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Abstract—Machine learning (ML) is increasingly embedded in
satellite systems, supporting both operational tasks and payload
services. While ML provides greater efficiency and autonomy,
it also exposes satellite systems to a new class of vulnerabilities
known as adversarial ML (AML). Although AML threats have
been studied extensively in other domains, their impact on
satellite systems, which operate with limited power and com-
puting resources and under latency-critical conditions, remains
unexplored. This paper presents a structured risk assessment of
AML threats to satellite ML applications. We review common
types of cyber threats and AML techniques, providing clear
definitions of AML categories and their relevance to satellite ML
applications. We then map these threats to satellite operations
and payloads, constructing a domain-specific framework that
categorizes how adversarial attacks manifest under space con-
ditions. Leveraging this framework, we apply a risk assessment
methodology to evaluate the feasibility of attacks and their
potential impact on missions. Our findings show that tasks such
as anti-jamming control and telemetry-based fault detection are
especially vulnerable, with integrity-focused attacks posing the
most significant risk to the evaluated applications. In contrast,
privacy-focused threats such as membership inference pose less
risk in practice. We also suggest mitigation strategies tailored to
space, including adversarial training, resilient data pipelines, and
runtime monitoring. The results of our risk assessment highlight
the need for further research aimed at strengthening ML security
in aerospace environments and provide a foundation for the
deployment of trustworthy ML in space missions.

I. INTRODUCTION

Satellites play a fundamental role in modern infrastructure,
supporting global communications, navigation, Earth obser-
vation, and defense [1]]. As missions expand in scale and
complexity, operators increasingly employ machine learning
(ML) to enhance autonomy and efficiency in tasks such as
beam hopping, interference mitigation, telemetry-based health
monitoring, and mission planning [2], [3[]. These capabilities
improve operational resilience despite limited bandwidth, long
communication delays, and dynamic orbital environments.

However, adversaries have repeatedly disrupted satellite
services through jamming, spoofing, and cyberattacks [4]. Inte-
grating ML into these systems introduces a new attack surface-
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adversarial machine learning (AML) [5]. While AML has
been studied extensively on Earth, its implications for space
missions, where computing power, energy, and reliability are
tightly constrained, remain largely unexamined.

Satellites in low Earth orbit (LEO), medium Earth orbit
(MEO), and geostationary orbit (GEO) support different mis-
sion profiles and ML applications, including communications,
Earth observation, and space situational awareness. A detailed
mapping of ML relevance across orbital regimes is provided
in the Appendix. Yet, deploying ML models in orbit remains
challenging due to strict size, weight, and power (SWaP) con-
straints, which limit onboard processing and increase reliance
on ground-based analysis. Space agencies such as NASA
and ESA are pursuing greater autonomy while expressing
concern over the safety, certification, and explainability of ML
components [6], [[7]. Unlike deterministic flight software, ML
models rely on data-driven logic with limited interpretability,
complicating validation and assurance [8]—[10]. These char-
acteristics create new risks in mission-critical environments
where reliability and auditability are essential [[11[|—[13]].

Recent studies demonstrate ML’s potential for adaptive
anti-jamming [14], object detection [[15]], and health forecast-
ing [16]. Yet most evaluations focus on nominal performance
rather than adversarial resilience.

Problem. The robustness of space ML systems under AML
threats remains unexamined mainly, and no comprehensive
framework exists for assessing the feasibility, access require-
ments, and mission impact of such attacks across diverse
satellite use cases [8]].

Our approach. We conduct a domain-grounded risk as-
sessment by reviewing literature and operational reports to
identify ML use cases across onboard and ground segments.
Adversarial threat models are mapped to these applications
using established space-cybersecurity frameworks and AML
research. The mapping process evaluates the feasibility, access
requirements, and potential mission impact of each threat,
resulting in a relevance matrix for satellite ML risk assessment.
Based on this mapping, we adapt the FRAME methodology [5]]
for space, incorporating constraints such as limited compute,
intermittent connectivity, and certification barriers to enable
realistic, domain-specific risk scoring.

Contributions.

o Threat mapping for satellite ML applications: A

comprehensive mapping of AML threats across satellite



applications by deployment environment (onboard vs.
ground) and functional role (operations vs. payload).

« Domain-specific attack mapping: Links between AML
attack types and real satellite use cases (e.g., anti-
jamming, telemetry prediction), specifying attack surfaces
and access assumptions.

« FRAME-based risk assessment: An adaptation of
FRAME for satellites, combining attacker modeling and
comparative risk scoring by feasibility, access, and mis-
sion impact.

o Operational mitigation: Countermeasures tailored to
space constraints, including model hardening, data val-
idation, and secure ML lifecycle management.

By quantifying adversarial risks to ML in satellite systems,
this study contributes to developing and validating secure and
resilient Al-enabled space operations.

II. CYBER THREATS TO SATELLITE SYSTEMS

Cyber threats targeting satellites, including those that affect
ML components, can be grouped into four main categories.
Communication-Based Attacks. These attacks exploit vul-
nerabilities in satellite communication channels and have been
observed in real-world conflicts. Jamming uses radio fre-
quency (RF) interference to disrupt uplinks or downlinks [[17]],
[18]. Spoofing transmits falsified signals to mislead users
or satellite systems by imitating legitimate channels such
as GNSS, telemetry, or communications [19]. Man-in-the-
middle (MitM) attacks intercept or alter data in transit between
satellites and ground systems [20]]. Replay attacks resend
captured commands or telemetry to trigger unauthorized ac-
tions [21]]. Denial-of-service (DoS) attacks overwhelm net-
works or ground equipment, as seen in the Viasat hack [22]].
ML Model Manipulation Attacks. These attacks directly
target ML models. Adversarial examples are crafted inputs that
induce misclassification [23[]. Data poisoning corrupts training
datasets to bias model behavior [24]]. Backdoors (Trojans) em-
bed hidden triggers during training [25]|. Membership inference
attacks aim to determine whether specific records were part of
a training set [26]].

Hardware and Physical Attacks. These attacks target a
satellite’s physical components or hardware behavior, exploit-
ing natural effects, deliberate faults, or manufacturing weak-
nesses. Cosmic radiation induces single-event upsets (SEUs),
as observed in the Galaxy 15 and Hubble incidents [1f]. Fault
injection exploits lasers or voltage glitches to create controlled
errors [27)]. Supply chain threats arise when malicious mod-
ifications are inserted during the design or manufacturing of
satellite components. Side-channel attacks extract information
from power use, emissions, or timing [4].

Perception and Planning Manipulation Attacks. These at-
tacks distort a satellite’s awareness of its environment. Sensor
spoofing introduces false sensor data, e.g., fake fire detections
with MODIS [28]. Lasers can blind imaging satellites, while
camouflaging deceives Al-based perception [29]]. Speculative
threats include the injection of fake debris to force unnecessary
maneuvers [13]].

ITI. USE OF ML IN SATELLITES

ML supports a growing range of satellite functions across
subsystems and mission segments, as illustrated in Figure
These applications span communications, control, perception,
and system health.

Anti-Jamming. ML models have been used to classify spec-
trum occupancy and adapt transmission strategies under in-
terference. SVMs, CNNs, and GANs have been tested in
ground-based studies [30]-[32]], while DRL agents have been
simulated onboard to evade adaptive jammers [14], [33].
These efforts remain experimental and mainly relevant to the
TT&C subsystem, which handles both uplink and downlink
communication.

Beam Hopping. ML has been proposed to replace rule-
based beam scheduling with adaptive control. DRL and hybrid
optimization methods have demonstrated higher throughput in
simulations [34]], [35], though no in-orbit deployments have
yet occurred. Adaptive payloads such as ESA’s JoeySat illus-
trate potential future integration [7]]. This domain primarily
involves the Payload subsystem, where configurable antennas
and signal processors could host ML-based beam management.
Command and Control Optimization. RL and LSTM-based
controllers have been explored for attitude stabilization and
autonomous maneuver planning [16], [36]. These functions
depend on the ADCS and TT&C subsystems, which govern
satellite orientation and command execution.

Cybersecurity and Interference Detection. AEs, GANs, and
other deep models have been applied to detect anomalies
in telemetry or network traffic [37]-[39]]. Despite promising
accuracy, deployment is limited by the scarcity of labeled
data and high false-alarm costs. Cyber threats span TT&C
(command/telemetry integrity), C&DH (internal data flows),
Payload (mission data), and the ground segment, which is
often the first attack surface [6].

Mission Planning and Space Traffic Management. RL
and meta-learning techniques have been used for collision
avoidance, observation scheduling, and dynamic task alloca-
tion [40[]-[42]. Learning-based conjunction prediction has also
been demonstrated [43]]. These applications mainly operate
in the ground segment, interfacing with TT&C for command
uplink and ADCS for maneuver execution.

Network Traffic Management. Within non-terrestrial net-
works (NTN) standardized by 3GPP [44], ML methods such
as RL, DL, and LSTMs have been explored for resource
allocation, routing, and anomaly detection [39], [45], [46].
Most work remains at the simulation level, with limited
deployment in LEO or GEO systems. The use case mainly
concerns the ground and user segments.

Object Detection and Vision. CNNs, LSTMs, and trans-
formers process optical and hyperspectral imagery for debris
detection, environmental monitoring, etc. [47]-[49]. Onboard
inference, demonstrated by ESA’s ®-Sat-1 [50], reduces down-
link needs. However, models remain vulnerable to adversarial
perturbations [51], [52] and constrained by limited onboard
computing. This domain mainly involves the Payload, sup-



ported by ADCS for precise pointing and C&DH for data
handling.

Telemetry Analysis. CNNs, LSTMs, and AEs have been
applied to detect anomalies in satellite telemetry [37]], [S3[],
[54]. Performance is often overestimated, and ML currently
acts as an advisory tool for operators rather than an au-
tonomous diagnostic system. Key subsystems include the EPS
and TT&C, where anomalies in power or communication
integrity signal early failures.

Overall, ML now supports communications, control, percep-
tion, and system monitoring across both onboard and ground
segments, though operational maturity remains uneven and
most applications are still validated through simulation or
testbed studies.

IV. RELATED WORK
A. Risk Analysis in the ML Domain

Several efforts have been made to formalize how risks in
ML systems should be identified and prioritized. The NIST Al
Risk Management Framework (RMF) provides governance-
level guidance for trustworthy Al, standardizing terminol-
ogy and emphasizing processes for risk identification and
mitigation; however, it is intentionally domain-agnostic [55].
MITRE’s ATLAS knowledge base complements this by doc-
umenting adversarial Tactics, Techniques, and Procedures
(TTPs) used against ML systems, offering an ATT&CK-style
taxonomy tailored to AML [56].

Building on this, NIST recently published a taxonomy
dedicated to AML that systematizes attacks and mitigations
across the ML lifecycle [57]. It distinguishes between predic-
tive and generative Al systems, classifies attacks by attacker
goals-such as compromising availability, integrity, or privacy-
along with attacker capabilities and knowledge, and provides
a common terminology for evaluating mitigations. In parallel,
recent surveys emphasized the importance of applying such
structured risk views in critical industries. Pelekis et al. [58]]
reviewed AML across the automotive, healthcare, energy, and
large language model (LLM)-driven NLP domains, finding that
while taxonomies and defenses exist, practical robustness and
privacy assessments in high-stake domains remain fragmented
and often outdated.

On the methodology side, FRAME is a general-purpose and
automated framework for AML risk assessment [5]. FRAME
quantifies adversarial risks by integrating attack feasibility,
system context, and empirical success rates reported in the
literature, producing prioritized risk scores across use cases.

While these frameworks and reviews provide a foundation
for understanding ML risks, they have primarily been ap-
plied in terrestrial or general-purpose contexts. None directly
addresses the challenges of ML when deployed in space
missions, where constraints such as limited power, radiation,
and communication windows influence both the feasibility and
impact of attacks. This gap motivates the need for a framework
that considers satellite-specific threat models and operational
realities.

B. Risk Analysis in the Satellite Domain

Risk analysis in the satellite domain has largely focused on
cyber and system vulnerabilities. Prior work has mapped attack
paths across ground, space, and RF segments for CubeSats
and small satellites [59]], exposed exploitable flaws in in-orbit
firmware and telecommand interfaces [[60], and demonstrated
hosted-payload compromise scenarios such as OPS-SAT [61],
[62]. Cyber-threat frameworks including MITRE ATT&CK
and SPARTA have been adapted to satellite architectures,
enabling analysis of real attacks on ground infrastructure [63]]
and the development of LEO-specific taxonomy extensions [4]],
as well as informing security controls in SDN-based networks
and live hacking exercises [64]], [[65]]. However, existing stud-
ies emphasize traditional cyber risks and generally overlook
AML threats, space-specific constraints (e.g., SWaP, latency,
radiation), and distinct attack surfaces of onboard vs. ground
ML pipelines.

C. Existing Gap

Despite the progress made by both research communities, a
unified perspective on AML risks for satellites is still lacking.
Specifically, there is a need for a framework that bridges these
domains: (1) a framework that tailors adversarial tactics and
defenses to satellite operational realities (SWaP limits, radia-
tion effects, high latency, intermittent links, and certification
constraints), (2) distinguishes between onboard and ground-
based ML pipelines and their distinct attack surfaces, and links
attacks to their mission-level impact on availability, integrity,
and privacy. Our work addresses this gap by extending an
established AML risk methodology (FRAME) through the
integration of space-specific literature, datasets, and threat
models. The result is a satellite-aware AML risk framework
that adapts existing adversarial classifications to space envi-
ronments and provides prioritized risk scores grounded in real
satellite ML applications.

V. THREAT MODELS AND RISK SCENARIOS

This section outlines the threat landscape: first identifying
the actors and their motives (who and why), then describing the
attack methods (how) that compromise ML systems across the
satellite lifecycle. Together, these perspectives form the basis
for a structured threat mapping, summarized in Table (I, which
links each attack category to its relevance across representative
satellite ML use cases.

A. Threat Actors: Who and Why

Adversarial threats to ML-enabled satellites arise from
actors with differing motives, capabilities, and resources [4],
[55]], [66], [67]. They can be broadly categorized into six tiers:
Tier 1 — Individuals and Activists: Motivated by curiosity,
ideology, or notoriety, these actors conduct low-skill attacks
such as public red-teaming or surface-level ML manipulation
to gain attention or test boundaries.

Tier 2 — Commercial Competitors: Driven by economic or
strategic gain, competitors may steal proprietary models or
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Fig. 1: Mapping of ML use cases to satellite subsystems.

poison datasets to degrade rival performance, delay launches,
or gain a technological advantage.

Tier 3 — Terrorist groups: Seeking disruption and public
distrust, they may jam communications, spoof sensors, or in-
ject adversarial noise into ML pipelines to amplify operational
chaos.

Tier 4 — Insiders: Operators, contractors, or supply-chain staff
with legitimate access who exploit trust for personal gain,
coercion, or ideological purposes-by embedding backdoors,
leaking data, or tampering with retraining processes.

Tier 5 — Organized crime: Financially motivated groups exe-
cuting ransomware, data theft, or disruption-for-hire schemes,
often via compromised supply chains or collaboration with
insiders.

Tier 6 — State-Sponsored Actors: Pursuing geopolitical or
military objectives, these actors employ advanced tactics such
as model inversion, stealthy poisoning, or hardware compro-
mise to degrade adversary capabilities covertly.

B. Adversarial Attack Methods: How

The how refers to the main attack vectors that exploit ML
throughout the satellite lifecycle [56]], [66], [67].
Communication-based attacks: Jamming and spoofing cor-
rupt or block telemetry and sensor streams, resulting in control
or anomaly detection models failing to function correctly.
MitM, replay, or DoS attacks inject false or stale data into
inference or training pipelines, undermining reliability.
Model manipulation: Adversarial examples induce misclas-
sification, while data poisoning or backdoors corrupt models
during training. Membership inference poses a threat to con-
fidentiality, but it rarely directly impacts operations.
Hardware and physical attacks: Radiation or fault injection
can alter model weights; supply-chain tampering can embed
persistent vulnerabilities; side-channel attacks may expose
parameters or sensitive data.

Perception and planning manipulation: False sensor inputs
mislead ML models used in navigation and tasking, triggering
unnecessary maneuvers or resource misallocation.

VI. RESEARCH METHODOLOGY

This study proposes a methodology for assessing the risks
associated with the use of ML in satellite systems. The
methodology combines system identification, threat modeling,
and a structured evaluation stage based on the FRAME risk
analysis framework [5]], a comprehensive and automated ap-
proach for assessing risks posed by AML threats across diverse
ML-based systems.

The proposed methodology, building on FRAME, encom-
passes three primary dimensions: the system’s deployment
environment, the characteristics of adversarial ML techniques,
and empirical data from prior research. To adapt the assess-
ment to each system’s operational context, FRAME’s system-
profiling process utilizes a structured questionnaire guided
by an LLM model, which provides automated, context-aware
profiling. To further specialize this profiling for the satellite
domain, we introduce additional parameters. These parameters
help guide the LLM’s questioning to effectively capture space-
specific constraints and mission architectures.

FRAME then performs attack feasibility impact mapping,
linking AML attacks to specific feasibility conditions and se-
curity impacts, informed by expert knowledge and a literature
review. A comprehensive empirical dataset on AML attacks
is used to estimate the realistic success rates of various attack
techniques in the system’s context. These inputs are integrated
through a modeling component that quantifies the attack risks,
which are then ranked and presented for actionable decision-
making. FRAME balances ease of use for technical system
owners without AML expertise with detailed, data-driven risk
prioritization, supporting both effective mitigation strategies
and the secure deployment of ML technologies.

To tailor FRAME to the satellite domain, we introduced two
main changes. First, we expanded the dataset of documented
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attacks by incorporating AML research specific to satellites
and space systems. This allowed us to refine the feasibility
mappings and calibrate the attack success rates using domain-
relevant evidence. Second, we extended the FRAME question-
naire with satellite-specific questions, capturing operational
parameters such as the deployment segment, orbital regime,
and organizational ownership. These adjustments ensure that
FRAME produces risk scores that reflect the realities of
ML deployments in both onboard and ground-based satellite
missions. The following sections outline the approach taken
to extend and apply FRAME for satellite-specific risk assess-
ment.

A. Adjustment of FRAME

We extend FRAME with satellite-specific parameters to cap-
ture how deployment context and organizational setting affect
attack feasibility. These adjustments ensure the framework
reflects realistic conditions across different satellite environ-
ments.

a) Model Deployment Segment: The ML model’s lo-
cation in the satellite architecture (ground, bus, payload, or
user segment) strongly affects attacker accessibility [66], [67].
User-level components present the highest feasibility (w=1.0)
due to exposed interfaces and data endpoints, followed by
ground systems (w=0.7), where terrestrial access and ground-
station vulnerabilities are well known. Payload modules ex-
hibit moderate feasibility (w=0.4), offering partial isolation
while retaining mission-specific interfaces, whereas the bus
remains the least accessible (w=0.1) due to its tightly inte-
grated nature. These values are heuristic indicators for relative
comparison rather than measured probabilities.

b) Orbital Regime: Attack feasibility also varies with
orbit. LEO missions have the highest feasibility (w=1.0) as
they rely on COTS components, dense constellations, and short
lifecycles that limit per-satellite hardening. MEO missions
are moderately exposed (w=0.8), balancing accessibility with
higher operational costs and longer missions, while GEO
platforms are least feasible (w=0.7) due to their strong control
infrastructure and minimal physical access [6]], [66].

c) Organizational Ownership: The type of operator fur-
ther influences the security posture [55]], [67]]. Private and
research operators face the highest feasibility (w=0.8), given
their limited budgets and oversight. Commercial entities ex-
hibit moderate feasibility (w=0.5), as protection levels vary

by regulation and business scale. Governmental systems ex-
hibit the lowest feasibility (w=0.2), due to strict certification,
defense-grade controls, and active monitoring.

These heuristic parameters extend FRAME to capture satellite-
specific architectural and organizational factors, enabling con-
sistent, domain-relevant risk comparisons across deployment
contexts.

To validate these heuristic weights, we performed a sensitivity
analysis. We tested multiple logical scenarios, such as (1)
increasing the risk variance between orbital regimes (e.g.,
wrpo=1.0, wgro=0.4) and (2) assuming lower-variation risk
(e.g., wrpo=1.0, wgro=0.9). We observed that while abso-
lute risk scores shifted, the relative prioritization of threats
remained robust: Integrity-based attacks (e.g., Model Poison-
ing) consistently ranked as the dominant threat across all tested
scenarios. This stability supports our chosen weights as a
representative baseline for this domain.

d) Comparison with Terrestrial Domains: Unlike terres-
trial ML deployments—for example, those in IoT or industrial
control systems—satellite environments face constraints that
strongly influence attack feasibility: intermittent connectiv-
ity, harsh physical conditions, radiation-induced faults, and
reliance on SWaP-limited hardware. In its standard form,
FRAME assumes continuous access and abundant computing
resources, conditions rarely present in orbit. Our extension,
therefore, ensures that risk scores reflect the economic, phys-
ical, and governance realities of space missions, enabling
adversarial risk assessment in the context of satellite systems.

B. Identification of AI/ML Systems in Satellites

As an initial step, we surveyed contemporary literature,
technical standards, and operational documentation to identify
ML-based systems used in modern satellite infrastructure,
including both onboard and ground-based deployments. The
identified use cases were then classified across key operational
areas, including beam hopping, anti-jamming, telemetry anal-
ysis, mission planning, and cybersecurity.

C. Threat Model Identification

After mapping the identified AI/ML components to their
respective satellite subsystems and operational contexts, we
compiled a comprehensive set of threat models relevant to
satellite-based Al systems. The models encompass a wide
range of attacks: Communication-based attacks (e.g., jamming,




spoofing, MitM), Model manipulation attacks (e.g., adversarial
examples, backdoors), Hardware and physical attacks (e.g.,
cosmic radiation, fault injection), and Planning and perception
manipulation attacks (e.g., sensor spoofing, orbital debris
simulation). These threats were adapted and refined based on
existing standards such as CCSDS 350.1-G [68] and recent
adversarial machine learning research.

D. Mapping Relevant Threat Models to Use Cases

Each threat model was systematically mapped to the AI/ML
use cases identified in the previous subsection. The mapping
accounted for both the deployment environment (onboard vs.
ground) and the functional scope (mission-critical vs. payload-
focused). The outcome is summarized in Table [l which
presents a threat—use case relevance matrix highlighting the
high-impact intersections—that is, where specific attack types
are most feasible or consequential within a given operational
context.

E. Application of the Extended FRAME Framework

We applied the extended FRAME framework [5] to each
scenario, producing descriptive and score-based assessments
of adversarial ML risks. The analysis encompassed various
deployment environments and mission types, informed by
prior studies on ML assurance in space systems [54], [69].

F. Analysis and Conclusions

The resulting FRAME outputs—risk scores and threat map-
pings—were analyzed to reveal recurring vulnerabilities across
ML architectures and mission profiles (e.g., LEO telemetry vs.
GEO beam hopping). High-risk intersections, such as onboard
control models exposed to adversarial inference, were priori-
tized for further study. The results informed recommendations
for risk mitigation, design hardening, and research to enhance
the security and resilience of ML-based satellite systems.

VII. EVALUATION
A. Evaluation Setup

The evaluation focuses on five representative ML use cases
selected to capture the diversity of machine learning adop-
tion in satellite missions. These cases span multiple orbital
regimes (LEO-GEO), deployment layers (onboard and ground
segments), and functional domains, each drawn from a distinct
study. Together, they represent a broad spectrum of learning
paradigms—from deep reinforcement learning for adaptive
control to supervised and unsupervised models for anomaly
detection. This diversity enables the extended FRAME frame-
work to be evaluated across varied operational contexts and
mission objectives. The five use cases are outlined below.

B. Representative Use Cases

To evaluate adversarial risks in realistic mission contexts,
we analyze five representative ML applications across satellite
domains and deployment environments. These use cases illus-
trate the breadth of ML adoption in both onboard and ground-
based systems and form the basis for applying the adapted
FRAME methodology.

1) Case A: Multi-Agent DRL-Based Anti-Jamming Spec-
trum Access (LEO): This case considers a multi-agent DRL
framework for anti-jamming in LEO satellite networks. The
study “A Multi-Agent Deep Reinforcement Learning Anti-
Jamming Spectrum-Access Method in LEO Satellites” (Elec-
tronics, 2025) [70] proposes a VDN-based approach with
centralized training and distributed execution. After offline
ground training, the model is deployed onboard to enable real-
time, decentralized spectrum-access decisions under jamming.

2) Case B: Beamforming Optimization (GEO, Beam Hop-
ping Family): This case examines Al-driven dynamic beam-
forming for multibeam GEO satellites, considering both on-
board and ground ML architectures. The study ‘“Machine
Learning for Radio Resource Management in Multibeam GEO
Satellite Systems” (Electronics, 2022) [71] evaluates RL and
supervised models for beam hopping to improve spectral effi-
ciency. Our assessment focuses on the onboard configuration,
which increases operational flexibility but also raises exposure
to poisoning and evasion attacks due to limited retraining and
security constraints.

3) Case C: Payload-Based Dynamic Frequency Allocation
(Beam Hopping Family): This case addresses onboard Al
control for beam hopping and frequency allocation. The work
“Deep Reinforcement Learning-Based Beam Hopping Algo-
rithm in Multibeam Satellite Systems” (IET Communications,
2019) [72]] formulates illumination planning as a Markov
decision process using a DQN framework. Simulation results
demonstrate reduced latency and improved throughput, high-
lighting the transition from rule-based payload management to
autonomous onboard optimization.

4) Case D: Traffic Anomaly Detection (Network Manage-
ment): This case analyzes ML-based interference detection
in the ground segment. The article “Machine Learning for
Satellite Communications Operations” (IEEE Communications
Magazine, 2021) [73] presents a CNN-based autoencoder
deployed at the network operations center. By processing 1Q
signal samples from satellite transponders, the model identifies
anomalies associated with interference or link degradation.

5) Case E: Satellite Health Anomaly Detection (Telemetry
Analysis): This case examines telemetry-based health moni-
toring using ML techniques. The study “Artificial Intelligence
for Satellite Communication: A Review” (Intelligent and Con-
verged Networks, 2021) [16] describes a multivariate LSTM
combined with probabilistic PCA for anomaly detection. The
model analyzes temperature, voltage, current, and sensor data
to detect deviations related to subsystem faults or degradation.
Together, these cases cover the primary operational domains
of satellite ML—communications, control, and health man-
agement—and serve as the foundation for the subsequent
FRAME-based risk assessment.

C. Cross-Use-Case Insights and Observations

By analyzing the quantitative and qualitative outputs gener-
ated by the extended FRAME framework across five diverse
satellite ML use cases, we identified several recurring security



challenges and risk patterns. The following insights and obser-
vations are derived from this cross-use-case analysis, focusing
on the top-five attacks identified by FRAME for each use
case.

1) Common Attack Vectors: Table |ll| summarizes the attack
categories most frequently observed in the evaluated use cases,
organized by their corresponding security objectives.

TABLE II: Summary of recurring attack vectors across the
evaluated use cases.

Attack Category Description Affected
Use Cases

Model Poisoning Targeted manipulation of training | A, B, C,

Attacks (Integrity) or retraining pipelines to degrade | D, E
model behavior

Evasion Attacks Input manipulation to cause mis- | A, B, C,

(Integrity) classification or bypass anomaly | D, E
detection

Resource Latency Overloading model computation | A, B, D

Attacks or inducing delays in real-time

(Availability) operations

Data Reconstruction | Reverse-engineering model be- | B, D, E

/ Model Extraction | havior or reconstructing sensitive

(Privacy) data from outputs

Clean-Label Introducing undetectable mali- | C, D, E

Poisoning cious samples to degrade perfor-

(Availability) mance over time

2) Risk Categorization by Objective and Attack Type:
The heatmaps in Figure [2a] visualize the relative risk scores
aggregated across the five use cases, categorized by security
objective (integrity, availability, privacy), while Figure [2b]
groups them by attack type (poisoning, evasion, resource-
latency, and data reconstruction). Together, these visualiza-
tions highlight that integrity-related attacks consistently pose
the highest risks, particularly through poisoning and evasion
tactics.

3) Key Observations:

« Integrity Risks Dominate: Model poisoning and evasion
attacks were identified in all use cases, and they obtained
the highest average risk scores.

o Model Poisoning is the Most Recurring Threat: The
black-box interactive decision-based targeted model poi-
soning attack was observed in four of the five use cases,
with an average risk score of 8.42.

« Evasion Attacks Are a Secondary Concern: The black-
box interactive decision-based evasion or misclassifica-
tion attack was seen in two use cases, with an average
risk score of 7.99.

o Availability Threats Are Context-Specific: Real-time
systems (e.g., interference management, beam hopping)
are more exposed to latency and resource exhaustion
attacks than batch-processing use cases like telemetry
analysis.

o Privacy Risks Are Secondary but Present: Data re-
construction and model extraction attacks were noted in
onboard and telemetry-related use cases.

« Importance of Pipeline Security: All of the use cases
require secure retraining and data ingestion pipelines to
defend against poisoning attacks.

VIII. DISCUSSION
A. Interpretation and Implications of Findings

The FRAME-based analysis reveals a clear pattern across
satellite ML applications: integrity risks dominate due to the
unique data and operational dynamics of space systems. These
results reinforce the paper’s central argument that ML intro-
duces mission-level vulnerabilities not captured by traditional
satellite cybersecurity frameworks.

Specifically, the high recurrence of poisoning and evasion
attacks across both onboard and ground segments demon-
strates that adversarial manipulation is not a theoretical threat
but a feasible and cross-domain risk. Such threats correspond
to different actor motives: poisoning risks align with commer-
cial competitors seeking to degrade rival performance, while
evasion attacks reflect state-backed attempts to disrupt com-
munications or control functions. Lower-impact data extraction
and reconstruction threats, more typical of activists or orga-
nized crime, highlight that motivations and capabilities vary
widely across the actor spectrum. This variation underscores
the importance of integrating adversarial resilience as a design
requirement, rather than as a post-deployment safeguard.

Moreover, the context-specific exposure of availability at-
tacks in real-time control and communication functions high-
lights that risk cannot be generalized across missions. Instead,
risk prioritization must consider the mission profile, retraining
frequency, and operational autonomy level.

Taken together, these findings validate the need for a
satellite-tailored risk framework, such as FRAME, adapted
and scaled to address the unique conditions of the space
domain, capable of quantifying not only attack feasibility
but also mission impact. They provide the empirical basis
for developing targeted mitigations that are relevant to the
operational criticality of each ML component.

B. Mitigation Strategies

Building on the FRAME-based risk analysis and the iden-
tified threat landscape across multiple ML-enabled satellite
use cases, this section outlines targeted mitigation strategies
addressing recurring vulnerabilities observed in the evaluated
systems.

1) Robust Model Training: Adversarial poisoning and eva-
sion attacks were consistently ranked among the most severe
threats. To mitigate these risks, satellite ML pipelines should
incorporate adversarially robust training techniques, including
the use of perturbations similar to known evasion examples and
data sanitization procedures that limit the impact of poisoning
during retraining or online learning. These measures align with
prior recommendations [54], [69]], which emphasize robustness
in continuously learning and feedback-driven satellite systems.

2) Pipeline Security and Update Hardening: Continuous
retraining on non-stationary data introduces new attack sur-
faces for model poisoning and drift. To reduce this exposure,
data pipelines should enforce source verification, anomaly fil-
tering, and authenticated ingestion. Automated integrity checks
must validate incoming data before retraining is initiated,
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Fig. 2: Expanded FRAME risk heatmaps for satellite ML use cases. (a) presents the average risk scores categorized by security
objective (integrity, availability, privacy). (b) presents the average risk scores grouped by attack type (poisoning, evasion,
resource depletion, latency, and data reconstruction). The risk levels are based on the top-5 adversarial attacks per use case.

and ML model updates should remain versioned, auditable,
and reversible to ensure safe rollback in the event of post-
deployment anomalies.

3) Runtime Monitoring and Anomaly Detection: Real-time
adversarial detection is particularly critical for LEO satellites,
which operate under rapidly changing conditions and limited
contact windows. Lightweight onboard detectors, such as
CNN-based autoencoders, can monitor inference consistency
and alert operators to deviations. Cross-verification between
onboard and ground-based inference results provides an ad-
ditional layer of protection against signal spoofing or data
tampering during transmission.

4) Redundancy and Fail-Safe Logic: Given the potential for
radiation faults, denial-of-service conditions, or ML malfunc-
tion, critical satellite functions should not rely on a single
inference path. ML models must be wrapped in fail-safe
control logic that defaults to deterministic heuristics under
abnormal conditions. Backup models or rule-based fallback
policies should govern essential functions such as routing,
beam allocation, or power management to ensure continued
operation during degraded states.

5) Periodic Risk Audits and Threat Re-Evaluation: Be-
cause ML systems evolve and adversarial techniques ad-
vance, FRAME-based risk assessments should be periodically
revisited. Annual re-evaluations using updated datasets and
emerging adversarial findings help maintain system resilience.
Furthermore, any major software, firmware, or retraining mod-
ification should trigger reapplication of the threat mapping and
scoring process to ensure that mitigations remain valid and
effective.

These combined strategies do not eliminate adversarial risk
entirely but establish a layered, practical defense tailored to the
operational, physical, and computational constraints of ML-
based satellite systems.

IX. CONCLUSION

This study presented the first comprehensive risk assessment
of AML threats in satellite systems, adapting the FRAME
methodology to the space domain. By analyzing five repre-
sentative use cases across onboard and ground segments, we
identified recurring vulnerabilities—particularly model poison-
ing, evasion, and data manipulation. We demonstrated how risk
exposure varies with deployment context and mission role.

Our adaptation of FRAME integrates space-specific litera-
ture and expert insights, enabling the quantification of realistic
risks beyond generic AML evaluations. Findings indicate that
integrity threats dominate most use cases, availability risks are
critical for time-sensitive functions such as anti-jamming and
beam hopping, and privacy issues emerge in telemetry and
data services. These results offer a baseline for prioritizing
ML robustness in space operations.

To bridge the gap between research and practice, we
outlined mitigation measures tailored to satellite constraints,
including adversarial training, hardened data pipelines, run-
time anomaly detection, redundancy, and periodic risk audits.
Together, these form a layered defense strategy that enhances
ML resilience without compromising mission reliability.

Future work should focus on three directions: (1) hardware-
in-the-loop validation of defenses under adversarial condi-
tions, (2) development of satellite-specific AML datasets
and benchmarks, and (3) integration with standards such as
NIST AI RMF, MITRE ATLAS, and SPARTA to establish a
unified framework for space AML risk assessment. As ML
adoption in satellites expands, future work should calibrate
the heuristic weights using expert feedback and structured
surveys to achieve a more precise and empirically grounded
characterization of satellite-specific risks.

By quantifying risks and proposing actionable defenses, this
study offers a proactive step toward secure and trustworthy ML
autonomy in orbit.
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APPENDIX
LEO, MEO, and GEO Relevance to ML Use Cases

Table summarizes how LEO, MEO, and GEO systems
relate to representative ML use cases. The mapping reflects the
typical operational domain where each orbit is most applicable
based on latency constraints, mission objectives, and system
design trends. LEO missions commonly support dynamic
or data-intensive tasks such as anomaly detection and anti-
jamming, While GEO systems favor high-throughput func-
tions, such as beam hopping and traffic management. MEO
missions occupy an intermediate role, balancing coverage and
resilience. Importantly, the relevance scores emphasize near-
term applicability, which orbits are expected to host these ML
functions within the coming generation of satellite systems,
rather than long-term theoretical potential.

TABLE III: Satellite type (LEO, MEO, GEO) relevance to ML
use cases (@= high relevance, ©= medium relevance, O= low
or no relevance).

Use Case LEO | MEO | GEO
Anti-Jamming [ ] © ©
Beam Hopping Optimization (D) O [ J
Command and Control Optimization o O ©
Cybersecurity and Intrusion Detection [ ) © [ J
Mission Planning (Autonomy, SSA) o © O
Network Traffic Management o © [ J
Object Detection and Earth Observation o O O
Telemetry Analysis (Anomaly, Health) [ [ [



https://www.3gpp.org/technologies/ntn-overview
https://www.eoportal.org/satellite-missions/phisat-1
https://www.eoportal.org/satellite-missions/phisat-1
https://doi.org/10.6028/NIST.AI.100-1
https://atlas.mitre.org
https://aerospace.org/sparta
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