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Abstract—Satellites’ stable operation relies on anomaly de-
tection (AD), which is used to identify abnormal behavior in
onboard systems. However, traditional AD methods struggle to
function effectively in the resource-constrained environment of
satellites, where energy, memory, and computation are severely
limited. This challenge is especially evident in CubeSats, the most
widely deployed class of small satellites, where such constraints
limit the applicability of conventional AD methods and lead to
a degradation in overall performance. We introduce LighTellite,
a reinforcement learning-based dual-agent framework that aims
to balance AD performance and energy efficiency, in which one
agent determines energy budgets, and the other dynamically
selects the optimal model among a pretrained pool of AD models
(each with different performance and energy characteristics).
LighTellite’s dynamic AD model selection enables context-aware
adaptation in response to both onboard satellite data and
available resources, resulting in an improvement in AD perfor-
mance while maintaining low energy consumption. Experiments
conducted on AegisSat, a state-of-the-art CubeSat testbed, show
that our proposed framework improved attack detection rate
by 10% while reducing inference energy consumption by 21.8%
compared to the best static AD models (in which the same model
is used throughout the entire orbit). The code and additional
materials are available in the GitHub repository.

I. INTRODUCTION

Anomaly detection (AD) plays a vital role in uncovering
unexpected or malicious behavior in complex systems, espe-
cially when explicit anomaly labels are unavailable [1], [2].
By learning the patterns associated with normal operation,
AD methods can highlight deviations indicative of failures
or cyberattacks. The importance of AD increases in domains
in which system reliability is critical and failures can have
serious consequences [3]; Satellites, and particularly CubeSats,
represent such a domain. CubeSats’ low cost and accessibility
make them ideal for a wide range of missions [4], however
their strict limitations on energy and computing power increase
their exposure to operational risks [5], [6].

Although a few AD methods using deep learning architec-
tures such as long short-term memory (LSTM) and autoen-
coders (AEs) [7], [8], [9], [10] have been designed specifically
for satellites, they typically have high computational and
energy costs [11]. To address these limitations, we propose
LighTellite, a reinforcement learning (RL)-based framework
for onboard AD that balances the trade-off between AD
performance with energy efficiency. Our primary goal is to
enable reliable and efficient AD, while ensuring that during the
satellite’s routine operations, the AD do not lead to excessive
energy consumption. Instead of relying on a single fixed
AD model that yields the best detection capabilities (without
energy consideration), LighTellite employs two cooperating
agents that, for every time window, select an AD model
from a set of available models to detect anomalies while
considering energy constraints; performing dynamic model
selection (DMS). One agent is responsible for determining the
available energy for AD, while the other agent selects an ideal
AD model to detect anomalies in recent satellite data.

LighTellite was evaluated using the AegisSat [12] testbed, a
high-fidelity CubeSat simulation platform that integrates both
hardware and software components and allows the implemen-
tation and evaluation of cyberattacks. In 58 complete orbital
simulations, we reproduced realistic operational conditions,
with a subset of runs deliberately injected with cyberattacks
consisting of excessive resource usage (CPU, memory, and
I/O operations) and data leakage through radio frequency
(RF) communication, or both. The remaining simulations
represented benign, attack-free operation and served as the be-
nign baseline training. Results show that LighTellite improved
attack detection rates by 10% while reducing inference energy
consumption by 21.8% compared to the best static AD models,
enhancing the detection capabilities while operating close to
the most possible lightweight energy consumption bound.
In summary, our contributions are as follows:

• To the best of our knowledge, we are the first to design an
energy-aware AD framework for satellites (demonstrated
on CubeSats) that operates under strict energy constraints.

• To the best of our knowledge, while RL-based DMS
exists and has been used in other domains [13], [14], [15],
[16], [17], [18], our work is among the first to employ
RL for DMS specifically in the satellite domain.
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• We consider energy efficiency as a main objective, while
existing AD approaches in the space domain focus pri-
marily on improving detection performance.

• We provide an open-source dataset of CubeSat data,
collected via the AegisSat testbed, consisting of 58 full-
orbit simulations (23 benign and 35 with labeled attacks,
including both single and hybrid attack scenarios).

II. BACKGROUND

A. Satellites

Satellites are spacecraft that enable services ranging from
phone and TV links to global navigation and Earth monitor-
ing [19], [20]. Satellites can be classified into three orbital
categories [21]: 1) Low-Earth orbit (LEO) satellites operate at
altitudes between 160 and 2,000 kilometers, with an orbital
period of around 90-120 minutes, and are commonly used for
applications requiring low signal latency and high-resolution
imaging; 2) Medium-Earth orbit (MEO) satellites, positioned
at altitudes between 2,000 and 35,786 kilometers, complete
an orbit approximately every 12 hours and are primarily used
for navigation and communication systems; 3) Geostationary
orbit (GEO) satellites are located at a constant altitude of
35,786 kilometers and orbit the Earth at the same as Earth’s
rotational speed, which allows them to remain fixed relative
to a point on the Earth’s surface, making them suitable for
continuous telecommunication and meteorological monitoring
[21]. All three categories are required to operate in harsh
space environments that include limited resources, continuous
radiation, and extreme thermal changes [22], [23].

These operational constraints are even more pronounced
in resource-limited spacecraft such as CubeSats, which are
miniature satellites designed for low-cost access to space that
are widely deployed in LEO missions [5], [24]. Built from
standardized one-unit (1U) modules measuring 10×10×10 cen-
timeters [25], CubeSats must perform all payload, processing,
and communication tasks with an average energy budget
of only 1 to 2.5 watts, a budget that is dictated by the
small surface area of their solar panels [26]. As launch costs
have decreased, the number of CubeSat missions has grown
substantially and they are now deployed for a wide range of
purposes. Their widespread adoption in a variety of domains,
including remote sensing, military surveillance, and education,
highlights the importance of efficient management of onboard
resources to ensure reliable operation [4].

Given their tight resource constraints, CubeSats are partic-
ularly vulnerable to cyber threats that exploit their limited
energy and processing capabilities [27]; For example, denial-
of-service (DoS) attacks, such as resource exhaustion or traf-
fic flooding, which can drain onboard energy reserves, can
potentially lead to mission degradation or total failure [28].
The risk is further heightened during eclipse phases [29],
when CubeSats operate solely on battery and cannot replenish
energy through solar charging.

B. Reinforcement Learning

RL is a machine learning (ML) paradigm in which an agent
interacts with an environment to learn how to make better
decisions based on collected feedback signals called rewards
[30], [31]. Unlike unsupervised learning, which extracts pat-
terns from unlabeled data, and supervised learning, which fits
models to labeled data, RL has no predefined correct outputs;
the agent must discover, by trial and error, which actions
maximize rewards in each state it encounters.

In each timestep, the agent observes the environment’s state,
selects an action, and receives the resulting next state, along
with an immediate reward. This interaction between the agent
and the environment is commonly modeled as a Markov
decision process (MDP), defined by a tuple S,A, P,R, γ
where S is the set of possible states of the environment;
A is the set of actions available to the agent; P (S′|s, a) is
the transition probability function defining the likelihood of
reaching state s′ after taking action a in state s; R(s, a) is
the reward function specifying the immediate feedback for
performing action a in state s; and γ ∈ [0, 1] is the discount
factor that determines the weight of future rewards.

In many RL problems, the agent’s interaction with the
environment is divided into episodes, finite sequences that start
from an initial state and terminate upon reaching a specific
condition. These episodes allow the agent to accumulate
experience over bounded time horizons and are especially
useful in environments with natural reset points, such as task
completion. This episodic structure provides a practical basis
for evaluating and updating RL policies.

The agent’s behavior is defined by a policy π(a|s), which
assigns a probability distribution over actions for each state.
The goal is to learn an optimal policy π∗, which maximizes
the expected cumulative discounted reward:

π∗(a|s) = argmax
π

Eτ∼Pπ

[ ∞∑
t=0

γtR(st, at)
]

where R(st, at) is the immediate reward for taking action
at in state st and γt is the discount factor that reduces the
value of future rewards, thereby encouraging the agent to
prefer immediate rewards. A trajectory τ = (s0, a0, s1, . . . )
denotes the sequence of states and actions that arises when
the agent follows policy π in the environment. E[·] represents
the expectation over such trajectories, and argmaxπ identifies
the policy that maximizes the expected accumulated rewards
collected in the episode.

III. RELATED WORK

Most AD research on satellites falls into one of three
broad categories: research on rule-based systems, static data-
driven models, or deep learning-based approaches. Rule-based
techniques, such as fault detection, isolation, and recovery
(FDIR), rely on predefined limits and expert-defined logic
[32]. Static data-driven models apply algorithms like clustering
[33], [34], SVM [9], or isolation forest [35] to detect deviations
from expected behavior, typically without the need for labeled
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samples. Deep learning approaches leverage temporal and
multivariate patterns in telemetry, using architectures such as
LSTMs [7] and AEs [8]. We focus on the third category,
deep learning approaches, since rule-based and static methods
depend heavily on expert knowledge and struggle when faced
with unseen or evolving anomalies [36].

Deep learning methods have gained traction in satellite
AD, because satellite data exhibits strong temporal and com-
plex multivariate dependencies [1]. For example, Hundman
et al. [7] demonstrated that LSTM and RNN models can
learn the satellite’s benign behavior and use this knowledge
to detect anomalies as points where the predicted behavior
deviates substantially from actual readings, identified by large
reconstruction errors. Similarly, Akbarian et al. [8] proposed
an LSTM-based network that utilizes an AE to extract the
most important data features, which the LSTM uses to capture
long-term dependencies. When focusing on CubeSat, Horne
et al. [10] proposed two deep learning-based AD models
(CNN and LSTM) designed specifically to run efficiently on
a microcontroller implemented on a CubeSat. However, these
approaches rely on a single fixed model, which cannot adapt to
variations in data distributions or onboard resource constraints.
Our results demonstrate that such static AD models either
achieve high detection performance at the cost of excessive en-
ergy consumption or remain energy-efficient but less accurate.
This adaptability allows LighTellite to sustain high detection
reliability while operating near the lower energy bound.

IV. METHODOLOGY

The proposed framework’s pipeline is presented in Figure 1.
LighTellite aims to balance AD performance and energy
efficiency by dynamically adapting to onboard data patterns
and available onboard resources. The framework consists of
three main phases:
1) Phase 1: While in orbit, LighTellite reads recent satellite
data, capturing both sensor readings and short-term statistical
summaries.
2) Phase 2: A fixed-duration segment of the data, referred
to as a section, is provided to the Manager agent. Based on
this section, the Manager constructs its state and determines
an appropriate energy budget, a risk factor (probability for
abnormal activity), and likelihoods of each attack scenario.
The section and Manager outputs are then passed to the
Worker agent for processing.
3) Phase 3: The Worker divides the section into fixed-size
chunks. Using the Manager’s outputs and current chunk
statistics, the Worker constructs a contextual state for each
chunk that captures short-term fluctuations in voltage and
current, energy usage trends, and recent anomaly history.
Based on this state, the Worker selects the most suitable
AD model from a predefined pool and applies the model to
determine whether the chunk is anomalous or not. Since each
anomaly detector in the pool has a different performance and
energy profile, LighTellite enables the dynamic selection of
the optimal detector in response to the satellite’s changing

operational and energy constraints.

A. Phase 1 - Section Preparation

During each orbit, LighTellite periodically processes
telemetry and system measurements such as voltage, current,
and CPU usage (additional details under Experimental Set-
tings). Each orbit Oj is modeled as a finite sequence of
equal-duration segments called sections, each representing an
activation period in the framework:

Oj = [Sj,1, Sj,2, . . . , Sj,n],

where every section Sj,i contains the data collected onboard
during its activation period. Let F = {F1, F2, . . . , FK} denote
the set of feature groups (e.g., telemetry, system) in each
section, where each Fk corresponds to a subset of sensors
monitoring specific aspects of onboard resource use, such
as electrical usage and network activity. In each activation
period, the raw data of the most recent section, together with
statistical summary derived from several preceding sections,
are provided to the Manager as inputs in the next phase.

B. Phase 2 - Budget and Risk Assessment

The Manager agent determines how much energy can be
dedicated to AD for the current section. It receives the
following inputs: the most recent section’s raw data Sj,i and
a short-term statistical summary (e.g., averages and standard
deviations of key telemetry features such as voltage or temper-
ature) of several preceding sections. These summaries provide
statistical context, giving the Manager a clear view of both the
current operational conditions and recent trends. Using these
inputs, the Manager constructs a state vector that captures the
satellite’s operational context, including normalized battery
level, energy trends, orbit progress, section-level telemetry
and system statistics, and recent anomaly history. During
training, the Manager learns a policy that balances detection
performance with energy efficiency. The section-level reward
function guiding this optimization is constructed from several
components: The detection term, active only when attacks are
present, is defined as:

Rdet = F + P

where F denotes the F1 score achieved by the Worker, and P
quantifies the Worker’s progress, measured as the fraction of
chunk-level steps completed relative to the total expected steps
for the section. The energy consumption is penalized according
to the total inference energy E consumed by the Worker in
the section. To discourage assignment of unnecessarily large
budgets, we introduce Bex, which quantifies the gap between
the assigned budget and the actual energy consumption in
each section. Manager’s early episode termination due to
battery depletion is penalized through D, which denotes the
proportion of sections still remaining in the orbit at the time of
termination. Finally, combining these components, the reward
function for section i defined as:

Ri = w1YiR
det
i − w2Ei − w3B

ex
i − (1− Yi)w4Li − w5Di
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Fig. 1. The proposed LighTellite framework’s pipeline.

where Yi ∈ {0, 1} indicates whether attacks are present
in section i, and Li is a penalty that increases when the
Manager assigns unnecessarily high attack scenario likelihoods
in benign sections.

The outputs of this phase include the assigned budget Bi,
the risk factor and a likelihood for each attack scenario, and
the section’s raw data Sj,i, which are passed to the next phase.

C. Phase 3 - Model Selection and Anomaly Detection

The Worker agent operates within the energy budget Bi

assigned by the Manager for the current section Sj,i. Its goal is
to detect anomalous behavior in the section while adhering to
the energy budget. To achieve this, the Worker performs DMS
in a process that balances AD performance and computational
costs through a sequence of localized decisions. There are
three main stages in this process:

1) Data Preparation: Upon receiving the section Sj,i, the
Worker divides the raw data into m smaller chunks,

Sj,i = [C1, C2, . . . , Cm],

each covering a short, fixed-duration interval of the data.
This division increases the temporal resolution of the analysis,
enabling the Worker to dynamically adapt its detection strategy
as operational conditions evolve. Each chunk Ct is then
transformed into a sequence of sliding windows:

Ct = [Wt,1,Wt,2, . . . ,Wt,y],

which serve as inputs to the AD models.
2) Agent State Construction: In this stage, a contextual

state st is constructed for each chunk. The Worker computes
relevant data statistics and trends of voltage, current, and CPU
usage, and combines them with the Manager’s outputs. The
resulting state representation provides a compact summary of
the system’s operational conditions and resource availability,
guiding the subsequent model selection stage.

3) Model Selection and Inference: In this stage, the Worker
selects and applies the most suitable AD model for each chunk
based on its current state st. For each feature group f ∈ F,
two pretrained detectors are available: a lightweight model Lf

with lower energy consumption and a heavier model Hf that
offers higher detection accuracy at a higher energy cost. Let
the candidate action set be D = {Lf , Hf | f ∈ F}. Given st,
the Worker chooses the detector whose energy-performance
trade-off best matches the current operational conditions and
applies it to all sliding windows in the chunk to produce
anomaly scores. After inference, the measured energy Eused,t
is subtracted from the section’s budget:

B
(t+1)
i = B

(t)
i − Eused,t.

If the remaining budget B(t+1)
i falls below a predefined safety

threshold, the Worker terminates further processing of the
section to maintain operational safety.

4) Reward Optimization: During training, the Worker is
guided by a reward function that balances model relevance
and energy efficiency. The reward function encourages the
selection of detectors whose features align with indicative
signals of the current attack scenario; the function also favors
heavier models when attacks are present and discourages their
use during benign activity. Additional penalties are applied if
the total energy used exceeds the assigned budget. The per-
chunk reward is defined as:

rt = θA Alignt + θH Yt Ht − λE Et − λB I
[
Et > Bi

]
,

where Alignt indicates whether the selected detector’s feature
group matches the signals most relevant to the observed
behavior in chunk Ct; Ht denotes that a heavy model was
selected; Yt indicates the presence of attack activity; and
Et and Bi represent the consumed and allocated energy,
respectively. The coefficients θA, θH , λE , and λB control the
trade-off between feature alignment, model capacity, energy
efficiency, and budget compliance.

4



V. EVALUATION

To evaluate LighTellite’s effectiveness, we performed a
comprehensive set of experiments using data collected from
58 full-orbit simulations on the AegisSat, a SOTA CubeSat
testbed [12]. The evaluation was performed in two stages:
first, we compared and profiled individual AD models trained
on different feature groups (telemetry, system, and combined
(both groups)) to assess how feature selection influences de-
tection performance, model complexity, and energy efficiency;
then we evaluated the complete RL framework to analyze
its ability to balance energy consumption and detection per-
formance. Each experiment described below was designed to
address one or more of the following research questions.

A. Research Questions

RQ1. How does the detection performance of feature-specific
anomaly detectors (trained on telemetry or system data) com-
pare to that of a detector trained on the combined feature space
across diverse attack scenarios?
RQ2. How do AD models differ in computational and energy
efficiency, as reflected by their complexity (parameters and
floating point operations (FLOPs)) and energy measurements?
RQ3. How does the LighTellite framework perform compared
to static AD models (in which the same model is used
throughout the entire orbit) in terms of energy consumption
and detection performance?

B. Data Collection

To create a dataset of CubeSat simulations, we used the
AegisSat testbed [12], which integrates both hardware and
software components, enabling realistic modeling of orbital
dynamics and onboard computing, while allowing for injec-
tion and monitoring of cyberattack scenarios. We collected
synchronized telemetry and system data from 58 complete
CubeSat orbit simulations, each lasting approximately 90
minutes and comprising about 5,000 samples:
1) Telemetry: measurements from the onboard electrical
power system (EPS), including line voltage and current, bat-
tery voltage and current, and battery temperature.
2) System: operational data from an onboard Rasp-
berry Pi Zero 2W, capturing CPU utilization, system activity
(context switches and interrupts), and network I/O statistics
(bytes transmitted and received).
Data from these sources was used to construct the training,
validation, and test datasets. Note that for each of the 58 com-
plete orbit simulations, about 5,000 samples were collected,
resulting in over 230K samples, all of which are included
in our open-source dataset. Of the collected 58 orbits, 23
represented nominal CubeSat operation while the other 35
(approximately 4.5% of samples out of the total dataset)
included cyberattack scenarios involving excessive resource
usage, data leakage, or both. An additional metadata file with
more details is supplied with the open-source dataset.

C. Experimental Settings

1) Computational Environment: A workstation equipped
with an NVIDIA RTX 4090 GPU, 16 GB RAM, and
Python 3.11.9 was used for training, while energy mea-
surements and evaluations were obtained on a Rasp-
berry Pi Zero 2W implemented on the CubeSat’s onboard
hardware.

2) Attack Scenarios: Two attack scenarios were simulated
to represent cyber threats to CubeSats. Each attack was ac-
tivated in randomly selected time intervals within randomly
selected orbits, and its activation periods were labeled for the
performance evaluation.

Excessive Resource Usage. This scenario represents
a composite stress condition combining several resource-
intensive behaviors. During activation, multiple processes were
launched in parallel to overload the onboard computer, includ-
ing repeated file creation and deletion, continuous memory
allocation, and CPU-intensive loops. Together, these activities
simulate a range of malware-like behaviors that waste available
onboard computing resources.

Data Leakage via Radio Frequency Communication.
This scenario emulates the unauthorized transmission of on-
board data to an external third-party adversary receiver. When
active, the malicious process transmits locally saved images
from the satellite’s storage through the CubeSat’s RF transmit-
ter, reproducing a data exfiltration event that exploits legitimate
communication hardware to leak sensitive information.

3) Anomaly Detection Models: All AD models were trained
in an unsupervised manner, using only benign orbits, and
evaluated on a labeled test set containing both benign and
attacked samples. Each model is a variational autoencoder
(VAE) designed to learn the normal temporal behavior of
telemetry or system signals and detect deviations. To learn the
trade-off between detection accuracy and energy efficiency,
we varied the model capacity by adjusting the number of
hidden units, latent dimensions, and temporal layers, creating
lightweight and heavy configurations for each feature group
(telemetry, system, and combined).

The models were trained on batches of 64 sliding win-
dows, each containing 60 consecutive samples, created using
a stride of 5 for telemetry and 12 for system. A window
was labeled anomalous if at least 50% of its samples were
labeled as attacks. We used the AdamW optimizer with a
learning rate of 3× 10−4. The objective function combined a
reconstruction term with a Kullback-Leibler (KL) divergence
regularization on the latent space. Training was performed
for up to 100 epochs, with early stopping determined on the
validation set. After training, the models calculated a threshold
value based on the validation set, and any score higher than
the threshold value is considered anomalous. Thresholds can
be determined through unsupervised criteria (e.g., quantile-
based rules) or by tuning on a small labeled validation subset,
with our implementation following the latter approach [37].

4) RL Agents: Each orbit was split to 8 sections, where
each section divided to 8 chunks.
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Worker Agent. The Worker agent was trained using the proxi-
mal policy optimization (PPO) algorithm with a discrete action
space corresponding to the selection between lightweight (Li)
and heavy (Hi) AD model for each feature group fi. Its
state comprised contextual features describing the remaining
energy budget, recent telemetry dynamics, system operating
conditions, and short-term anomaly patterns, along with recent
actions and performance trends. Training was conducted for
1K timesteps by simulating possible Manager outputs (without
the actual involvement of the Manager agent) with the follow-
ing PPO parameters: n steps = 256, batch size = 256, and
net arch = [64, 64].
Manager Agent. The Manager agent was trained using the
PPO algorithm with a continuous four-dimensional action
space controlling the section’s energy budget, likelihoods for
each of the two attack scenarios, and a risk factor. The
Manager’s state summarizes the current energy context, orbit
progression (e.g., time until recharge), telemetry trends, and
recent anomaly activity. Training was performed for 10K
timestemps with the following PPO parameters: n steps =
128, batch size = 128, and net arch = [64, 64]. During
training, the Manager interacted with the frozen pretrained
Worker agent. Finally, to fine-tune the agents’ coordination,
we performed ten additional joint training iterations, each
consisting of 40K and 5K timesteps for the Worker and
Manager respectively.

5) Energy Measurement Procedure: To accurately esti-
mate the energy consumption of the models, we employed
a dedicated measurement setup. An external electrical circuit
was connected to a Raspberry Pi Zero 2W, replicating the
CubeSat’s onboard hardware, to enable high-resolution mea-
surement of voltage and current during model execution. A
Python script ran each trained model on a fixed sequence
of input samples (identical across models), while the circuit
continuously recorded the energy consumption throughout the
inference periods. This procedure was repeated 100 times
per model to obtain a robust distribution of inference energy
consumptions, from which the mean and standard deviation
were computed. We exclude the energy cost of the RL agents,
as their policies (two fully connected layers of 64 neurons)
contributed less than 1% of the total consumption and there-
fore negligible relative to the AD models.

D. Results

Figures 2-5 present the performance of each individual AD
model and the proposed framework, LighTellite, under a real-
istic hybrid attack scenario (i.e., results were not presented for
each scenario separately) on the test set. Since the combined
models performed worse than the domain-specific models (see
Tables I), we excluded them from further analysis. Each AD
model corresponds to a static configuration in which the same
model is used throughout the entire orbit, whereas LighTellite
dynamically selects between models during operation, based
on the learned policies of the Manager and Worker agents. In
the tables, we marked the best obtained results in bold.

TABLE I
DETECTION PERFORMANCE OF STATIC ANOMALY DETECTORS

Attack Scenario Features Model Precision Recall F1

Resource Usage

Telemetry Lightweight 0.88 0.81 0.83
Heavy 0.90 0.91 0.91

System Lightweight 0.75 1.00 0.85
Heavy 0.76 1.00 0.86

Combined Lightweight 0.91 0.71 0.79
Heavy 0.83 0.78 0.80

Data Leakage

Telemetry Lightweight 0.22 0.06 0.08
Heavy 0.25 0.07 0.10

System Lightweight 0.72 0.99 0.83
Heavy 0.95 0.99 0.97

Combined Lightweight 0.82 0.13 0.21
Heavy 0.59 0.75 0.64

Hybrid

Telemetry Lightweight 0.71 0.59 0.63
Heavy 0.79 0.67 0.71

System Lightweight 0.36 1.00 0.52
Heavy 0.37 1.00 0.53

Combined Lightweight 0.89 0.58 0.69
Heavy 0.74 0.76 0.75

1) Impact of Feature Specialization (RQ1): Table I
presents the detection results of static AD models, each trained
on one of the three feature groups: telemetry, system, and
combined (combination of both feature groups). Each feature
group includes two model configurations, lightweight and
heavy, whose performance under three representative attack
scenarios is reported: excessive resource usage, data leakage
via RF communication, and hybrid. The precision, recall, and
F1 score served as the evaluation metrics, where the F1 score
reflects the harmonic mean between precision and recall.

Several clear patterns emerge from the results. Models
trained on features that capture the primary effects of each
attack achieve the best performance, e.g,. models which were
trained on network (system) related features would detect data
leakage attacks better. The heavy telemetry model obtained
the highest F1 score (0.91) in the resource usage scenario,
where electrical and power signals are most indicative of the
attack’s impact , while the heavy system model performed best
(0.97) in the data leakage scenario, which primarily affects
network and CPU activity. Telemetry-based models did not
generalize to data leakage scenario, and both telemetry and
system models showed reduced performance on the hybrid
scenario, reflecting the limited cross-domain transferability of
domain-specific knowledge. As expected, across the three fea-
ture groups, the lightweight models performed slightly worse
(in terms of the F1 score) than the heavy models. Models
trained on the combined feature group achieved moderate
performance in the hybrid attack scenario, where both feature
types contribute, but underperformed compared to domain-
specific detectors in their respective domains.

Figure 2 presents the true positive rate (TPR) achieved after
training the complete LighTellite framework. TPR represents
the proportion of attacked sliding windows correctly detected,
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Fig. 2. Comparison of TPR, representing the detection rate of cyber attacks,
achieved by each static AD model and the proposed LighTellite framework
under a realistic hybrid attack scenario. LighTellite achieves the highest TPR
(90.1%), substantially outperforming all static AD models (72.3-81.3%).

providing a direct measure of detection effectiveness. LighTel-
lite outperforms all static AD models, obtaining a TPR of
90.1% compared to 72.3-81.3% obtained by the static models.

TABLE II
MODEL CAPACITY AND ENERGY DISTRIBUTIONS OF STATIC ADS

Features Model Parameters MFLOPS Energy Distribution (mJ)

Mean Std.

Telemetry Lightweight 14,519 1.40 6.61 0.07
Heavy 37,715 3.77 8.85 0.06

System Lightweight 14,348 1.38 6.59 0.07
Heavy 37,448 3.73 8.83 0.06

2) Model Complexity and Energy Efficiency (RQ2):
Table II summarizes the capacity and inference energy con-
sumption of static AD models. For each pair of AD models
(lightweight and heavy), that were trained on different fea-
ture group, we report the number of learnable parameters,
the approximate number of floating-point operations during
inference (in millions, MFLOPs), and the measured energy
distribution in millijoules. These energy distributions are later
used in the LighTellite framework to sample the energy
consumption of each model during inference.

As expected, model complexity strongly correlates with
inference cost. Heavy models contain roughly 3x more pa-
rameters and MFLOPs than their lightweight counterparts and
consume about 8.8 mJ per inference, compared to 6.6 mJ
for the lightweight variants. This consistent gap highlights
the clear trade-off between computational capacity and energy
efficiency. Telemetry and system models show nearly identical
energy patterns, confirming that model architecture, rather than
input dimensionality, influences energy consumption.

3) LighTellite’s Performance and Dynamic Adaptation
(RQ3): As seen in Figures 2 and 3, the heavy models
consume approximately 71 mJ per orbit, while the lightweight
models require about 53 mJ. LighTellite operates at 55.29
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Fig. 3. Comparison of the average energy consumed, (measured in millijoules)
across an entire orbit. The heavy AD models require approximately 71 mJ per
orbit, while lightweight models consume around 53 mJ. LighTellite operates
at 55.29 mJ on average, about 4.7% higher than the lightweight AD models
yet up to 21.8% lower than the heavy variants.

Fig. 4. Activation frequency of each AD model selected by the Worker
agent across orbit sections (stacked bars, left Y-axis). The value above each
bar shows the H/A ratio, defined as the proportion of heavy models usages
divided by the proportion of anomalous samples in that section. The green
line represents the Energy Indicator (right Y-axis), reflecting the CubeSat’s
energy conditions.

mJ on average, about 4.7% higher than the lightweight AD
models and up to 21.8% lower than the heavy variants. The
lightweight models thus represent the theoretical lower bound
of energy consumption, whereas LighTellite’s slightly higher
value stems from its adaptive behavior; during operation, it
dynamically selects models based on the learned policies of
the Manager and Worker agents. The small difference in
energy consumption indicates that LighTellite mainly employs
lightweight models, using heavier ones only when necessary.

Figure 4 illustrates the dynamic model selection (DMS)
pattern learned by the Worker agent. Each bar represents
the usage proportion (Y-axis on the left) of each model
(selected by the Worker agent for inference) across the satellite
sections (X-axis), showing how LighTellite alternates between
lightweight and heavy detectors. Lightweight models dominate
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most sections (brighter colors), reflecting the framework’s
preference for energy-efficient inference during normal opera-
tion, while heavy models are employed more selectively when
anomalous activity is likely to occur. H/A ratio in each section
(averaged across all orbits) is shown above each bar:

H/A =
Proportion of heavy models usages
Proportion of anomalous samples

where values greater than 1 indicate that heavy models were
used more frequently than anomalous activity occurred in that
section. In addition, the green line across the bars shows
the Energy Indicator, which reflects the CubeSat’s energy
conditions, with its values displayed on the right Y-axis. When
the energy conditions are favorable (Sections 1-4, where the
green line increases), the H/A ratio is higher (1.09-2.50). In
contrast, when the energy conditions are constrained (Sections
5-8), the system reduces its use of heavy models, even when
anomalies are present, to avoid unnecessary energy consump-
tion, resulting in lower H/A values (0.73-1.19). In Section 8,
the Energy Indicator increases again, enabling LighTellite to
select heavy models, raising the H/A ratio from 0.73 to 1.19.

To analyze the AD behavior of the models, we first com-
puted a confusion matrix aggregated across all test orbits.
Figure 5 presents the TPR and FPR illustrating how reliably
each method detects attacks and how often it raises false
alarms. LighTellite achieves the highest TPR, confirming its
ability to outperform static AD models in attacks detection
while maintaining FPR relatively low.

4) Policy Optimization: To evaluate how effectively the RL
components learned their decision policies, we analyzed the
reward progression of the Manager agent during training (as
shown in Figure 6). The plotted curve shows the smoothed
mean episode reward over training timesteps. Because it rep-
resents the Manager’s reward, which incorporates the Worker’s
detection performance and energy usage, the curve effec-
tively captures the behavior of both agents. This provides a
clear view of how the framework’s decision-making improved
throughout training.
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Fig. 6. Curve showing how the episode rewards evolve during training, with
each point representing the smoothed mean episode reward of the Manager
agent over training timesteps.

VI. DISCUSSION

A. Limitations

External Operating Factors. Although LighTellite ob-
tained strong results, external operating factors, such as radia-
tion exposure, temperature fluctuations, and gradual hardware
aging, may introduce noise that affects sensor readings and
model stability, potentially reducing performance. To miti-
gate this, periodic in-orbit recalibration using onboard data
can address these effects, ensuring that reliable detection is
maintained over time.

Dependence on Model Pool Diversity. The framework’s
performance depends on the quality of the pretrained AD
models in its model pool. Utilizing more advanced archi-
tectures trained on up-to-date data distributions can enhance
robustness and ensure that the framework remains aligned with
the satellite’s evolving data characteristics.

Transition to Real Missions. Although the Aegis-
Sat testbed provides a realistic environment for evaluation,
recorded simulations cannot fully capture all in-orbit condi-
tions such as long-term hardware degradation and radiation ef-
fects. This limitation can be addressed by using data recorded
from real orbiting CubeSats and incorporating additional on-
board parameters, ensuring that the learned policies generalize
effectively to real mission environments.

B. Broader Implications

Energy-Aware Framework for AD. This work contributes
to the movement toward sustainable AI by showing that
energy awareness can serve as a core design principle for AD
systems in space. Rather than treating efficiency as a secondary
goal, LighTellite demonstrates how energy awareness can be
integrated directly into the learning and decision process. This
understanding could prompt the use of additional performance
metrics and development of new AD frameworks that consider
both accuracy and resource utilization.

RL-Based Dynamic Model Selection for Space Systems.
This study demonstrates that RL can enable dynamic, context-
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aware decision-making in autonomous spacecraft operating
under resource constraints. Beyond improving AD, it estab-
lishes RL as a general control mechanism for adaptation to
changing mission conditions and energy availability.

Generalization Beyond the CubeSat Domain. Although
LighTellite was designed for small satellites, its principles can
extend to other domains characterized by limited energy and
computational capacity. The framework’s modular, energy-
aware, and adaptive nature makes it relevant to areas such as
IoT networks and autonomous vehicles. Thus, this work pro-
vides a general foundation for building intelligent systems that
maintain performance while adhering operational constraints
in diverse environments.

VII. CONCLUSION AND FEATURE WORK

We introduced LighTellite, a RL-based framework that
dynamically selects suitable AD models, using cooperative
Manager-Worker agents. By embedding energy awareness
directly into the decision process, LighTellite provides a
principled approach for achieving sustainable and adaptive
intelligence on resource-constrained platforms.

Experimental results show that LighTellite optimizes the
trade-off between energy consumption and performance better
than static AD models. The results highlight the impact
of using domain-specific cues to guide DMS and adaptive
decision-making, demonstrating that contextual awareness is
key to achieving efficiency without sacrificing performance.

Future work might include introducing a wider range of
attack scenarios, enabling evaluation of the framework’s ro-
bustness under varied operational conditions. In addition, ex-
panding the static anomaly detectors pool with novel detectors
and additional feature sets could improve adaptability and
overall detection coverage.
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