, we collect
a dataset of spoofed messages. We use a full-duplex USRP
B200mini SDR to capture signals with a center frequency of
136.9 MHz and a sampling rate of 3 Msps. We use the same
parameters to emit it on the transmit port, which is connected
via a 10dB attenuator to the data collection system.
shows the spoofing setup connected to the collection system.

For the analysis, 10000 real recordings and 10000 spoofed
recordings are sampled from the datasets and transformed
with the model into the embedding space. For every satellite
with entries in both sets, the distance between all spoofed

Fig. 9. Signal Spoofing Setup
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Fig. 10. EER plot of model used to discriminate real and spoofed signals

and real embeddings is calculated, as well as all pairwise
distances between embeddings of real samples. The ROC for
the binary discriminator (decision between spoofed and not

spoofed) is 0.98. shows the false positive / negative
rates depending on the used threshold and the EER level.

C. Deployability

This subsection addresses some considerations that affect
the deployability of the proposed system. The accuracies used
in the following evaluations are calculated by using the EER
threshold of the entire dataset to make a binary decision if two
embeddings belong to the same transmitter.

1) Transferability Between SDRs: In a deployed system it
would be preferable to use a single common set of anchors
between all receivers, since deriving new data for each receiver
will be cumbersome. In addition, it should be transferable to
a new type of SDR device to simplify deployment or enable
the system hardware to be upgraded.

depicts the AUC for signals collected from
different locations and SDRs. It shows that while samples
collected by the same SDR perform better, the proposed model
learns to generalize beyond SDR boundaries.

2) Time stability of the generated fingerprints: An impor-
tant requirement for a deployable system is how stable the
generated fingerprint is as time goes by, since a low stability
requires more frequent updating of fingerprints.
shows how the reception times of the two compared signals
impact the model performance. Over the span of roughly 2



TABLE I
COMPARISON OF DIFFERENT LOW EARTH ORBIT (LEO) RFF MODELS

‘Work Target Constellation  Dataset Size Best Achieved Result

This Work Orbcomm 8992474 packets AUC 0.62, EER 0.44

This Work Iridium SatlQ [3] Dataset AUC 0.576, EER 0.448

SatlQ [3] Iridium 1.7 - 109 ring alerts AUC 0.698, EER 0.350

PastAl [3] Iridium 1-108 1Q samples Accuracy 0.82, up to >0.9 (for >9 excluded classes)
Zhu et al. Iridium 1.98 - 10% IQ samples  Accuracy 0.924, Fl-score 0.923
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Fig. 12. Impact of reception date on model performance The accuracy is
calculated with the EER threshold of the model over the validation set.

months the performance does not show deterioration over time,
except for very good performance on the same day. The good
performance of recordings on the same day is presumably that
this class contains samples from the same pass that are thus
likely to have experiences the same channel and atmospheric
distortion and are thus more similar.

3) Usage Time: The fingerprinting works on a packet level.
Thus a packet consisting of 12 bytes (24 bytes for ephemeris
packets [22]) has an air time of 20ms (40 ms). The model
takes an additional 30 ms on a single thread of an Intel NUC
with an i5-1135G7 running at 2.40 GHz to make a prediction.

D. Comparison To Other Models

In order to test the merit of the proposed model itself, we
use it to learn data published in the context of previous work
on Iridium RFF. This allows the comparison of the results
achieved by the proposed model and the SatIQ model [3].

The proposed model achieves a maximal validation AUC
of 0.576 after training 100 epochs, compared with 0.627 after
training for 100 epochs as achieved by the SatlQ model. In
order to improve the comparison, no data augmentations were
used during training.

The model sizes compare as follows: SatlQ consists of
around 10 M trainable parameters (38.23 MB) (including an
autodecoder stage that is not strictly relevant for inference).
This work’s model contains 1091348 (4.2 MB) trainable
parameters, however, due to the slightly smaller input dimen-
sion of the Iridium data, the compared model contains only
1,079,064 (4.12 MB) trainable parameters.

On a more conceptual level, compares the results of
the proposed model to previous research.

VII. DISCUSSION

One interesting point is that the performance of the model
against spoofed signals is significantly better than the perfor-
mance in discriminating signals from the different satellites.
We assume that this is because the task of discriminating be-
tween satellites of the same type is easier than to discriminate
against a different type of transmitter (the attacker SDR in this
case).

The model performance shows an interesting dependence on
the SNR, where the accuracy first increases but then decreases
again with increasing SNR. As mentioned in Section the
problem might be that interference caused packets to have
wrongly measured SNR. Another possibility is that due to
the low occurrence of such high SNR examples (compare

[Figure 3)), the model did not learn them well.

Improving Model Performance

In order to further improve the model performance, the
following four approaches could be considered.

1) Increase amount of IQ points per fingerprint: A major
difference to previous work is that only 192 In-phase Quadra-
ture (IQ) samples are used to derive the fingerprint, whereas
other work used 10’000 [3]] or 11000 [3].

A comparison from the literature is a study on
IEEE802.11ac RFF [[11]], which uses 128 IQ sample points to
feed a classifier network (that can distinguish 5 transmitters).



The used dataset contains 20 M samples collected from differ-
ent distances. The achieved results show a good performance
(>90% accuracy) for close (<12 m) distances. The dataset
stops at 15 m distance between transmitter and receiver with
an accuracy just below 75% [11] and a decreasing trend.
That study shows that fingerprinting is also possible with low-
dimensional inputs but also that performance decreases with
distance and, correlatedly, lower SNR. A major difference,
though, is the channel, since the cited study collected the data
in an indoor environment that is more affected by multi-path
effects than the typical LEO satellite communication channel.

These comparisons indicate that a model with more input
data could achieve better performance. Studying if fingerprint-
ing on the level of minor frames (50 packets) leads to better
results would provide more insight into the impact the amount
of 1Q input points have.

2) Improve SNR: Comparing to the literature, the captured
SNRs (compare are rather low. An Iridium data
collection campaign [5] yielded an SNR mode of 45dB
and 90% of captured samples fall within 40dB to 60dB
SNR. In a simulation of LEO satellites, the identification
accuracy drastically dropped between the 15dB and 10dB
simulations (from > 80% down to < 40% across all simulated
parameters) [23]].

Another indication of RFF performance against noise comes
from a study that compared the performance of the SatlQ
RFF model against Jamming noise [32]. To compare those
results the Gaussian jammer is interpreted as Gaussian channel
noise instead. At Signal to Jamming Ratio (SJR) of —0.66 dB
(analog to SNR of 0.66 dB) the model on average starts to
misidentify signals. These comparisons indicate that operating
with higher SNR could improve the performance. This could
be achieved by using antennae with more gain or using a
preamplifier at the antenna feedpoint.

3) Anchor Selection: To make a classification if a signals
belongs to a satellite, currently a random anchor is used. The
performance could likely be improved by the selection of a
suitable anchor.

4) Model Training: Training the model longer or with more
data could also improve the performance of the model. This
was not attempted due to timing constraints. More data would
also enable usage of larger models before overfitting issues
start manifesting.

VIII. FUTURE WORK

This work raises a number of areas for future research.

One point of interest would be investigating how well the
model generalizes to satellites from the observed constellation
that it did not encounter during training.

Testing the model architecture on other VHF (space) com-
munications is another near-term goal. Because the proposed
model architecture does not require any particular input en-
coding of the IQ samples, it could conceivably be extended to
cover multiple constellations at once.

Finally, although this paper and previous works show that
machine learning based RFF systems perform well against

conventional spoofing, they may potentially introduce a vul-
nerability against adversarial samples designed to trick the
model. Studying the vulnerability and the feasibility of inject-
ing adversarial examples over a wireless channel may provide
further insight into the security of ML-based RFF.

IX. CONCLUSION

This paper extends traditional RFF and machine learning
methods to the Orbcomm satellite constellation. We applied
new methods to deal with the constraints of the Orbcomm
system and demonstrated their effectiveness.

We have also collected and provided a large dataset of
Orbcomm packet captures, which will be useful for future
research. In addition, the initial assumption that training to
distinguish different satellites provides good protection against
spoofing attacks is validated by the much better performance
of the model when used to detect spoofing compared to the
baseline performance.

The final AUC of 0.98 against packet replays over a coax
connection shows the promise of the proposed model.
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