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Abstract—To enhance the acceptance of connected autonomous
vehicles (CAVs) and facilitate designs to protect people’s privacy,
it is essential to evaluate how people perceive the data collection
and use inside and outside the CAVs and investigate effective ways
to help them make informed privacy decisions. We conducted an
online survey (N = 381) examining participants’ utility-privacy
tradeoff and data-sharing decisions in different CAV scenarios.
Interventions that may encourage safer data-sharing decisions
were also evaluated relative to a control. Results showed that the
feedback intervention was effective in enhancing participants’
knowledge of possible inferences of personal information in the
CAV scenarios. Consequently, it helped participants make more
conservative data-sharing decisions. We also measured partici-
pants’ prior experience with connectivity and driver-assistance
technologies and obtained its influence on their privacy decisions.
We discuss the implications of the results for usable privacy
design for CAVs.

I. INTRODUCTION

Connected Autonomous Vehicles (CAVs) are vehicles that
can communicate with other systems outside of the vehicle
and have self-driving capabilities [70]. CAVs are currently
being developed and expected to be applied in the future [51],
[52]. In order to support its autonomy without direct driver
input, CAVs use wireless networks and sensors inside and
outside the vehicle to obtain relevant traffic and other vital
information for various use scenarios. For example, CAVs
need to continuously collect 2D or 3D photos of the road
scene to ensure driving safety [43]. Other use scenarios, such
as authentication with face or speech recognition, require the
collection and use of drivers’ photos or voice data [42].

On the one hand, those data collection and use have
great potential to enable CAVs to reduce traffic accidents,
increase the efficiency of transportation systems, and improve
driving experience. On the other hand, the ubiquitous data
collection by CAVs raises unique privacy challenges from
various aspects, including the technical side and the legal and
policy perspective. Technical solutions have been proposed
and investigated, such as obfuscation [79]. Countries and
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regions worldwide have also begun to update and improve their
data protection regulations [3]. However, to ensure consumer
acceptance of CAVs, the human aspects of privacy must first
be understood.

With the rapid progress in data mining and machine learn-
ing, various sensor data collected by CAVs can be used and
aggregated to infer potentially sensitive personal information
that previously seemed impossible, such as income level or
health status [48], [86], [92]. Prior work revealed that while
participants were uncomfortable with secondary use scenarios
of CAVs such as recognition and identification, they thought
those scenarios were less unlikely [8]. Thus, people may not be
fully aware of the scope of data collection and use of CAVs.
Consequently, their lack of awareness of the possible infer-
ences can result in underestimated privacy risks of CAVs. Also,
in reality, service providers (e.g., automobile manufacturers)
tend to focus on promoting their services (e.g., automatic auto
ignition) while not being transparent about the sensor data
collection and analysis required for the services (e.g., face
images). Thus, a meaningful approach to inform people of both
utility benefits and privacy risks of CAV services is essential.

Previous studies have shown that participants could be
primed by thinking about their safety and privacy through
answering privacy statements [14], [27], [36], [47], [65]. Yet,
increased privacy awareness does not necessarily ensure con-
servative privacy decisions or actions [1], [64]. Feedback has
been shown to foster participants’ accurate mental models and
informed decisions of privacy [72]. Users’ prior experience
with driver assistance technologies could also modulate their
risk perception of autonomous vehicles [11].

We conducted an online survey on Amazon Mechanical
Turk (MTurk) to understand people’s perceived privacy risks
and privacy decision-making in different CAV scenarios. We
created eight CAV scenarios, in half of which the data col-
lected were intended to improve safety/security and in the
other half of which the data collected were intended to enhance
convenience. For each scenario, participants were prompted for
their 1) perceived balance between utility benefits and privacy
risks; 2) data-sharing decisions; and 3) confidence in the pri-
vacy decisions. There were three between-subject conditions:
control, priming, and feedback. We primed participants on the
privacy implications of data collection by asking them to select
the possible inferences (i.e., unintended but feasible use of
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collected data to infer personal information). Participants in
the feedback condition were further informed of their selection
performance of each possible-inference question.

Compared to the control condition, participants in the two
intervention conditions increased their perceived privacy risks
for the safety/security scenarios where data-sharing seems
mandatory to ensure the functions. However, only participants
in the feedback condition became more conservative in their
data-sharing decisions for the safety/security scenarios. Partic-
ipants with much experience in using connectivity and driver-
assistance functions perceived more benefits and made liberal
privacy decisions for the convenience scenarios in which data
collection is not primarily concerned with driving.

Altogether, our results highlight the importance of equip-
ping users the knowledge of the data collection implications
of CAVs for informed privacy decision-making. In summary,
the contributions of our work include:

1) We perform the first empirical study evaluating people’s
perceived privacy risks and their privacy decision-making
in the CAV context.

2) We identify various factors, such as knowledge and ex-
perience, which can influence people’s perceived privacy
risks and data-sharing decisions of CAVs.

3) We investigate people’s privacy decision-making as a
result of considering both utility benefits and privacy risks
of the collected data.

4) We suggest a scenario-based method for evaluating peo-
ple’s privacy decision-making of CAVs and demonstrate
its feasibility based on the results of an online experiment.

II. RELATED WORK

In this section, we first review research efforts articulat-
ing people’s privacy concerns for CAVs. We next describe
previous work evaluating various factors impacting people’s
privacy decision-making in different computing environments.
We also assess two techniques, priming and feedback, which
have been used to maximize people’s privacy awareness and
inform the consequent privacy decision-making in the contexts
of smartphones and the Internet of Things (IoT). Following a
discussion about the effect of driving technology experience
on people’s perceived risks of CAVs, we summarize how our
work is different from others at the end.

A. Privacy Concerns of CAVs

While there are only few studies evaluating the privacy
of CAVs from users’ perspective, prior work has focused on
users’ privacy concerns [8], [37]. Privacy concerns refer to
people’s privacy-related attitudes, which are shaped by users’
awareness of privacy-relevant information [55], [71], [73].

Bloom et al. [8] conducted an online survey with 302
participants, in which they investigated participants’ concepts
of technological capabilities and general privacy concerns
of CAVs. The participants answered questions in different
scenarios, in which data collection and processing were for
the primary uses (e.g., image capture for navigation) or the
secondary uses (e.g., aggregation and analysis of captured

images for identification, recognition, and tracking of individ-
uals and vehicles). Bloom et al. found that most participants
correctly believed that CAVs have the capability to gather rich
information about the environment and perform analyses of
collected data for primary uses. Nevertheless, less than half of
the participants rated the secondary uses of collected informa-
tion were likely. The participants were more comfortable with
the primary uses than with the secondary uses.

While the data collection and processing for primary uses
are necessary for CAV functions and features, the secondary
uses, such as improved planning of personal travel routes [93],
are essential to fulfill the promise for CAVs. With the rapid
progress on data mining and machine learning, various sensor
data can now be used and aggregated to infer potentially sen-
sitive personal information that previously seemed impossible
such as image processing for fatigue detection [38]. Thus,
a lack of awareness and knowledge of the secondary uses
scenarios can result in an underestimate of the CAV’s privacy
risks, and uninformed privacy decisions.

B. Factors Impacting Privacy Decision-Making

People regulate their privacy through the dynamic processes
of awareness, decision-making, and action selection [4]. Due
to the lack of operational CAV environments, our follow-
ing discussion mainly focuses on prior work about privacy
decision-making in the mobile devices and IoT settings.

1) Privacy Awareness: Privacy awareness refers to peo-
ple’s attention, perception, and cognition of possible risks
throughout the interaction with an application or service that
can gather and process personal data or information [64]. An
effective way to help people make better privacy decisions
seems to make them aware of privacy implications of data
sharing [50], especially the types of personal information that
can be inferred [30], [88]. Lee and Kobsa [47] conducted
an online survey on Amazon MTurk investigating people’s
privacy decision-making in IoT service scenarios. Each partic-
ipant viewed 15 different scenarios and answered their data-
sharing decision for each scenario. Along with each privacy
decision, possible inferences of personal information were
presented for participants to select, helping them understand
some privacy implications of using various IoT services.
The study results showed that participants who were more
aware of the privacy implications of using IoT services made
more conservative and confident decisions. Yet, it is unclear
whether greater awareness of inferable personal information
will impact people’s privacy decisions in the CAV scenarios.

2) Context-dependent privacy decisions: In previous work
on IoT privacy decision-making, contextual factors (e.g., ser-
vice ownership and location) have been systematically varied
in the hypothetical scenarios [5], [19]. The results showed
that participants’ privacy decisions were context dependent.
Howard and Dai [31] examined people’s attitudes toward self-
driving cars in a group-administrated survey setting. Results
from 107 participants showed that individuals were most
attracted to potential safety benefits and the convenience. In
this study, we, therefore, investigated the CAV services for the
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purposes of safety/security and convenience. For each service
purpose, we generated different CAV scenarios by varying
what was collected [19].

3) Utility-privacy tradeoff: In real-world scenarios, people
make decisions by evaluating more than one attribute that
influences their final decision [39], [53]. Given a scenario of
CAV, data-sharing decisions are reached by considering factors
from different aspects. For example, users could decide to
share their location data, knowing that the data will benefit
others suffering from traffic jams, even though there might be
a chance of being identified. Likewise, people could decide not
to share personal information such as photos inside the driving
cockpit, in case a company will utilize the captured behavior
for usage-based automotive insurance [17]. In such cases,
the data-sharing decision represents a result of a weighting
process. Thus, the prior work in which utility benefits or
privacy risks were examined separately only revealed to what
extent the single level of each relevant factor was accepted [8],
but not the tradeoffs in between.

4) Effects of priming and feedback on informed privacy
decisions: Priming refers to the phenomenon that when a
stimulus (e.g., one word or a picture) makes associated in-
formation from the long-term memory (e.g., a concept) more
available to people in the short-term memory. Consequently,
people tend to consider that information into their behavioral
responses. Previous studies showed that participants could be
primed by thinking about their safety and privacy through
answering privacy statements [14], [27], [65].

In the hypothetical IoT scenarios, when participants were
prompted to select possible inference of collected data in
IoT scenarios, a positive correlation was evident between the
level of privacy awareness and the probability to make more
conservative privacy decisions [47]. The results suggested
that participants’ who were knowledgeable about possible
inferences of personal information in IoT scenarios tended to
make conservative decisions about the data sharing decisions.
However, due to lack of a control condition without possible-
inference selection, it is hard to infer the causal relation
between the priming effect of possible-inference selection
on participants’ privacy decisions in hypothetical scenarios.
Moreover, increased privacy awareness does not necessarily
ensure conservative privacy decisions or actions [1], [64].

Feedback has been shown to encourage participants to
develop accurate mental models and make informed privacy
decisions [61], [72]. Tsai et al. [77] studied the impact
of giving feedback on helping people manage their privacy
on a location sharing application. In the study, participants
were informed of whom their data was shared with and
when the data was shared. Their results showed that when
participants got adequate feedback, they were more willing
to share data, and were also more comfortable with sharing
their locations. Considering the difficulty for everyday users to
make possible inferences of collected data of CAVs accurately,
we hypothesized that informing user selection performance
through feedback could facilitate their data-sharing decisions.

5) Decision confidence: Confidence in judgment or de-
cision making refers to an individual’s beliefs about the
goodness of his or her judgments or choices [63]. A higher
level of privacy awareness was positively correlated to making
more confident decision in the IoT settings [47]. However,
it is unclear whether people are confident about their data-
sharing decisions in various CAV scenarios and what factors
may impact their confidence.

C. Influence of Technology Experience

Users’ prior experience with advanced driver assistance sys-
tems (e.g., adaptive cruise control) has a positive effect on their
acceptance of autonomous vehicles. Rödel et al. conducted
an online survey, in which participants viewed five different
scenarios from non-autonomous to full autonomous [68].
For each scenario, participants answered 11 questions about
autonomous vehicles, including acceptance, perceived ease of
use, and attitude. The highly experienced participants showed a
tendency of higher acceptance of autonomous vehicles than the
inexperienced participants. Previous studies have also revealed
that users’ familiarity and experience with driver assistance
systems could modulate their privacy perception [11], [45],
[78].

D. The Present Study: Informed Privacy Decisions of CAVs

To the best of our knowledge, no prior works have tried
to evaluate the privacy awareness of CAVs and the impact
of increased privacy awareness on people’s privacy decisions.
It is also unclear whether people will make informed privacy
decisions of CAVs if they are equipped with knowledge of pri-
vacy implications. Thus, in this work, we examined the effects
of priming and feedback in facilitating privacy awareness of
different CAV data-collection scenarios, and how the privacy
awareness impacted people’s consequent benefit-risk tradeoff,
privacy decision, and decision confidence. We also investigated
the possible moderation due to people’s prior experience with
driver assistance and connectivity technologies.

III. METHOD

We conducted an online survey on Amazon Mechanical
Turk (MTurk). There were three between-subject conditions:
control, priming, and feedback. Due to the current unavailabil-
ity of the cyber-physical operating environment of CAVs, we
conducted the vignette (scenario) survey [21]. Such a method
was found to well approximate real-world behaviors [26]
and has been used in other similar settings, such as IoT
privacy [20], [47]. We created a set of data collection and
use scenarios related to CAV features that enhance driving
safety/security or convenience [58] and presented the same
set in a randomized order at each condition. Each scenario
described the data flow and information usage of a specific
CAV function or feature (e.g., object detection). After viewing
each scenario, participants were prompted for 1) perceived
tradeoff between utility benefits and privacy risks of the data
collection and use; 2) data-sharing decision; and 3) confidence
rating of the data-sharing decision.

3



Fig. 1: Experiment flow chart. “Phase 1”, “Phase 2”, and “Phase 3” boxes show the details in each phase. All three conditions were the same
except that participants answered possible inference questions in the top two conditions (i.e., feedback and priming) at Phase 2. Moreover,
participants in the feedback condition received extra information about their inference-selection performance.

To increase participants’ privacy awareness, we also asked
them to select possible inferences of collected data (i.e.,
unintended but feasible use of the collected data [41]) before
answering the three questions of each scenario in the priming
and feedback conditions. Participants in the feedback condition
were further informed of their inference-selection performance
in the form of the correct answer to the question. In the end,
participants answered a few post-session questions, including
their general privacy attitudes and demographics.

A. Participants

We recruited 600 Amazon MTurk workers in August 2020.
We did not run an a priori power analysis due to a lack of
empirical data on the effect size. Yet, the sample size was
comparable to a similar study in the IoT context (488) [47].
The human intelligent task (HIT) was posted with restrictions
to workers who (1) are at least 18 years old; (2) completed
more than 100 HITs and with a HIT approval rate of at
least 95%; (3) are located in the United States; and (4) are
vehicle owners. This experiment complied with the American
Psychological Association Code of Ethics and was approved
by the institutional review board at the Pennsylvania State
University. Informed consent was obtained from each partici-
pant. The experiment data that were stored and analyzed are
anonymized.

B. Apparatus and Stimuli

The study was performed with participants’ own laptops or
computers. To ensure the readability of the stimuli’s content,
we did not allow participants to continue the study if they
were using any mobile device. To situate participants into
the hypothetical scenarios for the CAVs, we presented a brief
description of CAVs and examples of the CAV features [70] at
the beginning of the study. We also proposed three True/False
questions (i.e., 1. the role of human driver; 2. CAVs’ data
collection and use; 3. the CAV’s definition) evaluating partic-
ipants’ understanding of CAVs based on the description (see
details in Appendix B1).

We defined two scenario categories focusing on two differ-
ent aspects of CAV features: enhancing driving safety/security
and convenience [25]. We referred to the use cases in the IoT

and CAV literature [8], [10], [31], [47], [59] and created four
scenarios in each category describing the collection and use
of various types of data (e.g., audio [69], visual [32], and
biometric [75]). Each safety/security-related scenario focused
on a specific CAV function or feature and listed the relevant
data flow and information usage. At the end of the scenario
description, we also highlighted the intended purpose of data
collection and the core data inference to support the function
or feature. For example, in one safety/security-related scenario,
we described that cameras and sensors outside the CAVs
collect images of other vehicles on the road to predict other
vehicles’ trajectory and plan the CAV’s next action. In the
end of the scenario description, we also made it clear that
such data collection and use were for the purpose of safety
and the trajectory prediction was inferred from the collected
photos (see Appendix A for the scenario descriptions). The
four convenience-related scenarios were constructed in the
same way except that the collected data were mainly for the
convenience purpose, for example, collecting playlists to infer
driver’s music preference for better music recommendation).
To understand the possible learning from priming and feedback
interventions, we proposed the ninth scenario that was about
collecting biometric data for the driver’s state of health [86].

Besides the core inference of the collected data in each
of the safety/security- and convenience-related scenarios, we
specified three to four possible inferences that are unintended
but feasible from the collected data based on the relevant
literature (see Table I). For example, user’s mood can be
inferred from analyzing data such as mood labeled musical
tracks (see S03 in Appendix A), although the core inference
was to provide an appropriate playlist of songs recommended
for the driver [13]. One to two impossible inferences were
also identified, which were infeasible based on the stated data
collection in each scenario (e.g., the use of road scene photos
to infer the driver’s mood, see S02 in Appendix A). Possible
and impossible inferences for all scenarios were reviewed by
two outside experts, one in the field of human factors and
the other in data privacy. Each of them decided individually
if each inference is possible or not for the scenario. They
were instructed to make intuitive decisions based on their
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(a) Question interface

(b) Feedback interface

Fig. 2: Top panel shows the interface of possible-inference selection.
Bottom panel shows the feedback interface after participants submit-
ted an incorrect possible-inference selection.

TABLE I: The possible inferences are generated based on the current
available algorithms and techniques.

Data Type Possible Inference References

Photo of
Drivers

Mood; Demographics;
Non-Driving Activity;
Personality Types; Identity

[6], [34], [62], [83], [85]

Voice
Mood; Demographics;
Physical Status;
Personality Types; Identity

[56], [74], [82], [84]

Photo of
Road Scene

Scene Understanding;
Frequency of Visit;
Whereabouts; Income Level;
Preference

[29], [32], [49]

Photo of
Other Vehicles

Object Detection;
Frequency of Visit;
Whereabouts; Income Level;
Preference

[29], [33], [54], [60], [80]

Photo of the
Environment

Object Detection;
Presence; Demographics;
Identity; Social Relationship

[15], [34], [85]

OBD Data

Vehicle Condition;
Use Pattern; Driving Pattern;
Frequency of Driving;
Personal Settings/Preference

[16], [22], [57]

Playlist
Music Preference;
Personality Type;
Mood; Demographics

[13], [40], [67], [90]

knowledge and expertise, rather than referring to literature
or other materials. The average ratio of agreement (Cohen’s
Kappa) of the coding was 0.68, indicating a moderate agree-
ment level [44]. We resolved the disagreement by replacing
ambiguous inferences with clear ones.

All possible and impossible inferences were listed as options
in the inference-selection questions in a randomized manner
(see Appendix B2 for the details). Participants’ correct an-

swer rate was served as the measure to gauge their privacy
awareness. Considering the difficulty of understanding the
privacy implications of CAV data collection, we proposed the
feedback intervention. After participants selected the possible
inferences (see Figure 2a), we informed them of their selection
performance with a feedback interface (Figure 2b). Partici-
pants’ correctly selected options were highlighted in green,
and incorrectly selected items were in red. Unselected correct
and incorrect options were also highlighted using the same
color coding but in a transparent manner. The correct selection
rate of possible inferences (e.g., 2/3 in Figure 2b) was also
presented on the top right corner of the interface.

C. Procedure

Participants who accepted the HIT on MTurk were directed
to our survey on Qualtrics. After the informed consent, partic-
ipants were randomly assigned to one of the three conditions,
feedback (i.e., inference-selection performance was provided),
priming (i.e., inference selection without feedback), and con-
trol (i.e., without inference selection).

Each condition consisted of three phases (see Figure 1).
In Phase 1, we presented the brief description of the CAVs.
All participants were asked to read the description carefully
and then answered the three True/False questions, which
were presented in a randomized order. In Phase 2, partic-
ipants answered privacy-decision questions across the four
safety/security-related scenarios and the four convenience-
related scenarios. After viewing each scenario description,
participants first selected the utility-privacy tradeoff with a 5-
point scale (“1” means “Benefits are much less than risks”,
“5” means ”Benefits are much greater than risks”). Then, they
made the data-sharing decision (“Yes”, “No”), and evaluated
their confidence rating of the decision with another 5-point
scale (“1” means “Very unconfident”, “5” means “Very con-
fident”). Following each scenario description, participants in
the feedback and priming conditions were also asked to select
the possible inferences of the collected data before answering
the three privacy-decision questions. Moreover, participants
in the feedback condition were informed of their selection
performance (see Figure 2b).

In Phase 2, we also included one scenario to check par-
ticipants’ attention [28]. The attention-check scenario was
presented in the same way as the eight scenarios except that
participants were asked to select specified correct options
for the questions. The attention-check scenario and the eight
scenarios were presented in a randomized order. To understand
the possible learning from priming and feedback, we presented
the health scenario at the end of Phase 2. Participants in all
conditions answered the three privacy-decision questions as in
the control condition.

At Phase 3, we measured participants’ general privacy
attitudes using a subset of Internet users’ information privacy
concerns (IUIPC) questions [55] and asked participants to indi-
cate their agreement on the descriptions using a 5-point Likert
scale (“1” means “Strongly disagree”, “5” means “Strongly
agree”). The general privacy attitude was measured after Phase

5



TABLE II: Summary of survey responses in the experiment.

Measurement Response Description Data Type
CAV

Comprehension
(Phase 1)

Understanding
Level

Correct answer rate of the
three True/False questions
about CAV

Numerical
(0.0∼1.0)

Privacy
Awareness
(Phase 2)

Understanding
Level

Correct answer rate to the
possible inferences question
in a given CAV scenario

Numerical
(0.0∼1.0)

Privacy
Decisions
(Phase 2)

Utility-Privacy
Tradeoff

Perceived balance between
utility benefits and privacy
risks in a given CAV scenario

Ordinal
(5pt-scale)

Privacy
Decision

Intention to use or not to use
a given CAV scenario

Categorical
(binary)

Decision
Confidence

Perceived level of confidence
in making a privacy decision
for a given CAV scenario

Ordinal
(5pt-scale)

Privacy
Attitude

(Phase 3)

Agreement
Level

Level of agreement with
presented statements

Ordinal
(5pt-scale)

Technical
Experience
(Phase 3)

Experience
Level

Level of experience in
driver assistance and
connectivity functions

Categorical
(3-class)

CAV
Acceptance
(Phase 3)

Willingness
to Use CAVs Intention to use CAVs Ordinal

(4pt-scale)

2 to avoid the possible priming effect on the privacy decisions.
Following that, participants’ demographic information such as
gender and age range was collected. We also asked about
participants’ experience in using driver assistance functions
and connectivity functions, respectively [“No, not at all” (1),
“No, rarely” (2), “Yes, sometimes” (3), “Yes, quite often” (4)].
They also indicated their willingness to use CAVs in the future
[“No, never” (1), “No, rarely” (2), “Yes, for some cases” (3),
“Yes, always” (4)].

A pilot study (N = 20) was conducted on Amazon MTurk
to ensure all scenarios, survey questions, and procedures were
understandable to the participants. Based on the results, we
made minor edits to the scenarios and survey questions.

D. Data Exclusion

For the obtained results, we first removed 14 duplicated
responses and 67 participants who completed the survey either
shorter than 5 min or longer than 30 min (TMean: 12.5
min, TMedian: 11 min). Correct answer rate of the three
questions about CAV descriptions at Phase 1 was 88.5%.
Results were similar across the three conditions (feedback:
86.9%, priming: 91.0%, control: 87.9%), χ2

(2) = 1.58, p =
.45, indicating that most participants in all conditions got a
basic understanding of CAVs. To ensure that the results at
Phase 2 were based on participants’ understanding of CAV, we
excluded 60 participants who answered two or more questions
incorrectly at Phase 1. Another 60 participants failed the
attention check and an extra 22 participants chose “prefer not
to answer” to at least one question in Phases 2 and 3, and thus
were excluded. The removal of those data is warranted since
the current study is based on the CAV scenarios with which the
public are not familiar. Thus, participants’ comprehension of
CAV and their attention to the scenario descriptions are critical
to guarantee the data quality. For the remaining participants,
there was an approximately equal number in each condition,
feedback (125), priming (128), and control (128).

E. Analysis Plan

We summarize the survey responses collected through the
abovementioned procedures in Table II. Our statistical analysis
focused on the measures related to privacy decisions at Phase
2. We first measured the correct answer rate of the possible-
inference selection for the priming and feedback conditions.
The correct answer rate was coded as the percentage of
correctly selected options in each scenario, i.e., correctly chose
the possible inferences but not selected the impossible infer-
ences. Correct answer rate for possible-inference selection was
determined for each participant and grouped as a function of 2
(condition: priming, feedback) × 2 (scenario: safety/security,
convenience) for mixed analyses of variance (ANOVA). We
also measured participants’ utility-privacy tradeoff rating,
data-sharing decision, and decision confidence rating of each
scenario across all conditions at Phase 2. The three measures
were determined for each participant and grouped as a function
of 3 (condition: control, priming, feedback) × 2 (scenario:
safety/security, convenience) for mixed ANOVAs.

At Phase 3, we evaluated participants’ general privacy
attitudes, their experience in using connectivity and driver
assistance functions, and their intention to use CAV. Based
on the participants’ responses to the two questions, their
experience was categorized into three levels: little (never or
rarely used either function), some (sometimes or often use
at least one of the functions), much (sometimes or often
use both functions). We conducted ANOVAs as Phase 2 but
added experience (little, some, much) as another measured
between-subject factor for possible-inference selection and
three privacy-decision measures, respectively.

IUIPC is typically used to understand people’s general
privacy attitude toward online information [24]. However, due
to the intervention manipulation at Phase 1 and potential
impacts of people’s prior experience on connectivity and driver
assistance functions, we chose to examine results of the IUIPC
questions as dependent variable (see similar examination
by [18]). Thus, general privacy attitude and willingness to use
CAVs were also determined for each participant and grouped
as a function of 3 (condition: control, priming, feedback) × 2
(scenario: safety/security, convenience) × 3 (experience: little,
some, much) for ANOVAs.

We conducted null-hypothesis testing (α = 0.05) for those
measures. The null hypothesis was rejected when the obtained
results among the conditions were significantly different from
each other. Post-hoc tests with Bonferroni correction were
performed, testing pairwise comparisons with corrected p
values for possible inflation. We report the critical findings
in the following section. Complete descriptive and inferential
statistics are shown in Tables VIII and IV in Appendix C.

IV. RESULTS

Participants’ demographic information is shown in Table III,
and the distributions are similar across conditions. Each par-
ticipant who completed the study was paid $2.00. To decide
the payment, we considered the US federal minimum wage
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TABLE III: Demographic information of participants.

Gender Age Ethnicity Degree Related Major or
Experience on CS or IT

Mileage
(Miles/Year)

Male 54.6% 18-24 3.4% African /
African American 8.7% High 20.7% No 71.4% <2,000 7.3%

Female 45.1% 25-34 36.5% American Indian /
Alaska Native 0.5% College 4.2% Yes 28.1% 2,000 - 5,000 19.2%

Other 0.3% 35-44 31.5% Asian 6.0% Associate 11.5% Unknown 0.5% 5,000 - 10,000 38.3%
45-54 15.0% Caucasian 78.7% Bachelor 43.6% 10,000 - 20,000 27.8%

>55 13.6% Hispanic /
Latino 3.4% Professional degree

(Masters / Ph.D.) 18.9% >20,000 5.0%

Native Hawaii /
Pacific Islander 0.3% Medical 0.8% Unknown 2.4%

More than one race 2.4% Unknown 0.3%

($7.25/hour) and the average survey time ascertained in the
pilot testing (15 min).

A. Possible Inference Selection

Participants’ correct rate for the possible inference selection
was higher for the safety/security scenarios (72.9%) than
for the convenience scenarios (67.2%), F(1,251) = 52.44,
p < .001, η2p = .173, and was higher for the feedback
condition (74.5%) than for the priming condition (65.5%),
F(1,251) = 32.33, p < .001, η2p = .114, resulting in significant
main effects of scenario and condition. Yet, the effect of
feedback was similar across scenarios, F < 1.0, resulting
in a non-significant two-way interaction. Thus, participants
showed more privacy awareness of data collected for the
safety/security purpose than for the convenience purpose.
The extra feedback informed participants’ inference selection,
which was effective in enhancing people’s privacy awareness.

B. Privacy Decisions

Figure 3 shows the average results of three privacy-decision
measures at Phase 2 (utility-privacy tradeoff, data-sharing
decision, and confidence rating) for different scenarios across
the three conditions.

1) Utility-Privacy Tradeoff: As shown in Figure 3a, partici-
pants weighted the safety/security scenarios as more beneficial
(3.70) than the convenience scenarios (3.04), F(1,378) =
264.49, p < .001, η2p = .412. The effect of condition was
mainly revealed by participants in the feedback condition
(3.22) perceiving more risks than those in the control con-
dition (3.56), padj = .007. Results of the priming condition
(3.33) showed no significant differences with the other two
conditions, padjs ≥ .11. Moreover, the difference across
conditions was only evident in the safety/security scenarios,
F(2,378) = 8.67, p < .001, η2p = .042, but not in the
convenience scenarios, F(2,378) = 1.19, p = .61, η2p = .006,
resulting in a significant two-way interaction. Specifically,
participants in the control condition gave higher rating in the
benefit-risk tradeoff than those in the feedback and the priming
conditions, padjs ≤ .026, while there were no significant
differences between the latter two conditions, padj = .415.
While informing possible-selection performance (i.e., feed-
back) was sufficient to increase participants’ privacy awareness
in general, their perceived privacy risks were largely dependent
on the data-collection contexts.

2) Data-sharing Decisions: Participants revealed more in-
tentions to share personal information for the safety/security
scenarios (81.3%) than for the convenience scenarios (57.7%),
resulting a main effect of scenario, F(1,378) = 283.99,
p < .001, η2p = .429. The main effect of condition was
not significant, but there was a significant two-way interaction
of condition × scenario. Participants’ data-sharing decisions
differed across conditions for the safety/security scenarios,
F(2,378) = 6.05, p = .005, η2p = .031, but not for the conve-
nience scenarios, F < 1. Specifically, for the safety/security
scenarios, participants in the feedback condition showed less
intention to share data than those in the control, padj = .002
(see Figure 3b). All the other pairwise comparisons were not
significant, padjs ≥ .116. Thus, although participants in the
feedback condition increased the awareness of privacy risks
in general, they only reduced data-sharing decisions for the
safety/security scenarios.

We averaged the binary data-sharing decision to obtain the
average decision rates of scenario type for each participant in
ANOVA. Considering the possible distribution among the four
scenarios for the same purpose (i.e., safety/security or conve-
nience), we further performed a Generalized Linear Mixed-
Effects Regression (GLMER) with the package lme4 [7] in
R. GLMER allows controlling for the random effect for
participants without data aggregation[9]. The model was the
same with the one used in ANOVA except that we added the
random intercepts of participants and scenarios. The GLMER
result (See Table X in Appendix C) showed the same results
as ANOVA. The main effect of scenario, χ2

(1) = 5.58, p = .018,
and the interaction effect, χ2

(2) = 6.60, p = .037, are significant,
but no main effect of conditions, χ2

(2) = 2.40, p = .302.
3) Confidence Rating: Participants showed similar confi-

dence on their data-sharing decisions regardless of scenar-
ios (convenience: 4.14; safety/security: 4.17) or conditions
(feedback: 4.12; priming: 4.21; control: 4.13). The two-way
interaction of condition × scenario was not significant either.

4) The Health Scenario: At the end of Phase 2 for each
condition, participants viewed the same health scenario and
answered the three privacy-decision questions as in the control
condition. Neither the utility-privacy tradeoff nor the decision
confidence rating showed any significant differences across the
three conditions (see Table IV in Appendix C). However, the
data-sharing decision rates differed across conditions, χ2

(2) =
8.83, p = .012. Specifically, more participants in the feedback
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(a) Utility-Privacy Tradeoff (b) Data-Sharing Decision (c) Confidence Rating

Fig. 3: Results of three privacy-decision measures at Phase 2 as a function of condition (Control, Priming, Feedback) and scenario
(Convenience, Safety/Security). Error bars represent 2 standard errors. Left panel (a) shows that compared to participants in the control
condition, those in the priming and feedback conditions perceived more privacy risk for the safety/security scenarios only. Center panel (b)
shows that only participants in the feedback condition revealed less intention to share the data than those in the control condition for the
safety/security scenarios. Right panel (c) shows no statistically significant difference for the confidence rating measure in general.

condition (59%) showed willingness to share their information
on the health scenario than participants in the control condition
(41%), padj = .009. Pairwise comparisons involved the
priming condition (52%) were not significant, padjs ≥ .238.
Instead of being more conservative on their privacy decisions,
participants in the feedback condition increased their data-
sharing decisions for their biometric information.

C. Effect of Experience on Privacy Decisions

We asked participants’ experience of using connectivity
and driving-assistance functions. We conducted ANOVAs
by adding experience (little, some, much) as the mea-
sured between-subject factor for possible-inference selection,
privacy-decision measures, general privacy attitude, and will-
ingness to use CAVs, respectively. Figure 4 shows the results
of the three privacy-decision measures at Phase 2 (see Ta-
ble VII in Appendix C for descriptive statistics and Table V
for ANOVA results). For the possible-inference selection and
confidence rating on privacy decisions, no term involved
experience was significant, Fs ≤ 2.06. The analyses below
focus on the effect of experience on the other measures.

1) Privacy-utility Tradeoff: Only the two-way interaction
of experience × scenario was significant, F(2,372) = 7.49,
p = .001, η2p = .039. Participants with much experience (3.25)
viewed the convenience scenarios as more beneficial than those
with some (2.96) or little (2.88) experience, F(2,372) = 5.37,
p = .010, η2p = .028, but no difference was evident for the
safety/security scenarios, F < 1 (see Figure 4a).

2) Data-sharing decisions: The main effect of experience
was significant, F(2,372) = 8.44, p = .001, η2p = .043.
Post-hoc pairwise comparisons revealed larger data-sharing
decision rate for participants with much experience (76.2%)
than those with little experience (61.4%), padj < .001. Yet,
there was no significant difference between participants with
some experience and the others, padjs ≥ .078. The two-
way interaction of experience × scenario was also significant,
F(2,372) = 3.94, p = .020, η2p = .021. For the convenience
scenarios, participants with much experience showed more

data-sharing intention (67.0%) than those with some expe-
rience (55.7%), padj = .017, or little experience (47.8%),
padj < .001. For the safety/security scenarios, the difference
was also evident between participants with much experience
(85.4%) and those with little experience (75.1%), padj = .014,
but not other pairwise comparisons, padjs ≥ .192 (see Fig-
ure 4b). The three-way interaction of experience × scenario
× condition was not significant.

3) The Health Scenario: There was only a main effect of
experience on participants’ utility-privacy tradeoff, F(2,372) =
3.25, p = .040, η2p = .017. Specifically, participants with
much experience (3.20) gave higher rating than those with
little experience (2.70), padj = .011, while ratings from those
with some experience (2.85) showed no difference with the
other two groups, padjs ≥ .089.

The main effect of experience was also significant for the
data-sharing decision in the health scenario, χ2

(2) = 29.95, p
= .001. Post-hoc analysis showed larger data-sharing rate for
participants with much experience (68.4%) than those with
some experience (45.8%), padj = .001, or little experience
(34.0%), padj < .001, respectively. Yet, there was no signifi-
cant difference between the latter two groups, padj = .205.

4) General Privacy Attitude: The main effect of experience
was significant (see Table VI in Appendix C). Post-hoc com-
parisons only revealed less privacy concern for participants
with much experience (4.38) than those with little experience
(4.52), padj = .046. Although the main effect of condition
was significant, post-hoc pairwise comparisons revealed non-
significant differences, padjs ≥ .078.

5) Willingness to Use CAVs: Participants’ willingness to
use CAVs did not differ across conditions (see Table VI in
Appendix C), but increased with their experience (little: 2.63;
some: 3.05; much: 3.38). Post-hoc analysis revealed that all
pairwise comparisons were significant, padjs ≤ .004. Yet, the
interaction of condition × experience was not significant.

V. GENERAL DISCUSSION

In an online study with 381 participants, we obtained the
effect of scenario in primary privacy measurements. Increasing
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(a) Utility-Privacy Tradeoff (b) Data-Sharing Decision (c) Confidence Rating

Fig. 4: Results of three privacy-decision measures at Phase 2 as a function of scenario (Convenience, Safety/Security) and experience (Little,
Some, Much). Error bars represent 2 standard errors. Left panel (a) shows that participants with much experience perceived less privacy
risk than the others mainly for the convenience scenarios. Center panel (b) depicts that participants with much experience not only revealed
more intention to share the data than the others for the convenience scenarios, but also were more willing to share the data than those with
little experience for the safety/security scenarios. Right panel (c) shows no statistically significant difference for the confidence rating.

participants’ knowledge of possible inferences from collected
data (i.e., feedback) was effective in increasing their privacy
awareness and helping them make more prudent privacy de-
cisions for safety/security scenarios where data sharing seems
mandatory for CAVs. Participants with much experience in
connectivity and driver-assistance functions perceived more
benefits and made liberal privacy decisions for convenience
scenarios in which data sharing is not critical to driving.

A. Service Scenarios Influence Privacy Decisions

Generally, participants were clear about the possible risks
for data collection in the safety/security scenarios and reck-
oned that the benefits overweighted the risks. Contrary to the
larger data-sharing rate for the safety/security scenarios, only
about half of the participants decided to share data for the con-
venience scenarios. Such a contrast implies that participants
had privacy concerns about CAV data sharing, but their privacy
concerns might give way to the utility when safety/security
is the primary concern. When primed by possible inferences
of collected data (i.e., the priming and feedback conditions),
participants’ perceived privacy risks became more evident for
the safety/security scenarios, indicating that without extra aid
users may underestimate the privacy risks of data sharing or
have misconceptions [2]. These results highlight the impor-
tance of incorporating the privacy protection in mandatory data
collection scenarios for privacy design of CAVs.

Our analysis focused on the purpose of scenarios. In the IoT
settings, prior work identified additional factors that impacted
users’ privacy decisions, including the eternal entities that
requested and processed the data [91], [46], as well as the
data subjects [66]. For the four safety/security scenarios in
our study, half (S06 & S07 in Appendix A) collected data of
the pedestrians, bicyclists, and other vehicles, and the other
half (S05 & S08) collected data of the driver. We did an
exploratory analysis to understand the effects of data subjects
(self vs. others). Data subjects showed the main effect only
for all three privacy decision measures. Participants perceived
higher risk when the collected data were about themselves
(3.53 in benefit-risk tradeoff) than when the data were about

others (3.87), F(1,379) = 63.14, p < .001, η2p = 0.143. They
also became less likely to share the data, F(1,379) = 31.79, p <
.001, η2p = 0.077, and were less confident in their decisions,
F(1,379) = 26.35, p < .001, η2p = 0.065. Thus, the effects of
data subjects seem to be orthogonal to the effects of condition,
scenario, and experience obtained in the main analysis. Future
work should consider more systematic evaluations of those
factors in the CAV context, such as with whom the data is
shared (e.g., automobile manufacturers or third parties).

B. Priming Is Not Sufficient for Informed Privacy Decision-
Making

We included possible-inference selection as the way to
prime participants on the risks of data collection in different
CAV scenarios. After answering possible-inferences ques-
tions, participants gave more weight on privacy risks for the
safety/security scenarios. Nevertheless, such a priming effect
did not show significant impacts on participants’ data-sharing
decisions. The additional feedback on possible-inference selec-
tion performance led to a higher accuracy rate of the possible-
inference questions, suggesting a higher privacy awareness
from the participants. Moreover, participants’ data-sharing
decisions for the safety/security scenarios became more pru-
dent, suggesting that the obtained liberal data-sharing decision
might have been due to their lack of knowledge about the
privacy implications [87], [89]. The lack of knowledge about
privacy implications could also make the possible inferences
open to misinterpretation [47]. Thus, investigations of better
ways to define and present privacy implications of personal
information in the dynamic situations of CAVs are needed.

With feedback, participants selected more correct answers
to possible-inference questions and made informed privacy-
related decisions. Yet, the absence of feedback in the health
scenario, instead, showed an opposite pattern. One possible
explanation is that participants seemed to expect feedback
to remind them of the potential privacy risks and assume
the absence of feedback indicated minimal risks (i.e., false
negative) [87]. Due to the rapid advancements in data mining
and machine learning, such feedback may not be available in
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newly created service scenarios. Thus, it is critical to propose
effective mechanisms for people to maintain what they have
learned from the feedback when it is absent.

Alternatively, the increased data sharing in the health
scenario could imply that the feedback was effective in
calibrating participants’ privacy decisions. Compared to the
convenience scenario (60% in the control condition), the
baseline data-sharing rate of the health scenario (41% in the
control condition) was lower, indicating that participants might
have concerns about sharing sensitive personal information
(i.e., biometric or health information) initially. Participants in
the feedback condition increased their sharing of the health
scenario, implying that the knowledge participants learned
through feedback may alleviate some of their concerns on
sharing sensitive personal information. Thus, the feedback
was not only effective in helping people make more con-
servative privacy decisions for the safety/security scenarios
but also able to help them relieve some concerns of sensitive
information sharing. Of course, this is a post-hoc explanation.
Future researches need to replicate and investigate the possible
calibration effect of feedback more thoroughly.

C. Individual Difference in Privacy Decisions of CAVs

Compared to participants with little experience in using
connectivity and driver-assistance functions, participants with
much experience perceived more benefits for the convenience
scenarios and revealed more willingness to share data in gen-
eral. Instead of priming privacy risks, the possible-inference
questions seemed to gauge participants with much experience
think more about utility, indicating the influence of experience
on individuals’ mental models of privacy decisions [12]. The
same pattern was also reported in Brell et al.’s survey [11].
They found that participants’ prior experience had a significant
influence on the perceived benefits but not that of barriers
(e.g., risks), suggesting that participants with more relevant
experience were likely to be attracted by the obvious utility
but neglect the potential privacy risks.

Such influence of prior experience indicates that it is nec-
essary to understand users’ privacy decisions of CAVs based
on individual differences [81]. We mainly rely on quantitative
measures investigating people’s privacy decision-making in the
CAV context. Future work could consider examining individ-
uals’ mental models [12] of CAV privacy by using qualitative
methods such as open-ended questions [23] or interviews.

D. Uniqueness of the CAV Environment

According to the conclusion from the IoT domain, peo-
ple with more knowledge about possible inferences (score
higher in possible inference selection questions) tended to
be more conservative when making privacy decisions. While
the average possible-inference selection accuracy rate in our
experiment (i.e., CAVs: 69.98%) was lower than that measured
in the IoT contexts (e.g., 72% in [47]), the overall data-sharing
rate in the CAVs (69.49%) was much higher than that in the
IoT (e.g., 39.84% in [47]). Even if considering the convenience
scenarios of CAVs only, the data-sharing rate was still 57.7%.

A possible explanation is that the prior driving experience
makes the users tend to perceive CAVs from the perspective
of vehicles instead of cyber-physical systems, resulting in an
underestimation of potential privacy risks within the CAV
scenarios. Such an effect of experience reveals a unique aspect
of human privacy decision-making in the CAV environment.

E. Limitations

Our participants were MTurk workers who tend to be
young, more educated, and more aware of privacy issues [35].
Although our participants were diverse with regard to demo-
graphics, it may not represent the U.S. population. Our survey
was conducted in the U.S., indicating the obtained results
may not necessarily represent privacy awareness and decision-
making of CAVs in other regions (e.g., EU or East Asia).

Despite the introduction to CAVs at the beginning of our
questionnaire, it was still possible that the concept was obscure
to the participants. The services described were somewhat far
from real application, which could have led to difficulties for
the participants to precisely evaluate and compare the benefit
and potential risks. Our scenarios focused on purposes of
safety/security and convenience, which only covered a small
portion of CAV data-collection contexts. Due to our main
interests in the data collected and processed by CAVs, we
focused on the sensor data, video recording (interior and
exterior), biometric or health data, in current work. Future
studies could consider other service purposes, as well as
the data collection and use beyond the sensor data, such as
data exchange with other vehicles or the transport infrastruc-
ture [42]. We examined participants’ overall privacy attitudes
using IUIPC. Other instruments such as the online privacy
literacy scale (OPLIS) [76] have been validated to understand
inconsistency between people’s privacy perception and privacy
decisions. Thus, future work could apply those instruments to
better understand the possible gap in the CAV context.

F. Practical Implications

Our results imply a few design recommendations for in-
formed privacy decisions in the CAV setting. We found that
participants assessed both benefits and risks in their privacy
evaluation, but their privacy concerns might give way to the
utility depending on the purpose of data collection. Thus, it
is essential to provide cues of data-collection purpose (e.g.,
safety vs. convenience) and explicitly communicate utility ben-
efits and privacy risks such that users can evaluate tradeoffs in
the specific data collection scenario. Informing users of privacy
implications is critical for them to reach a comprehensive
decision about using a service or not in the emerging CAV
context. Thus, we also recommend explaining data collection
implications to afford knowledge acquisition. Users’ prior
experience with driving assistance and connectivity functions
led to increased utility perception and liberal privacy decisions.
Individually tailored control strategies should be considered
during the privacy design of CAVs. The above design recom-
mendations could serve as a baseline for the privacy design of
CAVs, which have to be validated in future work.
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[23] L. T. Gröber, M. Fassl, A. Gupta, and K. Krombholz, “Investigating car
drivers’ information demand after safety and security critical incidents,”
in Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, 2021, pp. 1–17.

[24] T. Groß, “Validity and reliability of the scale internet users’ information
privacy concerns (iuipc),” Proceedings on Privacy Enhancing Technolo-
gies, 2021.

[25] J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected and auto-
mated vehicles: State of the art and future challenges,” Annual Reviews
in Control, vol. 45, pp. 18–40, 2018.

[26] J. Hainmueller, D. Hangartner, and T. Yamamoto, “Validating vignette
and conjoint survey experiments against real-world behavior,” Proceed-
ings of the National Academy of Sciences, vol. 112, no. 8, pp. 2395–
2400, 2015.

[27] M. Harbach, M. Hettig, S. Weber, and M. Smith, “Using personal exam-
ples to improve risk communication for security & privacy decisions,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2014, pp. 2647–2656.

[28] D. J. Hauser and N. Schwarz, “Attentive turkers: Mturk participants per-
form better on online attention checks than do subject pool participants,”
Behavior Research Methods, vol. 48, no. 1, pp. 400–407, 2016.

[29] J. Hays and A. A. Efros, “Im2gps: estimating geographic information
from a single image,” in 2008 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2008, pp. 1–8.

[30] J. Hong, “The privacy landscape of pervasive computing,” IEEE Perva-
sive Computing, vol. 16, no. 3, pp. 40–48, 2017.

[31] D. Howard and D. Dai, “Public perceptions of self-driving cars: The case
of berkeley, california,” in Transportation Research Board 93rd Annual
Meeting, vol. 14, no. 4502, 2014, pp. 1–16.

[32] D. Huber, H. Herman, A. Kelly, P. Rander, and J. Ziglar, “Real-
time photo-realistic visualization of 3d environments for enhanced tele-
operation of vehicles,” in 2009 IEEE 12th International Conference on
Computer Vision Workshops, ICCV Workshops. IEEE, 2009, pp. 1518–
1525.

[33] S. Johnsen and A. Tews, “Real-time object tracking and classification
using a static camera,” in Proceedings of IEEE International Confer-
ence on Robotics and Automation, workshop on People Detection and
Tracking. CiteSeer, 2009.

[34] S.-G. Jung, J. An, H. Kwak, J. Salminen, and B. J. Jansen, “Assessing
the accuracy of four popular face recognition tools for inferring gender,
age, and race,” in Twelfth International AAAI Conference on Web and
Social Media, 2018.

[35] R. Kang, S. Brown, L. Dabbish, and S. Kiesler, “Privacy attitudes of
mechanical turk workers and the us public,” in 10th Symposium On
Usable Privacy and Security (SOUPS), 2014, pp. 37–49.

[36] P. G. Kelley, L. F. Cranor, and N. Sadeh, “Privacy as part of the app
decision-making process,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2013, pp. 3393–3402.

[37] M.-K. Kim, J.-H. Park, J. Oh, W.-S. Lee, and D. Chung, “Identifying
and prioritizing the benefits and concerns of connected and autonomous
vehicles: A comparison of individual and expert perceptions,” Research
in Transportation Business & Management, vol. 32, p. 100438, 2019.

[38] W. Kong, L. Zhou, Y. Wang, J. Zhang, J. Liu, and S. Gao, “A system
of driving fatigue detection based on machine vision and its application
on smart device,” Journal of Sensors, vol. 2015, 2015.

[39] A. Krause and E. Horvitz, “A utility-theoretic approach to privacy and
personalization.” in AAAI, vol. 8, 2008, pp. 1181–1188.

[40] T. Krismayer, M. Schedl, P. Knees, and R. Rabiser, “Predicting user
demographics from music listening information,” Multimedia Tools and
Applications, vol. 78, no. 3, pp. 2897–2920, 2019.
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APPENDIX

A. Scenarios for Privacy Decision-Making

In this appendix, we list the textual descriptions and
factor values of all scenarios (S). Possible and impossible
inferences are used as options in the inference-selection
question of each scenario. S01 to S04 are convenience-
related, and S05 to S08 are safety- or security-related. S09
is for the attention check and S10 is health-related.

S01. When you are driving the connected autonomous
vehicle (CAV), the camera inside the CAV collects your
photos to infer your mood, thereby allowing improvement of
your driving experience along the journey, such as adjusting
the ambient light or inside temperature, for your convenience.

• Purpose: Convenience
• Core Inference:

– Photos ⇒ Your mood
• Possible Inference(s):

– Photos ⇒ Your demographics, such as age, gender,
race

– Photos ⇒ Your non-driving activity, such as sleeping,
reading

– Photos ⇒ Your personality types, such as openness,
agreeableness

– Photos ⇒ Your identity
• Impossible Inference(s):

– Photos ⇒ Your whereabouts

S02. When you are driving the connected autonomous
vehicle (CAV), the camera outside the CAV collects photos of
road scene to improve scene understanding, thereby allowing
advanced analysis and decision making of the CAV, for your
convenience.

• Purpose: Convenience
• Core Inference:

– Photos ⇒ Road scene
• Possible Inference(s):

– Photos ⇒ Your frequency of visits on some location,
such as grocery store, shopping mall

– Photos ⇒ Your whereabouts
– Photos ⇒ Your income level
– Photos ⇒ Your choice preference, such as restaurant,

grocery store
• Impossible Inference(s):

– Photos ⇒ Your mood

S03. When you are driving the connected autonomous
vehicle (CAV), the infotainment system inside the CAV col-
lects your playlists to infer your music preference, thereby
allowing music recommendation, for your convenience.

• Purpose: Convenience
• Core Inference:

– Playlists ⇒ Your music preference
• Possible Inference(s):

– Playlists ⇒ Your demographics, such as age, gender,
race

– Playlists ⇒ Your mood, such as happy, sad
– Playlists ⇒ Your personality types, such as openness,

agreeableness
• Impossible Inference(s):

– Playlists ⇒ Your income level
– Playlists ⇒ Your whereabouts

S04. When you enter the connected autonomous vehicle
(CAV), the camera inside the CAV collects your photos to
infer your identity, thereby loading your personal setting of
the vehicle, for your convenience.

• Purpose: Convenience
• Core Inference:

– Photos ⇒ Your identity
• Possible Inference(s):

– Photos ⇒ Your demographics, such as age, gender,
race

– Photos ⇒ Your mood, such as happy, sad
– Photos ⇒ Your personality types, such as openness,

agreeableness
• Impossible Inference(s):

– Photos ⇒ Your whereabouts
– Photos ⇒ Your accident history

S05. When you enter the connected autonomous vehicle
(CAV), the voice control inside the CAV collects your voice
to infer your identity, thereby authorizing you to control the
vehicle with voice commands, for your security.

• Purpose: Security
• Core Inference:

– Voice ⇒ Your identity
• Possible Inference(s):

– Voice ⇒ Your demographics such as age, gender, race
– Voice ⇒ Your mood, such as happy, sad
– Voice ⇒ Your personality types, such as openness,

agreeableness
– Voice ⇒ Your physical status, such as healthy, ill health

• Impossible Inference(s):
– Voice ⇒ Your income level

S06. When you are driving the connected autonomous
vehicle (CAV), the camera and LiDAR outside the CAV
collects 2D and 3D photos of other vehicles on the road,
thereby allowing prediction of the other vehicles’ trajectory
and plan the CAV’s next action, for your safety.

• Purpose: Safety
• Core Inference:

– Photos ⇒ Other vehicles’ trajectories
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• Possible Inference(s):
– Photos ⇒ Other vehicles’ presence on some location
– Photos ⇒ Other vehicles’ whereabouts
– Photos ⇒ Traffic rule violation of other vehicles, such

as red light violation
– Photos ⇒ Driving Style of other vehicles such as

aggressive driving
• Impossible Inference(s):

– Photos ⇒ Mood of other vehicles’ drivers
S07. When you are driving the connected autonomous ve-

hicle (CAV), the camera and LiDAR outside the CAV collects
2D and 3D photos of the environment to enable object
detection, such as bicyclists or pedestrians, thereby allowing
prediction of object’s trajectory and plan the vehicle’s next
action, for your safety.

• Purpose: Safety
• Core Inference:

– Photos ⇒ Bicyclists or pedestrians’ trajectories
• Possible Inference(s):

– Photos ⇒ Demographics of bicyclists or pedestrians,
such as age, gender, race

– Photos ⇒ bicyclists or pedestrians’ presence on some
location

– Photos ⇒ Social relationship of bicyclists or pedestri-
ans

– Photos ⇒ Identity of bicyclists or pedestrians
• Impossible Inference(s):

– Photo ⇒ Political view of bicyclists or pedestrians

S08. When you are driving the connected autonomous
vehicle (CAV), the CAV collects the on-board diagnostic
data to let you track, monitor or share data of your vehicle
condition with vehicle maintenance, for your safety.

• Purpose: Safety
• Core Inference:

– OBD Data ⇒ Your vehicle condition
• Possible Inference(s):

– OBD Data ⇒ Your CAV use pattern, such as the
number of occupants

– OBD Data ⇒ Your frequency of driving
– OBD Data ⇒ Your driving style, such as aggressive

driving
– OBD Data ⇒ Your personal settings and preference,

such as inside temperature, driving speed
• Impossible Inference(s):

– OBD Data ⇒ Your mood, such as happy, sad
[ATTENTION CHECK]
S09. When you are driving the connected autonomous vehi-

cle (CAV), the camera outside the CAV collects the photos of
other vehicles’ license plateto infer their identities, thereby
allowing to identify aggressive vehicles (or drivers), for your
safety. Please ignore the questions and only select the 2nd
option as your answers for all the following questions in this
scenario. With the help of your responses to this scenario, you
show us that you have read the scenario descriptions.

• Core Inference:

– Photos ⇒ Other vehicles’ identities
• Possible Inference(s):

– Photos ⇒ Other vehicles’ accidental history
– Photos ⇒ Other vehicles’ presence
– Photos ⇒ Other vehicles’ toll violation history

• Impossible Inference(s):
– Photos ⇒ Other drivers’ personality types
– Photos ⇒ Other drivers’ social relationship

[HEALTH SCENARIO]
S10. When you are driving the connected autonomous

vehicle (CAV), the sensors inside the CAV collect biometric
data, such as your body temperature, heart rate, to infer your
physical status, thereby suggesting adjustments of the vehicle
speed, inside temperature and others, for your health.

• Purpose: health
• Core Inference:

– Biometrics ⇒ Your physical status

B. Survey Protocol

Instructions are bold.
1) Phase 1: [QUALIFICATION] Please read the fol-

lowing description of CAVs closely, and answer three
questions.

CAVs are connected vehicles that have self-driving capa-
bilities. The CAVs use reliable low latency wireless network,
such as 5G, and a wide range of sensors, such as internal and
external cameras, Lidar, Radar, Ultrasound sensors, GPS, to
obtain relevant traffic and other information inside and outside
the vehicle. At the same time, the CAVs’ driving control occurs
without direct input from the driver. For example, when a CAV
breaks suddenly, it can transmit a notice to vehicles behind
that enables those vehicles to warn their drivers to stop, or
automatically apply brakes if a crash is imminent.

Q1. CAVs use wireless communication to share information
about safety, the infrastructure, and other road users, such as
pedestrians and bicyclists.
◦ False
◦ True
◦ Prefer not to answer

Q2. Drivers still need to monitor the CAVs all the times in
case there is a fatal error during operation.
◦ False
◦ True
◦ Prefer not to answer

Q3. CAV is a term used to describe vehicles that are both
connected and automated.
◦ False
◦ True
◦ Prefer not to answer
2) Phase 2: Suppose that you are driving one of the

CAVs. Next, we will present ten different service scenarios
of the CAVs. For each scenario, please 1) read the
description carefully (we set a minimum viewing time for
the scenario description); 2) then answer a few questions
about it.
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[SCENARIOS 1-10] When you are driving the connected
autonomous vehicle (CAV), the [device or sensor of] the
CAV collects [data] to infer [core inference], thereby [purpose
explanation], for your [purpose].

Q4. Besides the core inference (Photos ⇒ Your mood),
please choose other possible inferences that you believe to
be true based on the collected data (check all that apply):
□ Photos ⇒ Your demographics, such as age, gender, race
□ Photos ⇒ Your non-driving activities, such as sleeping,

reading
□ Photos ⇒ Your personality types, such as openness,

agreeableness
□ Photos ⇒ Your identity
□ Photos ⇒ Your whereabouts
□ Prefer not to answer

[Q4 QUESTION AND OPTIONS ARE BASED ON S01.]
Q5. How do you rate the balance between the utility benefits

and privacy risks in the scenario?
◦ Benefits are much less than risks
◦ Benefits are less than risks
◦ Benefits are almost equal to risks
◦ Benefits are greater than risks
◦ Benefits are much greater than risks
◦ Prefer not to answer

Q6. Would you share the data to use the service described
in the scenario?
◦ No
◦ Yes
◦ Prefer not to answer

Q7. How confident are you in the above data-sharing
decision?
◦ Very unconfident
◦ Unconfident
◦ Neutral
◦ Confident
◦ Very confident
◦ Prefer not to answer
3) Phase 3: This is the post-session questionnaire. First

of all, please answer 11 questions about your own opinions
on privacy issues in general.

[IUIPC]
Q8. Companies seeking information should disclose the way

the data are collected, processed, and used.
◦ Strongly disagree
◦ Disagree
◦ Neither agree nor disagree
◦ Agree
◦ Strongly agree
◦ Prefer not to answer

Q9. A good privacy policy should have a clear and conspic-
uous disclosure.
◦ Strongly disagree
◦ Disagree
◦ Neither agree nor disagree

◦ Agree
◦ Strongly agree
◦ Prefer not to answer

Q10. It is very important to me that I am aware and
knowledgeable about how my personal information will be
used.

◦ Strongly disagree
◦ Disagree
◦ Neither agree nor disagree
◦ Agree
◦ Strongly agree
◦ Prefer not to answer

Q11. It usually bothers me when companies ask me for
personal information.

◦ Strongly disagree
◦ Disagree
◦ Neither agree nor disagree
◦ Agree
◦ Strongly agree
◦ Prefer not to answer

Q12. When companies ask me for personal information, I
sometimes think twice before providing it.

◦ Strongly disagree
◦ Disagree
◦ Neither agree nor disagree
◦ Agree
◦ Strongly agree
◦ Prefer not to answer

Q13. It bothers me to give so many personal information to
so many companies.

◦ Strongly disagree
◦ Disagree
◦ Neither agree nor disagree
◦ Agree
◦ Strongly agree
◦ Prefer not to answer

Q14. I’m concerned that companies are collecting too much
personal information about me.

◦ Strongly disagree
◦ Disagree
◦ Neither agree nor disagree
◦ Agree
◦ Strongly agree
◦ Prefer not to answer

Q15. Online companies should not use personal information
for any purpose unless it has been authorized by the individ-
uals who provided information.

◦ Strongly disagree
◦ Disagree
◦ Neither agree nor disagree
◦ Agree
◦ Strongly agree
◦ Prefer not to answer
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Q16. When people give personal information to an online
company for some reason, the online company should never
use the information for any other reason.

◦ Strongly disagree
◦ Disagree
◦ Neither agree nor disagree
◦ Agree
◦ Strongly agree
◦ Prefer not to answer

Q17. Online companies should never sell the personal
information in their computer databases to other companies.

◦ Strongly disagree
◦ Disagree
◦ Neither agree nor disagree
◦ Agree
◦ Strongly agree
◦ Prefer not to answer

Q18. Online companies should never share personal infor-
mation with other companies unless it has been authorized by
the individuals who provided the information.

◦ Strongly disagree
◦ Disagree
◦ Neither agree nor disagree
◦ Agree
◦ Strongly agree
◦ Prefer not to answer

In the end, please answer questions about your demo-
graphic information and driving related experience.

[DEMOGRAPHICS]
Q19. What’s your gender?
◦ Male
◦ Female
◦ Other
◦ Prefer not to answer

Q20. What’s your age?
◦ 18 - 24
◦ 25 - 34
◦ 35 - 44
◦ 45 - 54
◦ 55 or older
◦ Prefer not to answer

Q21. What’s your ethnicity?
◦ American Indian / Alaska Native
◦ African / African American
◦ Native Hawaii / Pacific Islander
◦ Hispanic / Latino
◦ Caucasian
◦ Asian
◦ More than one race
◦ Other / Unknown
◦ Prefer not to answer

Q22. What is your highest degree you have earned?
◦ No high school degree
◦ High school degree

◦ College degree
◦ Associate degree
◦ Bachelors
◦ Professional degree (masters / Ph.D.)
◦ Medical degree
◦ Prefer not to answer

Q23. Are you majoring in or have a degree or job in com-
puter science, computer engineering, information technology,
or a related field?
◦ No
◦ Yes
◦ Prefer not to answer

[DRIVING EXPERIENCE]
Q24. Do you have a valid driver’s license?
◦ No
◦ Yes
◦ Prefer not to answer

Q25. What is your average mileages per year?
◦ < 2,000 miles
◦ 2,000 - 5,000 miles
◦ 5,000 - 10,000 miles
◦ 10,000 - 20,000 miles
◦ > 20,000 miles
◦ Prefer not to answer

[EXPERIENCE WITH DRIVING ASSISTANCE AND
CONNECTIVITY FUNCTIONS, ACCEPTANCE OF
CAV]

Q26. Have you ever used connectivity functions inside the
vehicles, such as Google Android Auto, Apple CarPlay, GM
OnStar, or Ford SYNC?
◦ No, not at all
◦ No, rarely
◦ Yes, sometimes
◦ Yes, quite often
◦ Prefer not to answer

Q27. Have you ever used driving assistance functions, such
as automatic parking, cruise control or adaptive cruise control
(ACC)?
◦ No, not at all
◦ No, rarely
◦ Yes, sometimes
◦ Yes, quite often
◦ Prefer not to answer

Q28. If CAVs are available in the near future, please indicate
your willingness to use CAVs:
◦ No, never
◦ No, rarely
◦ Yes, for some cases
◦ Yes, for sure
◦ Prefer not to answer

C. Tables

In this appendix, we list the descriptive and inferential
statistics of dependent measures.
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TABLE IV: ANOVA Results for Three Privacy-Decision Measures (Utility-Privacy Tradeoff, Data-Sharing Decision, and
Confidence Rating) at Phase 2 as a Function of Scenario (Safety/Security, Convenience) as a Within-Subject Factor and
Condition (Control, Priming, Feedback) as a Between-Subject Factor

Scenario Effect Utility-Privacy Tradeoff Data-Sharing Decision Confidence Rating
F p η2p F p η2p F p η2p

Safety/Security
& Convenience

Scenario (1, 378) 264.49 <.001 .412 283.99 <.001 .429 1.15 .284 .003
Condition (2, 378) 4.93 .008 .025 2.46 .086 .013 <1.0

Scenario × Condition (2, 378) 5.05 .007 .026 3.62 .028 .019 2.89 .057 .015
F p η2p χ2 p F p η2p

Health Condition (2, 378) 2.49 .084 .013 8.83 .012 <1.0

TABLE V: ANOVA Results of Privacy-Decision Measures (Utility-Privacy Tradeoff, Data-Sharing Decision, and Confidence
Rating) at Phase 2 with Experience as An Extra Factor

Scenarios Effect Utility-Privacy Tradeoff Data-Sharing Decision Confidence Rating
F p η2p F p η2p F p η2p

Safety/Security
& Convenience

Scenario(1, 372) 276.62 <.001 .426 292.65 <.001 .44 <1.0
Condition(2, 372) 5.28 .005 .028 2.71 .068 .014 1.094 .336 .006
Experience(2, 372) 1.66 .191 .009 8.44 <.001 .043 <1.0

Scenario × Condition(2, 372) 4.43 .013 .023 3.36 .036 .018 2.06 .129 .011
Experience × Scenario(2, 372) 7.49 <.001 .039 3.94 .02 .021 <1.0

Experience × Condition(4, 372) <1.0 <1.0 <1.0
Experience × Scenario
× Condition(4, 372) <1.0 2.33 .055 .024 1.54 .19 .016

F p η2p χ2 p F p η2p

Health
Condition(2, 372) 1.9 .151 .010 8.83 .012 <1.0
Experience(2, 372) 4.7 .01 .025 29.95 <.001 2.74 .066 .014

Condition × Experience(4, 372) 1.1 .366 .011 <1.0 <1.0

TABLE VI: Analyses of Variances Summary of General Privacy Attitude and Willingness to Use CAVs at Phase 3

Effect General Privacy Attitude Willingness to Use CAVs
F p η2p F p η2p

Condition(2, 372) 3.10 .046 .016 <1.0
Experience(2, 372) 3.25 .040 .017 21.72 <.001 .105

Condition × Experience(4, 372) <1.0 <1.0

TABLE VII: Results of Three Privacy-Decision Measures (Utility-Privacy Tradeoff, Data-Sharing Decision, and Confidence
Rating) in Phase 2 as a Function of Condition (Feedback, Priming, and Control), Scenario (Safety/Security, Convenience), and
Experience (Little, Some, Much)

Experience Condition Scenarios Utility-Privacy
Tradeoff

Data-Sharing
Decision

Confidence
Rating

Little(106)

Feedback(40) Convenience 2.76(0.15) 0.48(0.05) 4.28(0.10)
Safety/Security 3.50(0.15) 0.72(0.04) 4.19(0.10)

Priming(34) Convenience 2.82(0.16) 0.40(0.06) 4.22(0.11)
Safety/security 3.67(0.16) 0.72(0.05) 4.27(0.11)

Control(32) Convenience 3.07(0.16) 0.56(0.06) 4.12(0.12)
Safety/security 3.95(0.17) 0.81(0.05) 4.09(0.11)

Some(142)

Feedback(38) Convenience 2.89(0.15) 0.54(0.05) 4.01(0.11)
Safety/Security 3.53(0.16) 0.74(0.04) 3.93(0.10)

Priming(46) Convenience 2.93(0.14) 0.53(0.05) 4.27(0.10)
Safety/security 3.71(0.14) 0.83(0.04) 4.23(0.10)

Control(58) Convenience 3.05(0.12) 0.60(0.04) 4.03(0.09)
Safety/security 3.90(0.13) 0.88(0.04) 4.25(0.08)

Much(133)

Feedback(47) Convenience 3.21(0.14) 0.68(0.05) 4.13(0.10)
Safety/Security 3.43(0.14) 0.80(0.04) 4.13(0.09)

Priming(48) Convenience 3.21(0.14) 0.71(0.05) 4.12(0.10)
Safety/security 3.60(0.14) 0.84(0.04) 4.19(0.09)

Control(38) Convenience 3.34(0.15) 0.63(0.05) 4.13(0.11)
Safety/security 4.11(0.16) 0.92(0.04) 4.17(0.10)

Note. The number in the parentheses of the first two columns indicates the number of participants
for each condition. The number in the parentheses of the last three columns shows the standard
errors of corresponding cell.
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TABLE VIII: Results of Three Privacy-Decision Measures in
Phase 2 as a Function of Condition (Feedback, Priming, and
Control) and Scenario (Safety/Security, Convenience)

Condition Scenario Utility-Privacy
Tradeoff

Data-Sharing
Decision

Confidence
Rating

Feedback(125) Convenience 2.97 (0.08) 0.57 (0.03) 4.14 (0.06)
Safety/Security 3.48 (0.09) 0.76 (0.02) 4.09 (0.06)

Priming(128) Convenience 3.01 (0.08) 0.56 (0.03) 4.20 (0.06)
Safety/Security 3.66 (0.08) 0.80 (0.02) 4.23 (0.06)

Control(128) Convenience 3.14 (0.08) 0.60 (0.03) 4.08 (0.06)
Safety/Security 3.97 (0.08) 0.88 (0.02) 4.19 (0.06)

Note. The number in the parentheses of the first column indicates the number of
participants for each condition. The number in the parentheses of the last three
columns shows the standard errors of corresponding cell.

TABLE IX: Result of Three Privacy-Decision Measures of
Health Scenario

Condition Utility-Privacy
Tradeoff

Data-Sharing
Decision

Confidence
Rating

Feedback(125) 3.06 (0.11) 0.59 (0.04) 4.03 (0.09)
Priming(128) 2.98 (0.12) 0.52 (0.04) 4.15 (0.08)
Control(128) 2.71 (0.12) 0.41 (0.04) 4.06 (0.08)

Note. The number in the parentheses of the first column indicates
the number of participants for each condition. The number in the
parentheses of the last three columns shows the standard errors
of corresponding cell.

TABLE X: Results of Generalized Linear Mixed-Effects Re-
gression on Data-Sharing Decision.

Effect df χ2 p
Scenario 1 5.58 .018

Condition 2 2.40 .302
Scenario × Condition 2 6.60 .037
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