Formally Verifying the Newest Versions of the
GNSS-centric TESLA Protocol

Short Paper

Ioana Boureanu
University of Surrey
i.boureanu@surrey.ac.uk

Abstract—Global Navigation Satellite Systems (GNSS) are
critical for infrastructure like energy, telecommunications, and
transportation, making their accuracy vital. To enhance secu-
rity especially against location spoofing, in 2024, the Galileo
GNSS system adopted the Timed Efficient Stream Loss-Tolerant
Authentication (TESLA) protocol, for Navigation Message Au-
thentication (NMA). However, past and present TESLA versions
have lacked formal verification due to challenges in modelling
their streaming and timing mechanisms. Given the importance
of formal verification in uncovering protocol flaws, this work
addresses that gap by formally modelling and verifying the latest
TESLA protocol used in Galileo; we verify Galileo’s TESLA
protocol in the well-known Tamarin prover. We discuss our
findings and, since this is work-in-progress, we contextualise them
in terms of next steps for us, as well as for future Navigation
Message Authentication protocols inside GNSS systems.

I. INTRODUCTION

Over the past 25 years, global navigation satellite systems
(GNSS) have become essential components of various critical
infrastructures, such as energy distribution, telecommunica-
tions, financial services, and transportation. In recent times,
state-level adversaries have increasingly underscored the im-
portance of maintaining GNSS accuracy [1]. This highlights
the need for Navigation Message Authentication (NMA), that
is authentication of navigation data broadcast by GNSS.

Indeed, in 2024, the Galileo system, that is the European
service for GNSS, incorporated a protocol for NMA [2], [3l].
This protocol is called Timed Efficient Stream Loss-Tolerant
Authentication (TESLA) and its original version [4] has been
adapted since 2016 [3]], specifically to provide enhanced NMA
capabilities for the Galileo I/NAV E1-B Open Service signal,
such as to maximise both availability and robustness.

Simply put, in TESLA, one or several sarellites are sending
a series of timed (location) messages to a ground verifier or
user. The authentication of the messages and the sender occurs
based on a certified initial key sent by the satellite and subse-
quent keys generated from one another, in a sequence. These
interdependent keys are computed using one-way functions

Workshop on Security of Space and Satellite Systems (SpaceSec) 2025
24 February 2025, San Diego, CA, USA

ISBN 979-8-9919276-1-1
https://dx.doi.org/10.14722/spacesec.2025.23009
www.ndss-symposium.org

Stephan Wesemeyer
University of Surrey
s.wesemeyer @surrey.ac.uk

and are released to the user with some delay, to avoid pre-
computation, impersonation and timing attacks.

One important matter is that these new versions of TESLA
have not been formally verified with computer-aided provers
or tools for systems or security analysis. Even older versions
of TESLA, from the early 2000, have nor been formally
verified [6]. To a great extent, this is because the protocol uses
a continuous “stream” of authentication messages, as well as
timing, with authentication occurring if multiple checks pass
over an interval of time over a subset of messages in that
stream. These aspects of streaming and timing are hard to
model in computer-aided verification tools, and —in general—
ingenious approximations would be needed therein, to carry
out the modelling of the protocol and the verification of its cor-
rectness, let alone security. However, it is arguably important
and necessary to formally model and verify security protocols
and systems. Indeed, history and experience shows that formal
verification uncovered important and subtle flaws in security
protocols of all kinds (e.g., in versions of TLS [7], [8]], in
WPA2 [9]], in payments [10]), sometimes decades after they
were proposed; IETF now asks for formal verification [[L1]).

In this vein, in this work, we formally model and verify
the newest version of the GNSS-centric TESLA protocol,
implemented as for early 2024 in Galileo, the European GNSS.

II. BACKGROUND

A. The Galileo-adopted version of TESLA

We now explain the new version of the TESLA protocol [5],
as adopted in Galileo [2f], [3].

Let S be a sender/satellite, R be a receiver/user, n,d be some
parameters. The protocol is given on Figure [I}

Timestamped TESLA Keys. The protocol starts with
S generating a random TESLA key K,. Then, S iteratively
generates the list K,_1,K,_2,...,Kj,...,Ko of TESLA keys,
where K; := F"~/(K,,GST;), F is a one-way[l| function, F/
denotes applying F j times, and GST; is the GNSS time, as
held by S, at the time of the generation. First, the sender
sends Ky signe to the receiver. Then, S uses the keys

In [5],, F is taken to be trunc(hash(...)) , that is a truncation of a hash. The
GST-based timestamping is used inside F to protect against pre-computation
attacks. In Galileo, SHA-256, SHA3-256 are used as hashes.

%In Galileo, ECDSA P-256/SHA-256 or P-521/SHA-512 are used [2], [3].

User/Receiver R

Sender/Satellite S

pubks

Signprivig (Ko)

F — a one way function, params: n >3, d >0, x
in Galileo, params: n =6, d = 1, x = 30 seconds

privks

Initialisation Phase

— generate randomly a TESLA key K,;

— generate TESLA keys K,,_; := Fi(K,,GST,_,),
with i =0,n, F' is F applied i times;

GST= Galileo System Time

M;, MACk;(M;), Ki-q

broadcasting: the TESLA key Kj, signed

Sending GNSS Messages

fori=1ton

verify message M; at receipt i+d
OK iff messages are correct and timely

broadcasting: message M;, its MAC with K;,

and key K;_4, at x seconds apart

Figure 1. The TESLA protocol as adapted for Galileo

in the order Ki,...,K, 2,K, 1,K, to MAQ location/GNSS
messages My,...,M,.

Timed, Chained Location Messages. As shown in Fig-
ure [T} S sends a chain of GNSS messages Mi,...,M, (and
their MAC), at regular intervals: e.g., M; is sent x seconds
before MACk,(M;), which is sent x seconds before K;_4, which
is sent x seconds before M;,.

Receiver’s Verification. At the ith message-receipt within
a chain, the receiver R gets message M; , but cannot verify
it against the sender’s data, as —by then— the receiver R
has only obtained keys Kp,...,K;_; from the sender. It is at
receipt i +d that the receiver can verify M;, as it is then that
the key K;, which MAC-ed M;, is received. Note that, due
to the one-wayness of F, releasing the K; does not reveal
any information of the “later-to-be-released” keys K ;, for
any i+j>i (i.e., K; = F/(Kiy;,GST;)). In Galileo’s current
implementation, d=1.

TESLA’s Requirements. To be able to verify the messages,
the receiver and the sender have to have synchronised clocks,
and the sender needs to send timing data alongside the GNSS
payloads. In this way, the receiver can estimate time intervals
during which the keys K; would have been generated, and
time intervals when messages M; would have legitimately
left the sender’s side. The former also allows the receiver
to compute K; := F" (K,,e/ — GST;) for some estimations
e/ —GST, of the timestamps GS7;, and thus check the messages
and authenticate them and the sender.

Overall, this also allows the receiver to class the sender
and their messages, as valid and timely with some probability.

3In Galileo, HMAC-SHA-256 and CMAC-AES are used as MACs [2], [3].

Tuning the false rejection rate clearly impacts (in)security
and efficiency, as to amplify the receiver’s certainty longer
chains and tighter parameters would be needed. Concretely,
the process depends on sender-receiver time synchronisation,
parameters n, d and the delay of x seconds between the frames
M;, MACk;(M;), K;_4, etc. In Galileo trials, n was taken to be
6, d to be 1, x to be 30 seconds [2], [3].

B. Symbolic Verification & The Tamarin Protocol-Prover

Since the community of space security may not necessarily
be familiar with symbolic verification, we introduce it here.

Symbolic Verification. In symbolic or Dolev-Yao analy-
sis [12], [L3], [14]], protocols/systems are encoded via “possi-
bilistic” (rather than probabilistic) measures, cryptography is
assumed to be perfect/correct [15], yet it allows for a compu-
tationally unbounded Dolev-Yao (DY) [15] attacker which can
hijack all protocol sessions and communication, and corrupt all
parties modulo the perfect-cryptography assumption, and a set
of abstract, algebraic rules that encapsulate these powers [15].
This makes symbolic analysis amenable to mechanisation into
(often automatisable) computer-aided verifiers, which have
been fruitfully used in the analysis of cryptographic systems
(71, (81, (90, [10].

Tamarin Models. Tamarin [13]] is a Dolev-Yao [15]
protocol-verifier, which supports the analysis of an unbounded
number of protocol sessions. Tamarin models are transi-
tion systems (TS), whose transitions are modelled via rules
containing logical predicates (called facts) over user-defined
protocol variables.

Tamarin Proofs & Oracles. In Tamarin, one writes
lemmas in a fragment of first-order logic over some of these

facts, in order to inspect (all or one) possible executions/traces
of the transition system of the protocol model.

The trace-inspection via said lemmas constitutes the proof,
which is a backward search over the space of all possible
Dolev-Yao executions/traces of the model. Tamarin supports
various heuristics to cover this search-space. These heuristics
determine which Dolev-Yao deduction or “protocol-executing”
rules should be prioritised during the proof search. Users can
also create bespoke search heuristics or “oracles” [16], to
overrule Tamarin’s default heuristics in case of specific proofs.

III. MODELLING GALILEO’S TESLA IN TAMARIN

Note: All our Tamarin files are at http://people.itcarlson.
com/ioana/tesla/.

We now explain how we modelled the Galileo-adopted
TESLA in Tamarin, and what the challenges around this are.

Older versions of the TESLA protocol [4] have been sim-
plistically modelled in Tamarin in around 2012 [17]], [18],
[19]; not only are these for an older version of TESLA, but
they are much simplified [17]], and some are labelled as not
working [[18]. In fairness, these simple models were not aiming
to verify TESLA per se, but were mainly created to illustrate
how loops can be constructed in Tamarin (i.e., the fact that
the satellite keeps sending messages continuously), and how
loops posed certain modelling challenges in the tool.

A. Challenges in Modelling & Verifying TESLA

Due to the limitations of existing Dolev-Yao/symbolic
provers, there are three main challenges around modelling
and verifying TESLA in Tamarin, and, in fact, in any Dolev-
Yao/symbolic protocol verifier:

1) modelling of time, that is: (a) the timestamps inside the
functions F'; (b) the fact that navigation messages are sent
at regular time intervals; (c) the fact that the receiver must
to do time-based verification and discern between “old’
and “time-valid” messages;

2) modelling (a) the length of the TESLA chain of GNSS
messages; (b) the (continuous) repetition of these chains;

3) dealing with exponential growth in the size of the models,
increasing with: the length of chains and their repetition
for each satellite, and the number of satellites taking part
in a TESLA execution sending messages to a receiver;
this affects the tractability of verifying larger models.

B. Our Concrete Modelling & Verification of TESLA

We implemented in Tamarin the sender and receiver be-
haviours within the TESLA protocol, just as described in
Figure [I] and in Section 2, allowing for a full Dolev-Yao
attacker that exists in Tamarin (i.e., injecting, replaying, etc.).
The most important modelling and verification aspects lie in
how we overcame the challenges above, as described below.

Challenge 1: Modelling Time. Tamarin does not model
real/continuous time, and one can only simulate time via
discrete steps. One therefore needs to be ingenious about this
and there is no standard approach to this.

We model time/acceptability intervals not of a fixed
length (e.g., 30 seconds), but dictated by the “discretely-
timestamped” actions of the satellite, as explained next.

We encode timing (constraints) using a “$timestamp” vari-
able, and all the Tamarin rules modelling time-sensitive
TESLA exchanges have a fact, NewTimestamp($timestamp);
in other words, whenever that rule executes it is “tagged” with
a fresh value; this emulates, e.g., the time it was when the
sender/satellite sent something and it placed this time in the
meta-data that comes with the navigation payloads (i.e., I/NAV
clock and status in ADKD tags [2]], [3])).

We also created a global restriction that enforces that each
created timestamp is unique.

rule Receiver_Valid_Message:

! ($R, $S, %chain, key)
($R, $S, %chain, content, signature, $timestamp)

((signature,content, key)))
($R7$S«schaln content)
($S, %chain, key, $timestamp))

Figure 2. Implementing Time-restrictions in Message Checks

We use our timestamp artefact for the receiver to ver-
ify that the appropriate time intervals are adhered to, e.g.,
keys are only valid within a given chain and within their
allowed time intervals. Figure [2] shows our Tamarin rule called
Receiver_Valid_Message: it implements messages’ verifica-
tion by the receiver, and includes a restriction using our
predicate WithinInterval, utilising our timestamp artefacts. In
Figure 3] we show this predicate. It validates that a time-
value $timestamp is indeed within its allowed interval of a
given session. Concretely, the predicate checks that when the
user receives a message signed with key; at $timstamp, then
$timstamp must lie within the interval of when the satellite
sent its message signed with key; and its subsequent message
signed with key; (key; = F (key;,...).

predicates:
(x)
(x,y) <=> (x =y
1th1n1nterva (S, ‘—Lchaln keyl, timestamp) <=
S %chain key2 tsl ts2 ts3 #t@1 #t02
(S, %chain, keyl, tsl) @ t@1 // msg was sent

(S, %chain, key2, ts2) @ t@2 // subsequent msg was sent

keyl=f(<key2, ts3>) // the relation between keys during an interval

//message was received after it was sent
(#i #j . (ts1) @ i (timestamp) @ j
//message was received before the next one was sent
(#i #j . (timestamp) @ i

),

(ts2) @ j

(ts1,ts2) <=
(#1i #j .
(ts1) @ i
(ts2) @ j

Figure 3. Enforcing Acceptable Time Intervals

Challenge 2: Modelling Chains. Tamarin 1.8 was the first
version to introduce natural numbers; we use this feature in
our modelling, to restrict the length n of a chain (i.e., the

http://people.itcarlson.com/ioana/tesla/
http://people.itcarlson.com/ioana/tesla/

number of TESLA keys inside the model) and to count the
number of chains per satellite.

To simplify the management of TESLA chains, we also
modelled the case where the TESLA parameter d is equal to
n: i.e., the MAC-ing keys are released as late as possible, that
is all at the end. This allows for most attempts of timing and
integrity attacks, so it is a security-safe modelling. The model
can be easily adapted to release one MAC-ing key at a time.

Challenge 3: Tractability Challenges. Full proof for
protocols that rely on a constant stream of messages being
generated, as is the case with TESLA, could be done in
the absolute via induction, but this is not fully supported in
Tamarin for models that use natural numbers, like ourﬂ So,
constraints or bounds need to be put in place to do our proofs.

To make verification tractable, we place restrictions in our
generic model:

(i) the length n of message chains is restricted to 5;
(i1) the number of satellites — to 2;
(iii) the number of repeated chains per satellite — to 4.

Restriction (i) is not unrealistic, since the tested length of the
chain in Galileo was 6 [2], [3]. We show how this is achieved
in Tamarin in Figure [} note that this is easily adjustable to
other values. The last two restrictions are not stumbling blocks
w.r.t. proofs, either: to prove most correctness and security
properties coming from interleaving chains, a value of 2 chains
per satellite (one honest and one hijacked, in part or in total)
would suffice; similarly, one honest and one dishonest/to-be-
impersonated satellite suffice to show attacks.

// limit the number of generated keys
restriction key_gen_to_n:
#t01 .

nN(%x) @ t@1 //this predicate is used in our rules

%X %1 %+ %1 %+ %1 %+ %1 %+ %1 //this means max 5 key for one chain

Figure 4. Restriction for tractable verification

As discussed in Section [[I-B] we carried out our proofs
first by hand and, based on the strategy found, we built a
Tamarin oracle that automates the proving and makes it more
efficient: i.e., it tells Tamarin how to explore the proof space.
For instance, the snippet in Figure 3} partly shows which
Tamarin transitions, be it Dolev-Yao attacker actions (starting
the “KU(”) or specific protocol steps (starting with something
other than “KU()), to apply first, in order to efficiently prove
a lemma on the receiver being able to detect delays.

IV. VERIFICATION

a) Properties Proven: We encoded a total of 19 lemmas
checking correctness and security. Of these, 11 lemmas check
the correctness or the soundness of our model. For instance,

“(a) If we could write lemmas in Tamarin quantifying over natural numbers
(e.g., for all n number of satellites), then (b) a non-expert in Tamarin could
image we could prove — by induction — lemmas for arbitrary-size models. But,
one cannot do (a) in Tamarin, and even if one could do (a), then one cannot do
(b), that is induction proofs over natural numbers in Tamarin (i.e., induction
in Tamarin exists, but over “re-appearing” facts, not natural numbers).

elif "detecting_delays" lemma:
print ("applying oracle to "+lemma)
if 'Receiver_VerifyContent' line
12.append(num)
elif 'StartSeed($S, %1'

'SatelliteMessage'

line 'SendKey' line:

13.append(num)

elif 'KeyN(" line:
14.append(num)

elif 'KU(sign(<' line 'KU(MAC' line:

Figure 5. Example Oracle

we show that a user can receive valid messages, early, as well
as late. Then, security-wise, via 8 lemmas, we show:

— that an Dolev-Yao attacker can inject messages in various
ways into the system, including within chains on which the
receiver gets valid messages, and that would not pass the
receiver’s checks;

— integrity of the messages: the receiver will reject invalid
messages, which lack integrity;

— timeliness of the messages: the receiver will reject messages
(even when they have cryptographic integrity) if they were
received outside of their validity time-interval;

— authentication of satellites: any valid, accepted message must
have been sent by a satellite (and not the attacker);

— authentication of satellites and messages, or no hijacking of
message chains: i.e., if the attacker does not have the satellite’s
private key, then it cannot impersonate it or forge its chains;
— replay-related security: i.e., replay attacks are possible, but
only if the acceptability time interval is not violated (i.e.,
messages replayed too late will be rejected).

b) Verification Results: The model has about 800 lines
of code. It was executed on a stand-alone laptop with an AMD
Ryzen 7 PRO 7840U (8 cores/16 threads at 3.3 GHz/5.1 GhZ
Turbo Speed) with 64GB or RAM. All lemmas can be proven
automatically, with the supplied oracle, in about 70 minutes
and needing cca. 6GB of memory.

¢) Significance: Our models and results mean the fol-
lowing: Via our modelling of time, combined with our cor-
rectness and soundness lemma, we showed that we now have
a first correct and functional model for formally verifying the
security of the TESLA protocol, which so far has proven hard
to model formally in computer-aided tools. Via our oracles
and (reasonable) restrictions, the verification is tractable even
on a laptop. These two aspects together give the research
community a significant head-start in any future models of
TESLA, its future incarnations, or likely adaptations to other
GNSS services beyond Galileo. Via our security lemmas, we
formally show that authentication and integrity of navigation
messages is achieved, if —as per TESLA’s assumptions— the
sender and receiver are time-synchronised and the private key
of the sender is not leaked.

V. DISCUSSIONS & CONCLUSIONS

We put forward the first model able to formally reason on
the correctness and security of the Galileo-adopted TESLA
protocol, for authenticating navigation/GNSS messages sent
by TESLA satellites.

There are other GNSS-centric versions of TESLA, not
adopted in Galileo or in other GNSS services, primarily
stemming from [20]: TESLA versions where in the same
message-chain the messages come from several satellites:
e.g., these satellites share the initial TESLA key ko and/or
have a joint/group signature. Depending on how much they
share and how the navigation messages are formed, there are
variations of how the authentication works, and whether a
group/constellation or a single satellite is authenticated. These
versions were introduced with efficiency in mind. It is clear
there are some attacks associated with them (e.g., if ko is
shared, and satellite 1 sends it first, this can be used to spoof
some satellite 2, for some period of time, at least). So, these
not-yet-adopted versions of TESLA show the classic trade-off
between security and efficiency.

However, whilst these versions are not adopted, the future
may favour their efficiency slant. So, looking into formally
modelling them and thus at ascertaining a provably acceptable
trade-off between security and efficiency, is a future direction.

At the same time, we are working on mechanised crypto-
graphic models [21] (i.e., not Dolev-Yao models) for TESLA,
which —similarly to this line- are hindered by inabilities
to accurately capture timing-based threats and continuous
streaming inside message-chains in computational tools such
as Squirrel [22].

REFERENCES

[1] T. Westbrook, “Trojan spoofing: A threat to critical infrastructure,”
Security and Defence Quarterly, vol. 42, no. 2, pp. 1-15, 2023.

[2] European Union Agency for Space Programme (EUSPA), “Navigation
message authentication schemes,” https://www.gsc-europa.eu/galileo/
services/galileo-open-service-navigation- message-authentication-osnma,
2023.

[3] E. U. A. for Space Programme (EUSPA), “OSNMA Developments,”
https://www.euspa.europa.eu/sites/default/files/expo/osnma_public_
testing_javier_simon_v3.pdf, 2023.

[4] A. Perrig and J. D. Tygar, Secure Broadcast Communication: In Wired
and Wireless Networks. Springer Science & Business Media, 2003.

[5] I. Ferndndez-Herndndez, V. Rijmen, G. Seco-Granados, J. Simon, 1. Ro-
driguez, and J. D. Calle, “A navigation message authentication proposal
for the galileo open service,” NAVIGATION: Journal of the Institute of
Navigation, vol. 63, no. 1, pp. 85-102, 2016.

[6] S. Meier, “Last commit of a TESLA model in Tamarin 2012-
not tractable,” https://github.com/search?q=repo3 Atamarin-prover%
2Ftamarin-prover%20tesla&type=code, 2012.

[71 A. Kurmus, “TLS renegotiation vulnerability (CVE-2009-3555),” 2009.

[8] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and
reference implementations for the TLS 1.3 standard candidate,” in 2017
IEEE Symposium on Security and Privacy (SP). 1EEE, 2017, pp. 483—
502.

[9] M. Vanhoef and F. Piessens, “Key reinstallation attacks: Forcing nonce
reuse in WPA2,” in Proceedings of the 2017 ACM SIGSAC conference
on computer and communications security, 2017, pp. 1313-1328.

[10] A.-I. Radu, T. Chothia, C. J. Newton, I. Boureanu, and L. Chen,
“Practical EMV relay protection,” in 2022 IEEE Symposium on Security
and Privacy (SP). 1EEE, 2022, pp. 1737-1756.

[11] K. G. Paterson and T. van der Merwe, “Reactive and proactive standard-
isation of tIs,” in Security Standardisation Research: Third International
Conference, SSR 2016, Gaithersburg, MD, USA, December 5-6, 2016,
Proceedings 3. Springer, 2016, pp. 160-186.

[12] A. Armando, D. Basin, Y. Boichut, and et al., “The AVISPA Tool for the
Automated Validation of Internet Security Protocols and Applications,”
in CAV, 2005.

[13] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN Prover
for the Symbolic Analysis of Security Protocols,” in CAV, 2013, pp. 696—
701.

[14] B. Blanchet, “An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules,” in IEEE CSFW, 2001.

[15] D. Dolev and A. Yao, “On the Security of Public-Key Protocols,” IEEE
Trans. Inf. Theory 29, vol. 29, no. 2, 1983.

[16] The Tamarin Team, “Tamarin prover manual,” 2024. [Online]. Available:
https://tamarin-prover.com/manual/master/tex/tamarin-manual.pdf]

[17] The Tamarin Team, “Tamarin Examples: Loops - TESLA (Schemel),”
2024. [Online]. Available: |https://projects.cispa.saarland/cOlyaiv/
tamarin-prover/-/blob/master/examples/loops/TESLA_Schemel.spthy

[18] The Tamarin Team, “Tamarin Examples: Loops - TESLA (Scheme2),”
2024. [Online]. Available: https://projects.cispa.saarland/cOlyaiv/
tamarin-prover/-/blob/master/examples/loops/TESLA_Scheme?2.spthy

[19] The Tamarin Team, “Tamarin Examples: Loops - TESLA (Schemel),”
2024. [Online]. Available: https://projects.cispa.saarland/cOlyaiv/
tamarin-prover/-/blob/master/examples/loops/TESLA_Scheme?2_lossless.
spthy

[20] I. F. HERNANDEZ, “Method and system to optimise the authentication
of radionavigation signals,” Aug. 4 2020, uS Patent 10,732,290.

[21] V. Shoup, “Sequences of games: a tool for taming complexity in
security proofs,” Cryptology ePrint Archive, Report 2004/332, Nov. 2004,
available at http://eprint.iacr.org/2004/332.

[22] D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, and J. Lallemand, “The
Squirrel Prover and its Logic,” ACM SIGLOG News, vol. 11, no. 2, Apr.
2024. [Online]. Available: https://inria.hal.science/hal-04579038

https://www.gsc-europa.eu/galileo/services/galileo-open-service-navigation-message-authentication-osnma
https://www.gsc-europa.eu/galileo/services/galileo-open-service-navigation-message-authentication-osnma
https://www.euspa.europa.eu/sites/default/files/expo/osnma_public_testing_javier_simon_v3.pdf
https://www.euspa.europa.eu/sites/default/files/expo/osnma_public_testing_javier_simon_v3.pdf
 https://github.com/search?q=repo3Atamarin-prover%2Ftamarin-prover%20tesla&type=code
 https://github.com/search?q=repo3Atamarin-prover%2Ftamarin-prover%20tesla&type=code
https://tamarin-prover.com/manual/master/tex/tamarin-manual.pdf
https://projects.cispa.saarland/c01yaiv/tamarin-prover/-/blob/master/examples/loops/TESLA_Scheme1.spthy
https://projects.cispa.saarland/c01yaiv/tamarin-prover/-/blob/master/examples/loops/TESLA_Scheme1.spthy
https://projects.cispa.saarland/c01yaiv/tamarin-prover/-/blob/master/examples/loops/TESLA_Scheme2.spthy
https://projects.cispa.saarland/c01yaiv/tamarin-prover/-/blob/master/examples/loops/TESLA_Scheme2.spthy
https://projects.cispa.saarland/c01yaiv/tamarin-prover/-/blob/master/examples/loops/TESLA_Scheme2_lossless.spthy
https://projects.cispa.saarland/c01yaiv/tamarin-prover/-/blob/master/examples/loops/TESLA_Scheme2_lossless.spthy
https://projects.cispa.saarland/c01yaiv/tamarin-prover/-/blob/master/examples/loops/TESLA_Scheme2_lossless.spthy
http://eprint.iacr.org/2004/332
https://inria.hal.science/hal-04579038

	Introduction
	Background
	The Galileo-adopted version of TESLA
	Symbolic Verification & The Tamarin Protocol-Prover

	Modelling Galileo's TESLA in Tamarin
	Challenges in Modelling & Verifying TESLA
	Our Concrete Modelling & Verification of TESLA

	Verification
	Discussions & Conclusions
	References

