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Abstract—MiTechnological advances relating to artificial in-
telligence (AI) and explainable AI (xAl) techniques are at a stage
of development that requires better understanding of operational
context. Al tools are primarily viewed as black boxes and some
hesitation exists in employing them due to lack of trust and
transparency. XAl technologies largely aim to overcome these
issues to improve operational efficiency and effectiveness of oper-
ators, speeding up the process and allowing for more consistent
and informed decision making from Al outputs. Such efforts
require not only robust and reliable models but also relevant
and understandable explanations to end users to successfully
assist in achieving user goals, reducing bias, and improving trust
in AI models. Cybersecurity operations settings represent one
such context in which automation is vital for maintaining cyber
defenses. AI models and xAI techniques were developed to aid
analysts in identifying events and making decisions about flagged
events (e.g. network attack). We instrumented the tools used
for cybersecurity operations to unobtrusively collect data and
evaluate the effectiveness of xAI tools. During a pilot study
for deployment, we found that xAI tools, while intended to
increase trust and improve efficiency, were not utilized heavily,
nor did they improve analyst decision accuracy. Critical lessons
were learned that impact the utility and adoptability of the
technology, including consideration of end users, their workflows,
their environments, and their propensity to trust xAlI outputs.

I. INTRODUCTION

Rapid improvements in artificial intelligence (AI) tech-
niques have resulted in significant increases in their usage in a
diverse and expanding set of applications. While original suc-
cesses were in domains with fairly low consequences such as
product and movie recommendations, Al algorithms are being
used in increasingly higher-consequence applications such as
medical diagnoses [3]. Widespread use is limited, however, as
there is a recognized need to trust and understand the decision
processes of Al models before they are deployed and integrated
into larger systems. In response, several explainable Al (xAl)
techniques have emerged [1] to build trust and ensure that a
model is not biased.

Using Al models in cybersecurity operations settings is
growing, as it promises a way to manage increasing traffic
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and cyber attacks. Cyber attacks result in significant loss of
monetary resources and/or system resource availability. Al
methods offer improvement to defense of cyber infrastructure,
running at machine speeds and resulting in preservation of
significant resources. Al has been investigated in several cyber
domains, including malware detection [12] and malicious PDF
detection [16]. xAI has been examined systematically using
deep learning methods in cyber defense [19], but independent
of the cybersecurity analyst. Our goal was to evaluate how xAl
tools affect cyber analysts in their daily workflow.

A. Study scope

We examined the use case of Al models with explanations
for identifying malware in a live computer network defense
setting with human operators. Given the high impact of false
negatives, cybersecurity analysts are highly skeptical of auto-
mated tools. To increase the productivity of the cybersecurity
analysts, not only does the Al model need to be robust and
reliable, but also the cybersecurity analyst needs to trust the
model to make effective use of its output. However, Al and xAI
methods are often deployed without evaluating how they affect
the overt decision process. Moreover, if the hope is to deploy
these technologies successfully, technology adoption measures
such as usefulness and usability should be evaluated [9].

This paper presents a case study examining the use of
xAl techniques integrated into the workflow of cybersecurity
analysts. In this setting, the cybersecurity analysts need to both
identify malicious artifacts and provide reasons why they are
malicious. Hence, the goal in providing xAl methods is two-
fold: 1) to help analysis scale with the increasing number
of malicious attacks and 2) to point to why an artifact is
malicious as part of a cybersecurity analyst’s workflow. The
usefulness of the xAI tool was evaluated through several
data collection methods and found to be less useful to cyber
analysts than originally hypothesized. While the deployment
of the xAI tool was considered a failure within an incident
handling task, we identified another population within the
cyber context that showed interest in using the tool. We share
valuable lessons learned about design and deployment of new
tools in cybersecurity contexts at large. Moreover, we share
aspects of our data collection methodology, which utilized
system-based instrumentation that did not interfere with a
cybersecurity analyst’s current workflow and could be useful
to other usability researchers and automation developers in the
cyber domain.
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B. Motivation and research goals

To assess human decision making when presented with
model explanations, an initial study was conducted with a
broader population beyond cybersecurity analysts [18]. The
study revealed that when making a decision about a potentially
malicious stimulus, participants often agreed with the Al
outputs, indicating high inherent trust in the model regardless
of the output from the XAl tool. We also found that the number
of model features presented was not a significant factor in
the decision of whether or not to agree with the model’s
recommendation.

The next step was to understand the use of XAl in a
cybersecurity context with real analysts. To evaluate the effec-
tiveness of the model and explanations, we planned to collect
objective and subjective measures from actual end users in a
live security setting. We planned to compare decision behaviors
of analysts before and after the XAl deployment to quantify
how much the efficiency of cybersecurity analysts increased
or decreased when triaging suspicious events.

When deploying these techniques in the real world to
conduct an evaluation of the xAl tool, many decision points
and confounding factors were considered. This paper describes
our evaluation and deployment of the xAl tool, our instru-
mentation for collecting data, and lessons learned about how
cybersecurity analysts interact with XAl in real time. This paper
does not focus on the visualization methods and design by
which the xAI tool would display information to the user.
Rather, we present findings related to practical deployment
of the tool. We also provide a list of considerations for Al
developers and XAl designers that will help guide decisions
during this process. Here we used TreeSHAP [8], but any xAl
tool that provides feature importance for a prediction could be
used.

Research Question: What practical considerations are nec-
essary when developing and deploying Al and xAl tools in live,
high-consequence settings?

II. METHODS
A. Evaluating effectiveness of Al and xAl tools

Cybersecurity analysts working in real-world incident re-
sponse teams must make quick triage decisions using multiple

Example of the explanations from the XAl tool when expanded by analyst. (Note that the file name has been purposely obfuscated).

pieces of information, often including the outputs from Al
models. In this use case, cybersecurity analysts triage multiple
alerts to determine if flagged suspicious activity is actually
malicious. Our goal was to evaluate the effectiveness and
efficiency of a single AI model output in the context of incident
handling before and after an xAI tool was introduced. We
collected (1) instrumented (log) data throughout each of two
time periods: pre-xAl tool and post-xAl tool deployment, and
(2) survey data from analysts after deploying the XAl tool.
A screenshot showing sample output of the current Al output
with explanations from an xAlI tool is presented in Figure 1.

1) User population and task: The purpose of our study was
to better understand how new technologies, such as Al and
specifically xAl, can be developed and deployed in real cyber
settings. Thus, our study was not considered human subjects
research (HSR) by the institutional review board (IRB) because
our study implemented a tool within an existing process
for the purpose of process improvement. Accordingly, our
results highlight valuable lessons learned in the development
and deployment process, not performance-related data of the
human analysts using the Al and xAl tools. The group of cyber
analysts was comprised of eleven (n = 11) individuals who
rotated responsibilities for incident handling. These analysts
were part of an existing, established team operating within a
large company with established enterprise security protocols
and practices. All analysts used common tools and resources
to conduct incident handling tasks. While this sample may
seem small, it is considered normal for this context; there is a
wide range of “normal” team sizes in security operations [14].

Our study focused on a common incident handling task:
determining whether an automated alert is a threat that needs
to be addressed or was adequately addressed by automated sys-
tems. This is a decision making task to determine if an “alert”
should be promoted for further action, with the underpinning
decision of whether the alert is malicious or benign. This task
requires context switching [4] across a variety of tools and
systems [14], [10]. Our study injected a new xAl tool into
existing software used by analysts to observe how it affected
their decisions and behaviors while making this decision.

2) The xAl tool and instrumented data collection: The xAl
tool, pictured in Figure 1, presents a ranked list of the most
influential features for the model’s prediction for a given file



TABLE 1. SYSTEM INSTRUMENTATION FOR CAPTURING RELEVANT USER INTERACTIONS.

Mouse-click

Instr ted Variable Type Method Location

Interaction with specific interface feature — Hover- | Proactive JavaScript addition to source code Object Scanning application
over

Interaction with specific interface feature — | Proactive JavaScript addition to source code Object Scanning application

Time an analyst viewed

Retroactive

Pre-existing

Incident Tracking System

Analyst ID (alias)

Retroactive

Usernames are always attached to audit records
in both the object scanning and incident tracking
platforms. After the logs were collected, these
usernames were substituted for a cryptographic
hash of the username with a concatenated random

N/A

string (alias)

If promoted to “event” status Retroactive Pre-existing

Incident Tracking System

(PDF or macro). The intent of this visualization was to help
focus an analyst’s efforts on the most important attributes of
the file to make triaging and validating (determining ground
truth) observations more efficient. The items listed along the
y-axis are model features that are relevant for predicting the
outcome, while the x-axis shows strength of that feature for
the artifact. Greater magnitude to the right (shown as red)
indicates stronger alignment with known malicious features,
while magnitude to the left (shown as green) indicates stronger
alignment with benign features. This format is commonly used
in XAl applications. For the artifact shown in the figure, the
classifier outcome of “malicious” is presented to the analyst
in the object scanning tool, which can be further explored
through this xAI tool to understand why the model predicted
this artifact as malicious.

Data collection was programmed on the back-end of ex-
isting cybersecurity tools primarily to prevent workflow inter-
ruption. Instrumentation, or data collecting mechanisms within
the system and/or software, is an unobtrusive method that is
important to consider in cybersecurity contexts for several
reasons. First, the task being conducted is often measured
in terms of time; data collection methods that minimize or
eliminate interruption (e.g., surveys, verbal protocols, etc.)
should be considered to help minimize impact on performance.
Second, common HSR concerns about identifiability can be
easily avoided through system-instrumented data collection.
Using this approach helps qualify studies for exempt status,
greatly reducing the time (and resulting risk) for IRB ap-
proval. The authors did seek IRB approval, but this study was
considered non-HSR due to the fact that it was a usability
study on improving an existing tool. Third, as a very practical
concern, many security contexts are wary of outsiders, and
building trust and rapport with analysts is challenging. It is
also difficult to get direct access to these individuals to pur-
sue traditional approaches for studying technology adoption.
System-instrumented data collection reduces or removes the
need for researchers and developers to directly interact with
analysts when testing a tool. Lastly, a benefit of system in-
strumentation is the simultaneous accomplishment of building
a data collection network that could help current or future
automation development, fueling automated systems with live
data from users to understand their actions and possibly infer
1ntent.

Accordingly, we provide some details regarding our meth-
ods and decisions for instrumented data collection for others
who would like to use this method in cybersecurity contexts.
Our instrumentation included model output, when/if an alert
was promoted, how a cybersecurity analyst interacted with the

alert, and other activities performed on each alert. As was
mentioned previously, data were collected “pre” deployment
of the xAI tool and “post” deployment. For the “post” time
period, data indicating whether an analyst opened the XAl tool
was also collected.

Incident response teams use two important types of sys-
tems: scanning platforms and incident tracking systems. Scan-
ning platforms can take a variety of forms but almost always
involve automation to extract relevant information from digital
artifacts (files, packet captures, binaries, etc.). The xAl tool
was implemented in a scanning platform to succinctly provide
analysts with information regarding why a specific artifact
was classified as malicious or benign. The tool reports which
features were important for determining that classification.
Additionally, incident tracking systems are used in operations
to help incident response teams record and coordinate inves-
tigations and responses to security incidents. These systems
present digital artifacts that meet various alerting criteria to
an analyst. The analyst can then investigate and add notes and
other relevant information during the investigation and remedi-
ation phases. If initial investigations yield substantial findings,
incidents are escalated or promoted in the tracking system (i.e.
“event”) for further, deeper analysis. These incident tracking
systems are analogous to general service desk/ticket man-
agement platforms ubiquitous in the information technology
domain.

We examined different approaches that might be helpful
for experiment designers and application designers to collect
relevant data. It is important to be cognizant of granularity
of user interactions to be collected for answering specific
research questions. Data collection approaches that collect
copious amounts of data without specific research questions
can overwhelm a data analyst with too much data and result
in few, if any, useful insights.

Our processes for collecting user interaction metrics for the
xAl tool involved both proactive and retroactive instrumenta-
tion to the scanning platform and incident tracking system used
by the cybersecurity team. A summary of the instrumentation
used for this case study is shown in Table I. None of the
modifications changed the workflow for the analysts.

Proactive instrumentation captures specific data not in-
cluded in the application’s existing audit functionality and was
implemented before the experiment. Audit functionality was
proactively added to front-end and back-end code to record
mouse-click and cursor-hover user interactions with the xAl
tool and adjacent user interface features (e.g. accordion menus,
displayed information, tooltips, etc). This was done by modi-



fying the front-end (JavaScript) and back-end (Python) source
code of the in-house developed object scanning application.

Retroactive instrumentation leverages data that was already
being collected automatically by analyst tools. To gather a
more complete view of the incident response life cycle [14] in
relation to the xAl tool, retroactive auditing was implemented
in the incident tracking platform using custom python scripts
that pull existing audit records and calculate base statistics.
This auditing filtered for alerts generated by digital artifacts
that could be tied to xAIl outputs. It then recorded various
life cycle events in the incident tracking system such as:
when/which analysts viewed the incident and if the incident
was elevated to a heightened status. We relied on existing
auditing functionality in the incident tracking application to
capture this information and utilized batch processing (Python
scripts) to extract the relevant audit records from the applica-
tion’s database.

Finally, refined audit records from both applications were
grouped by digital artifact. This provided an overarching time-
line of analyst interactions with the xAl tool, object scanning,
and incident tracking platforms with respect to each digital
artifact. This was also implemented using custom Python
scripts. In order to protect user identity in both applications,
non-attributable aliases were substituted for usernames. These
aliases were cryptographic hashes of the usernames combined
with a random string.

Many of these modifications and the implementation of the
xAlI tool were possible because both the object scanning and
incident tracking applications are custom-developed tools. In
many organizations, this may not be the case. However, most
commercial applications used for both object scanning and
incident tracking will maintain similar audit records about user
interactions with the system. Therefore, it is not unreasonable
to expect that most user interactions captured in this experi-
ment will be reproducible in various commercial products.

3) Subjective trust and explainability usefulness: Survey
instruments are a popular method for collecting subjective
data. XAl methods claim to increase a user’s trust in an Al
model. To understand the trust level of and satisfaction with
explanations from xAl, we used two existing scales to measure
analyst perceptions: the Trust Scale recommended for XAl and
the xAI Explanation Satisfaction Scale [6].

The Trust Scale measures whether end users are confident
in the XAl tool, and whether the xAIl tool is predictable,
reliable, efficient, and believable. The Explanation Satisfaction
Scale captures end users judgments about the xAI tool. The
cybersecurity analysts were invited to complete an online, 16-
item questionnaire comprised of these two scales after at least
one week of working with the xAI tool.

One known limitation of surveys is low response rate,
which is exacerbated in operational settings in which human
operators have a primary task to do. Filling out a survey re-
quires ceasing the primary task, pivoting to the survey method
(e.g. paper, digital website), and taking time to complete
the survey. Our attempt to collect survey data was almost
completely hindered by these environmental factors, which
will be discussed in Section III.

B. Al tools in a live security setting

We identified important attributes to provide some context
about the operational cybersecurity environment, specifically
about the use of incident tracking and object scanning systems.
From an enterprise perspective, there is high risk and associ-
ated cost of undetected malware. Security systems are tuned
to be sensitive towards indicators of malware because the cost
of undetected malware can be extremely high [20]. Security
systems include multiple, sometimes partially overlapping,
alerting criteria. Within this context there is a bias towards hard
cases; easily detectable malware is automatically mitigated
with existing tools and, therefore, not triaged or elevated for
more investigation. Samples triaged by analysts are harder
to classify and often involve contradictory predictions from
competing (and highly accurate) mechanisms. To automatically
process files with Al algorithms, there is a semantic gap
between real-world interpretation and low-level feature space
for learning-based intrusion detection systems (IDS) [15]. In
other words, the interpretation of feature space is not self-
apparent (compared to some image classification problems)
[17]. Notably, in the team we studied the individuals who triage
alerts are largely disjointed from individuals who maintain the
Al models (i.e. model maintainers).

It was challenging to collect data in a scientific way
to assess the usefulness and efficacy of using xAIl. This is
a known challenge in cybersecurity operations settings [5],
and we adopted knowledge already learned when constructing
our hypotheses and initial research questions about the tool.
However, as we devised the plan for collecting data towards
answering those research questions, we discovered additional
factors that contradicted initial assumptions about how the tool
would be used. These factors included:

a) Decision task and alternate decisions support paths:
The analysts use the classification output from the AI model
along with other alert data to make a decision about an event;
they may not regularly question the classification output. To
mitigate this, we captured data from both before and after the
tool was deployed to see if including explanations changed
analyst behaviors. We sought to capture measurements such as
average response time and whether explanation text sections
are expanded to be read. We also made the visual presenta-
tion of explainability more appropriate compared to previous
versions, which did not organize or present explanations in
ways that could be quickly utilized during the decision making
process.

b) Workflow: Much of the information that cyberse-
curity analysts use to make a triage decision exists in a
central incident handling system, with little navigation required
within the dashboard to find decision-critical information. This
is a standard workflow in cybersecurity operations settings.
For our study, this included the AI model classifier output
(e.g. malicious, benign, uncertain), but not the xAl tool. User
workflow should be considered prior to deployment of xAl
techniques in some fashion to understand potential friction
points for adoption.

c) Tool separation/location: The xAl tool exists outside
the main dashboard where analyst conclusions are registered;
it is located in a supporting program (i.e. the object scanning
system) which required pivoting for engagement. While this



TABLE II

DATA COLLECTED FROM 17 ENTRIES

Period Opened Classifier Pre- | Analyst Time Event | Notes Total Event | Analysts with
Explanation diction Agreed Open (min) Views Entries Count
with
Classifier
Pre-Tool N malicious Y 0.50 19 1
Pre-Tool N benign Y 30554.9 21 days 31 1
Pre-Tool N benign Y 39.9 22 1
Pre-Tool N benign Y 11.7 21 1
Pre-Tool N benign Y 217.8 27 0
Pre-Tool N malicious Y 35.5 21 1
Pre-Tool Y benign Y 120.7 60 2
Pre-Tool N benign Y 9.9 32 0
Pre-Tool Y malicious Y 48.3 18 0
Post-Tool Y uncertain N/A 52.0 43 1
Post-Tool | N malicious Y 0.87 11 0
Post-Tool | N benign Y 5.55 10 0
Post-Tool | N/A benign Y 8.3 object 77 1
scanning
system  was
not opened
Post-Tool | N benign N N/A Still under in- 85 1
vestigation/no
close time
Post-Tool | Y benign Y 1395.7 1 day 27 2
Post-Tool | N benign Y 7.55 16 1
Post-Tool | N malicious Y 79.0 26 2
. . . . TABLE III. TIME TO CLOSE EVENTS WHERE EXPLANATIONS WERE
object scanning system is routinely accessed by analysts, the VIEWED
addition of the tool was not immediately obvious. To mitigate, i ] _ ]
we (1) hosted training with the analysts so they would be able Pl::r;’gl Time Eveml"zvgs70pe" (min) | Average Time Event was Open
to locate the xAI tool, and (2) created an interface feature Pre-Tool 48.3 85
(Figure 1) to increase salience of the new xAl tool. Post-Tool 52.0 724
Post-Tool 1395.7

d) Number of end users and their roles: In our scenario,
there is a different assigned primary incident responder per
week causing turnover and rotation within the group of users
whose roles differ regarding decision making about an event.
To mitigate this, we included all users who interact with the
xAl tool, not just the incident responders who are primarily
responsible for handling incidents in a given week.

III. RESULTS

We collected log data from the system with and without
xAI tools without interrupting the incident handling task with
and without xAI tools. We then measured user trust and
perception of usefulness of the XAl tool. This section describes
our findings and challenges with obtaining useful data in
cybersecurity settings.

A. Log data findings

As described in Section II, quantitative data were collected
continuously over the course of several months. We monitored
this data stream to capture a pre-deployment baseline of
existing tool use and post-deployment data to ensure the xAl
tool was working properly. Data were collected for 36 days
pre-tool implementation and 43 days post-tool implementation.
A total of 2834 unique alerts triggered by the classifier were
included in the data. Of the 2834 alerts, 17 were promoted to
events; these are the focus of this analysis (Table II).

One hypothesis was that the availability of a novel explain-
ability tool would increase likelihood of an analyst seeking out
an explanation from AI models. Surprisingly, we discovered
that users rarely interacted with the xAI tool, even after
training. As shown in Table II, out of 9 promoted events that
occurred pre-explainability tool, the existing explanation tool

was opened 2 times (22%). Of 8 events post-explainability
tool, the new XAl tool was opened 2 times (25%).

Why were the analysts not opening the explanations very
often, even prior to the implementation of a novel explain-
ability tool? A shift in thinking allowed us to appreciate the
key finding in the pre-deployment data: the targeted analysts
did not use xAl in their daily workflows. Further investigation
helped us understand that the information sources and cues
that analysts primarily used for their decision were located
in other available tools, mainly the incident tracking system.
Moreover, we concluded that salience of a new tool further
decreased the likelihood that users engage with the tool,
and a training intervention to overcome that limitation is an
insufficient strategy.

Another hypothesis was that the introduction of the ex-
plainability tool would change the length of time it took for
an analyst to make a decision to promote an alert to an event or
ignore/close an alert. When investigating this hypothesis, we
considered only the events where the explainability tool was
opened and found that the average length of time (in minutes)
for the 2 events existing tool was 85 minutes, whereas for the
2 events post-implementation of the xAl tool, the average time
was 724 minutes. We note that one event post-tool was open for
more than one day (Table III) and time comparisons may not be
reliable with such a small sample size. However, the system
instrumentation could theoretically be run for much longer,
providing data about time-based metrics about the incident life
cycle as well as insights about how the tool is used and adopted
over time.



TABLE IV. ANALYST AGREEMENT WITH CLASSIFIER IN EVENTS

WHERE EXPLANATIONS WERE VIEWED.

Period Classifier Prediction | Analyst Agreed with Classifier?
Pre-Tool benign Y
Pre-Tool malicious Y
Post-Tool uncertain N/A
Post-Tool benign
TABLE V. UNIQUE ANALYSTS WITH ENTRIES FOR EVENTS WHERE
EXPLANATIONS WERE VIEWED.
Period Total Event | Analysts with En- | Average Unique Ana-
Views tries Count lysts with Entries
Pre-Tool 60 2 2
Pre-Tool 18 0
Post-Tool | 43 1
Post-Tool 27 2 152

B. Subjective data findings

As described in Section II, qualitative data were collected
in an online survey sent to n = 11 analysts. Questions probed
user trust and perception of usefulness of the xAl tool [6].
Unfortunately, we had only one analyst complete the survey
within the study time period. This was likely due to pressures
from the operational environment and the intrusiveness of
surveys during normal operations. Analysts simply did not
have the bandwidth or time to complete surveys. Due to small
sample size we were unable to analyze our instrumented event
data by an average trust score. This result (or lack thereof)
reinforces the need to reduce reliance on intrusive methods to
circumvent issues with interrupting analysts’ tasks.

C. Deployment challenges

We thought that an analyst’s rate of compliance with
the model output might change depending on whether they
were using their old tool or the new tool to view the model
explanation. In this case, of the four events (pre- and post- tool
period), the analysts agreed with the classifier output, and in
the fourth instance the classifier’s output, was uncertain (Table
IV). We found no difference in compliance between pre- and
post-tool deployment.

With respect to an event, multiple analysts can add infor-
mation into the event log via the incident tracking tool. We
wondered if events where an explanation was viewed would
have a different number of unique analyst entries. In Table
V, we show that there is no difference. Finally, we thought
that analysts might view an event more often if an explanation
was opened. We found very little difference in the number
of event views during the pre-tool phase versus the post-tool
phase (Table VI).

IV. DISCUSSION

The results indicate that the xAl tool was not used by
analysts in live cybersecurity operations; rather information
and cues from other tools were used to support decision-
making. The explanation capability was added to the existing
system with the assumption that understanding model rationale
would help with incident response triage tasks. One of the core
insights gained is that this is a false premise.

Taking the time to understand the rationale of one of many
possible, and often contradictory, detection mechanisms is not
necessarily the most efficient path for triage. This is especially

TABLE VL NUMBER OF TOTAL VIEWS FOR EVENTS WHERE
EXPLANATIONS WERE VIEWED
Period Total Event Views | Average Event Views
Pre-Tool 60 39
Pre-Tool 18
Post-Tool 43 35
Post-Tool 27

true when analysts have other sources of information available
that are more easily consumable, including the observation
itself (e.g., the file that might be malware) and data views
that have been developed based on analyst feedback. To some
degree, performing the same manual analytic steps on samples
regardless of alert source might ensure consistency and help
prevent analytical bias.

The xAI tool targeted analysts based on the hypothesis
that improved understanding of the model’s decisions would
increase analyst confidence and improve overall performance.
Due to widespread skepticism amongst security analysts, this
hypothesis made sense: provide more data such that their
skepticism is resolved. However, we believe that injecting
a new XAl tool into existing models that analysts already
trusted impacted our ability to detect any gain in confidence
and reduction of skepticism. Essentially, we were unable to
understand if analysts trusted the xAI tool because it was
confounded with trust in the larger system already in use.

A. Challenges and lessons learned

Though the deployment of our tool was not considered suc-
cessful in cybersecurity incident response, we share challenges
and lessons learned with hopes of informing other research
with considerations that can mitigate risk of failure. Cyber-
related lessons are located in Table VII, while Al deployment
lessons are located in Table VIII.

We faced several challenges in deploying the tool in a
live setting. First, due to location of the XAl tool, which was
embedded in an accordion menu in a supporting system, we
expected a relatively low level of engagement. To mitigate this
risk of low familiarity with the tool’s existence, we conducted
a single-day training, which covered an overview on the tool’s
user interface as well as a tutorial on its operational use.
However, not all analysts were able to attend the training, and
some analysts identified this as the reason they did not use the
tool. Thus, we suggest carefully considering the task flow in
terms of software tools being used before deciding on location
of the new tool. Pilot testing can help identify potential issues
with user interface designs and ease of access.

Our lessons learned also inform efforts for deploying Al
models specifically “in the wild” that might be useful for
others developing xAI for use in real-world settings. The
study originally aimed to conduct more fully controlled field
experiments, which quickly evolved into tool improvement.
Over the period of about six months, we were forced to modify
our original study design to the extent that we developed new
research questions and pursued entirely new studies. For some
researchers, these changes represent some level of risk, which
we believe can be mitigated by learning from studies like
ours and considering certain design and deployment elements
before commencing data collection.



TABLE VIIL

CHALLENGES IN DEPLOYING TOOLS IN CYBERSECURITY

Chall

Considerations

Skilled cyber operators are highly skeptical of new tools due to the
high consequences in security. Yet, once operators gain trust in a tool
or resource, they develop robust workflows based on those tools and
information sources.

Injecting new tools or features into existing workflows can be challenging if trying to detect
usefulness and usability.

Developers should carefully consider the location of the tool and validate the usefulness in a smaller,
more controlled pilot.

Concept testing could help mitigate wasted time and resources in developing a tool or feature that
may not add value to the analyst’s workflow.

Triage tasks in cyber operations’ time-sensitive environments.

Introduction of new tools (which take time to learn) or data collection methods that impact time-
based metrics of performance should be minimized or avoided whenever possible.

System instrumentation that allows for non-intrusive data collection can provide some valuable
insights about how tools are used while also capturing time-related data.

Cyber operations’ technologically complex environments, with wide
range of tools and data sources required to complete daily tasks.

New tools should aim to reduce complexity of the task and/or environment in cybersecurity.
System instrumentation can be tricky across multiple tools, especially if a given system includes
proprietary code. Different scripts and even redundancy may be needed to reliably capture data at
the appropriate resolution.

TABLE VIIL PRAC

TICAL CONSIDERATIONS FOR XAI DEPLOYMENT

Practical Considerations

Supporting Questions

Who are your end users?

Who uses the model outputs, and in what way?

How does the XAl tool help them accomplish their goals?

With respect to explainability, who critically questions how the model works (within their normal
workflow)?

What is the context in which the model is deployed?

Do environmental pressures counteract the availability of the model?

Are the features, feature names, and visual representations of explainability relevant and meaningful
in this context?

What is the relative risk of the model being wrong?

How does the risk of model inaccuracy impact the end user?

What are the consequences of trusting the model?

What is the risk of the explanation being unclear or incor-

How does an unclear explanation impact the end user?

rect?

What are the consequences of presenting a poor or incorrect explanation?

We validated previous findings with related studies [18]
that the task context in which the xAI tool was deployed
dictated how much it might actually be used and for what
purposes. Though expected, we were still surprised by some
aspects of context that ultimately impacted how we deployed
the xAlI tool. For instance, we considered how the presentation
of information in the explanations could be improved such that
the outputs were meaningful to the target users. Additional
contextual factors such as time pressure, task volume, and con-
sequences of trusting XAl tools were found to be less critical
for our use case but should be considered for researchers and
developers planning to deploy such tools in real environments.
However, we reiterate that these contextual factors did affect
our ability to collect certain types of data. Based on the above
lessons learned, we offer considerations for developing and
deploying xAI tools in live contexts. The questions in Table
VIII can help guide decisions and mitigate risks during various
stages of development and technology transfer.

Second, we anticipated challenges related to the environ-
ment in which the xAI tool was deployed. Though we found
this to be less relevant for our use case, contextual factors (e.g.
time pressure, task scope, etc.) may impact its usefulness and
adoptability. Cybersecurity incident responders are known to
experience high alert loads and are subject to different kinds
of cognitive biases when interacting with intrusion detection
systems [7]. These settings have a history of high turnover and
burnout [2], [13], and judgments about alerts are often made
with pressure from long a queue of alerts or time expected
to make a decision [11]. More relevant to our use case was
that the actual workflow of incident response analysts did not
include validation of detection mechanism outputs (XAl or
not), and rationalizing those outputs is not an efficient path.

Third, we learned that our user base seemingly trusted the
output of the Al model to the extent that they did not explore
novel explainability tools, similar to previous conclusions on

non-cybersecurity users [18]. Further investigation revealed
that incident responders, or the people who are making de-
cisions from the Al outputs (and a suite of other tools), are
not interested in activities related to validating the underlying
Al model. However, this realization led us to identify two new
research questions: (1) who would validate the model outputs,
and thus potentially benefit from xAl tools, and (2) how can
the incident responders still contribute to the quality of Al
explanations? We explored the first question in a follow-on
study, but future research should include exploring the second
question, particularly ways of enabling contribution without
interrupting normal workflow.

Finally, we recognize that the design and implementation of
the tool could have contributed to its lack of use and adoption
by the analysts. TreeSHAP is currently considered state-of-
the-art in XAl but has not been validated with user studies. In
short, we assumed certain design principles and formats based
on mathematical research in XAl, and that this XAl tool would
help analysts focus manual analysis work.

B. Follow-on study of secondary user group

Findings from our study determined that AI model main-
tainers, or experts tasked with training Al models and moni-
toring their performance, are more invested in verifying model
outputs to improve model accuracy than cybersecurity analysts.
Within the organization included in this study, model maintain-
ers had deep expertise in Al technologies in addition to cy-
bersecurity. Accordingly, we pivoted our efforts to understand
this user base better. Our exploratory research objective was
to understand model maintenance tasks, information needed to
evaluate model performance (specifically outputs of the xAl
tool), and in doing so identify key differences from the cyber
analyst workflow. The results of the follow-on study indicated
that model maintainers need different information than incident
responders for their respective tasks.



We engaged this small group of people through interviews
to capture their task goals for model maintenance and their
perspectives on the xAl tool. We found that the roles of these
individuals vary greatly. To capture a wide variety of potential
factors, we conducted one-hour semi-structured interviews
with the model maintainers (n = 3) to understand roles and
goals of each participant. The interview protocol is included
in the appendix. The qualitative interview data was analyzed
by one researcher with experience in qualitative coding and
analysis. Statements from the participants were identified by
thematic interest and summarized in the findings. Due to low
sample size and high variation across the sample, we present
this research as useful insights for current and future work as it
pertains to Al models in practice cautioning that our research
findings should not be interpreted as generalizable beyond the
operational environment from which they were collected.

1) Roles of model maintainers: Each of the participants
had different roles when interacting with an AI model of
interest. The first two individuals had supporting roles that aid
incident responders when needed, improve the model through
identification of specific samples, and help monitor the model’s
performance. In addition to this support, both individuals had
unique roles supporting at least one additional facet. The first
individual had deep knowledge of underlying Al models and
had a major role in creating them. This knowledge helps
this person identify specific samples for model maintainers
to consider, ensuring coverage of new and emerging threats.
The second individual had some knowledge of the underlying
models, provided support to the model maintainers, and also
filled an analyst role. The purpose of this role is to help
make the model more usable to analysts. This person’s prior
experience as an analyst helps in understanding how Al infer-
ence can be used to make decisions for specific observations.
The primary model maintainer (third individual) developed
classifier algorithms, identified new features, built processes
for training and testing, deployed AI models, and performed
model maintenance at regular intervals (weekly/monthly).

Model maintenance and retraining is continuous and inde-
terminate in length as the model maintainer continues to add
new samples to the training set. This is especially true in cyber
defense where attacks are constantly evolving. The model
improvement process happens in 3 phases. First, the maintainer
must find incorrect predictions and edge cases, conducted
through a case by case review. Cases can be identified by
supporting roles and analysts or through the maintainer’s
own queries and analysis. Next, the model maintainer must
judge if particular samples are benign or malicious, sometimes
redoing incident analysis and collaborating with others to
reach a conclusion. Like the analysts, the model maintainer
relies on contextual information about the observation/case.
This contextual information is extraneous to the model itself.
This could include the actual artifact (email, PDF, etc.) and
summary data from supporting systems (e.g., Splunk) but
varies by case. Last, the model maintainer must decide if the
case is relevant to improving the model and if it should be
added to the training set, doing error analysis, and updating
model parameters.

2) Model goal and health metrics: The goal of the Al
model, and thus of the model maintainers, is to detect threats
reliably and consistently. Complete detection is not realistic

given the dynamic, ever-changing nature of cyber threats and
the static nature of most ML models. Despite this goal of
deception by malware authors, there are some quantifiable met-
rics that are used to help gauge model performance — namely,
model confidence should increase and incorrect classifications
should trend to zero. Incremental improvements over multiple
iterations of the model is desired. This is achieved by adding
new observations that train the model to detect new and unique
threats. The model itself is meant to assist a human in making
a judgment about a given observation. Thus, two effectiveness
metrics are linked to analyst interaction. The model should
indicate when the model has low confidence in a prediction to
draw human attention, and the tool should monitor how often
analysts look at the explanations as a potential indicator of
usefulness.

3) Key aspects of the model and its outputs: The following
points are key aspects of the model such that it can meet the
decision making needs of both analysts and model maintainers.
Note that these model characteristics and outputs apply both to
individual observations (as seen in the analyst workflow) and
at the overall model level (as seen in the model maintainer
role).

Confidence / Certainty of prediction: This is perhaps
the most important piece of information beyond the prediction
itself for the analyst and model maintainer to judge the output
of the model. All participants noted this was missing from
the current explainability tool and that it would be difficult to
critically evaluate the model output without it.

Classification accuracy: Was the model correct? Accuracy
requires knowledge of ground truth (currently determined by a
human retroactively) but could be a later addition by a human
user to help evaluate model performance.

Feature filters: The version of the xAI tool we tested
included the top 10 features that contributed to the model
prediction. However, the top 10 features only show a small
portion of the values that contribute to the overall prediction.
It may be helpful to have the option to see all features (or
at least know the total number of features used in a given
instance) or a user-constrained set of features such that they
have appropriate framing for the judgment.

Total values for benign/malicious/overall: The top 10
shortlist of features can be somewhat confusing. Analysts are
expected to evaluate the prediction against numeric outputs of
the model, but due to the number of features it is unrealistic to
show all features and feature values. Alternatively, the model
could show the total values for benign and malicious-predicting
features and the net value to share with the analyst how
“close” the prediction was to the center. The total magnitude
in either direction would help analysts understand how close
the prediction was to “uncertain”.

Feature definitions: Currently, feature names are some-
what obscure if the user does not have knowledge of the
model’s architecture and function. For instance, the feature
name “‘email_to_domain_other” is somewhat easy to parse as
“domain” is ambiguous referring to either internal or exter-
nal, whereas “pdf_text_keyword_view” is more challenging to
decipher with multiple potential meanings. Model maintainers
have this knowledge, but analysts may not. It is important to
give this meaning to a user such that they can properly interpret



it and make judgments. Features that are useful for machine
learning may not have semantic meaning to a human.

Raw feature values (pre-normalization): These data
would indicate feature-specific numbers, which may not be
useful in all contexts. Not all users said this would be impor-
tant, especially if the user is not familiar with the distribution
of each feature.

Sparkline of the distribution: This small visual would
show where the observation falls in the distribution for that
feature. This addition could complement the raw values as
contextual information to help decision making.

Global feature importance: This would be the same set
of numerical values for the set of features included in the
model. Global feature importance measures the importance
of the feature for the entire model. It indicates how much
impact that one feature, out of hundreds, has on a classifi-
cation outcome. Building on the previous example, perhaps
the feature checking whether email domain is internal versus
external would be a significant contributor to a classification
outcome in this model checking for malicious emails. The
global feature importance would not change observation-to-
observation unless or until the model is retrained.

Class feature importance: This is different for each obser-
vation. Local feature importance measures the contribution of
the feature for that specific observation. For instance, obser-
vation k was run through the model, where the observation
is an email that has an attached image. In this instance it
is possible for “pdfstructure_image_dimensions_len” to be a
bigger contributor to the prediction (model outcome) than
average or than other observations. The set of numerical values
for the set of features used in this observation would vary per
observation.

Information that triggered the feature value (context):
For instance, if a particular feature strongly contributes to
the prediction of “malicious” the feature itself might not give
enough information for the analyst to judge the outcome. The
analyst may want to know what exactly caused the feature to
produce its result. This information is not currently included
in or accessible through the explainability tool. Currently, ana-
lysts must pivot to the actual observation and its artifacts (e.g.
email, attachments, etc.) to find this information. Reducing the
need to pivot between tools would save the analyst time while
also increasing confidence in the tool.

4) Cross-cutting use cases for xAl: Based on statements
from participants, the following examples demonstrate how
the xAI tool might be used in both the analyst and model
maintainer contexts.

1) Evaluating residuals: Being able to see and explore
the residuals would help in determining if new fea-
tures are needed.

2)  Hypothesizing new features: Being able to see the
model from a higher level; knowing what features are
already included and what their respective coverage is
would help in hypothesizing if/which features should
be added to the model.

3) Finding similar examples: It is helpful to be able
to evaluate an observation against similar records.
Helping an analyst or model maintainer identify those

observations and pivot from the tool would help
improve this comparison process.

4)  Specialized/custom queries: Analysts and especially
model maintainers expressed interest in being able to
view multiple observations and control those outputs
using specialized or custom queries.

5) Investigate specific aspects of an observation: It
would be helpful to identify an aspect of the expla-
nation to draw the analysts’ attention to something
specific. For instance, if a feature indicates that there
is something present (or missing) in the email or
PDF that indicates a potentially malicious artifact,
providing that information (i.e., what is the actual
evidence observed by the model) to the analyst would
improve their confidence and efficiency in evaluating
the classifier output.

5) Other notable points from the study campaign: Another
finding was that participants from all three studies indicated a
trust dynamic that might not match how we are thinking about
the problem. The main user who performs model maintenance
indicated more trust in the analyst’s decision than the model,
but our studies revealed that the analysts are likely to agree
with Al-driven predictions. This creates a strange paradox
of trust in these settings, both between humans and between
humans and AL

We found that the explainability interface has low gener-
alizability to other models and processes within cybersecurity
operations, but the same key aspects we identified may apply
in xAI design. Other Al models are employed, but they are
commercial models embedded in purchased tools and are
not within the control of model maintainers to train and
prune. Practically speaking, there are many (raw and meta)
data associated with events that analysts evaluate, and we
noted challenges in the evaluation and training processes that
could be addressed without Al or explainability. For instance,
when viewing an event flagged by a classifier, analysts are
interested in identifying what portions of a PDF caused the
classification. However, this is not immediately obvious, and
the existing tool/platform does not tie back to the original PDF
but rather simply provides a list of features. Moreover, features
in the model that contribute to “maliciousness” do not provide
evidence in the same window, and the analyst is forced to pivot
in order to properly evaluate the feature and corresponding
information that triggered it. These small improvements in us-
ability would help by improving the confidence and efficiency
of incident response analysts.

V. CONCLUSIONS

While conducting a study aimed to understand benefits
of XAl tools in cybersecurity operations, we learned that
analysts seemingly trust the output of the Al model within the
context of their current tool set and do not explore provided
explanations. Rather, existing tools are used to validate the
output of Al models. In this context, the output from the Al
classification model was embedded in cybersecurity analysts’
main workflow while the new xAl tool was not.

We identified considerations that researchers and develop-
ers can use in current processes to design and target better x Al
tools for more successful technology transfer. Additionally,



examining real-time, non-intrusive data from instrumented
back-end data collection is a great means to understand if and
how end users are using a given tool. Ultimately, considering
the end users and their contexts early in the design process
reduces risks and impacts of unidentified challenges.
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APPENDIX: FOLLOW-ON INTERVIEW QUESTIONS

1)

Please describe your job role(s) as it pertains to model
maintenance.

2)  What is your primary goal when performing model
maintenance? How do you know when you have
achieved it?

3) How do you normally interact with the machine
learning (ML) models / outputs? About how often?

4)  What other machine learning models do you interact
with in this way?

5)  What information would you normally be searching
for when you’re investigating the ML output (e.g.
classifier = malicious/benign)? What questions do
you normally ask in your head as you’re doing this?
——-(Show xAl representation to participant)——-

6)  When you see this presentation, what do you think it
means?

7)  What do you think the features represent? The feature
values?

8)  What do you think the direction of the bar represents?

9)  What do you think the color represents?

10)  Given this visual, can you imagine any difficulties in
obtaining the information you need?
11) Is the amount of information presented appropriate

for your needs in evaluating the model output as a
model maintainer? If not, please describe.



