Vision: “AccessFormer’”: Feedback-Driven Access
Control Policy Generation Framework

Sakuna Harinda Jayasundara
University of Auckland
sjay950@aucklanduni.ac.nz

Abstract—Access control failures can cause data breaches,
putting entire organizations at risk of financial loss and reputation
damage. One of the main reasons for such failures is the
mistakes made by system administrators when they manually
generate low-level access control policies directly from high-
level requirement specifications. Therefore, to help administrators
in that policy generation process, previous research proposed
graphical policy authoring tools and automated policy generation
frameworks. However, in reality, those tools and frameworks
are neither usable nor reliable enough to help administrators
generate access control policies accurately while avoiding access
control failures. Therefore, as a solution, in this paper, we
present “AccessFormer”, a novel policy generation framework
that improves both the usability and reliability of access control
policy generation. Through the proposed framework, on the
one hand, we improve the reliability of policy generation by
utilizing Language Models (LMs) to generate, verify, and refine
access control policies by incorporating the system’s as well as
administrator’s feedback. On the other hand, we also improve
the usability of the policy generation by proposing a usable policy
authoring interface designed to help administrators understand
policy generation mistakes and accurately provide feedback.

I. INTRODUCTION

In June 2023, Microsoft Al (Artificial I ntelligence) re-
searchers published a GitHub repository, allowing users to
download open-source Al models and code for image recogni-
tion using an Azure storage URL (Uniform Resource Locator)
[1]. However, instead of allowing users only to download
the source code and Al models in a specific s torage bucket,
the storage account administrator (the administrator can be a
researcher or a system administrator) has accidentally given
“full access” to the entire storage account through that URL
[1]. As aresult, 38 terabytes of sensitive information, including
usernames and passwords to Microsoft services stored in the
storage account, were leaked to the general public [1].

To avoid such incidents due to mistakes by system ad-
ministrators, previous research first proposed graphical policy
authoring tools [2]-[7] to guide administrators write access
control policies manually even without knowledge of access
control models, languages, or syntax [8]. However, the lack of
usability of the existing graphical policy authoring tools makes
it challenging for administrators to write policies accurately,

Symposium on Usable Security and Privacy (USEC) 2024

26 February 2024, San Diego, CA, USA

ISBN 979-8-9894372-5-2
https://dx.doi.org/10.14722/usec.2024.23067
www.ndss-symposium.org, https://www.usablesecurity.net/USEC/

Nalin Asanka Gamagedara Arachchilage
University of Auckland
nalin.arachchilage @auckland.ac.nz

Giovanni Russello
University of Auckland
g.russello@auckland.ac.nz

resulting in access control failures [9], [10]. For example,
in their user study, Brostoff et al. found that inexperienced
administrators make mistakes when writing policies using
their policy authoring tool, because administrators did not
understand its features described in technical language [10].

Nevertheless, even if the usability of those tools is im-
proved, administrators still have to extract policies from the
high-level requirement specification documents and write them
in the policy authoring tool manually to generate low-level
access control configurations [11]. While doing that, they
might make mistakes due to misinterpretations of those high-
level policies [10]-[12], resulting in incorrect access control
configurations that could lead to data breaches [1]. Therefore,
as a solution, previous research then proposed fully automated
policy generation frameworks attempting to remove adminis-
trator almost entirely from access control policy generation
[11], [13]-[19]. Those frameworks process high-level natural
language (NL) requirement specification documents [11] and
translate containing sentences into machine-executable poli-
cies using machine learning (ML)/natural language processing
(NLP) techniques without human feedback [20]. However,
the existing automated policy generation frameworks are far
from being 100% accurate to use without sufficient human
feedback [21], [22] (i.e., lack of reliability). For example, the
highest reported F1 score (the harmonic mean of the precision
and recall [23]) in automated access control policy generation
so far is 0.72 [13], indicating that the existing automated
policy generation frameworks also make incorrect predictions,
resulting in incorrect access control policies.

Therefore, to help administrators generate access control
policies more accurately by improving both the usability and
reliability of the access control policy generation process (i.e.,
by addressing the usability-security trade-off), in this paper, we
introduce “AccessFormer”, a feedback-driven access control
policy generation framework. To improve the reliability of
access control policy generation, we first propose a design for
a novel policy generation pipeline (Section III-A), leveraging
recent advancements in transformer-based Language Models
(LMs) and Large LMs (LLMs) [24]-[27]. It generates poli-
cies from high-level requirement specifications accurately by
incorporating the system’s and administrator’s feedback based
on an automatic policy verification technique [28], [29], which
is lacking in existing literature [18], [30]. Then, allowing the
administrator to accurately understand the system feedback
and provide their feedback while improving the usability of
policy generation, we provide design guidelines for developing
a usable policy authoring interface (Section III-B).

The rest of this paper is organized as follows. Section II
presents a brief overview of related works, highlighting the
research gap. To address that research gap, in Section III, we
describe our proposed framework and how its elements can be
incorporated to design a usable policy authoring tool. Finally,
in Section IV, we summarize the work presented and conclude
with an outlook on future works.

II. RELATED WORKS

Access control failures due to accidental mistakes made
by system administrators can result in data breaches [12],
[31]. Therefore, to avoid such access control failures, previous
research has proposed tools and frameworks to help the
administrator correctly generate access control policies from
high-level requirement specifications by following two main
approaches. They are graphical policy authoring [2], [6],
[10], [32]-[34], and automated policy generation [11], [13],
[14], [16], [17], [20], [35]-[38].

Graphical policy authoring tools provide a graphical user
interface (GUI) to guide administrators in writing policies
manually via text editors [8], [32], templates [33], [39] or
access matrices [2], [34]. However, the lack of usability of
those tools makes it difficult for system administrators to write
accurate access control policies without human errors [9]. For
example, most of the existing graphical policy authoring inter-
faces are not easily explainable to administrators [9], [10]. As
a result, administrators often misinterpret their functionalities
and write incorrect access control policies, causing access
control failures that lead to data breaches [2], [3], [10].

On the other hand, automated policy generation frame-
works use ML/NLP techniques to generate policies from high-
level requirement specifications automatically with almost no
human involvement [11], [16], [17], [19], according to 4 main
steps: (1) pre-processing [16], [17], [35], (2) natural language
access control policy (NLACP) identification [13], [16], [20],
(3) policy component extraction [13], [16], [18], [19], [40], and
(4) policy transformation [41]-[43]. However, the techniques
used to perform the above steps are often less accurate due
to lack of domain adaptation [44] and due to their inability to
handle complex and ambiguous NLACPs [15], [41], [42], [45],
resulting in incorrect access control policies in the end (i.e.,
lack of reliability). When such incorrect policies are applied
to the system without even verifying or refining them, access
control failures can occur, leading to data breaches [18].

Therefore, to improve the usability and reliability of the
access control policy generation process, in this paper, we pro-
pose “AccessFormer”, a novel access control policy generation
framework that generates, verifies, and refines access control
policies by incorporating feedback mechanisms.

III. FRAMEWORK OVERVIEW

The proposed framework aims to improve the usability
and reliability of the access control policy generation process,
by allowing administrators to generate access control policies
from high-level access requirements accurately. To do that,
we propose a novel policy generation pipeline and a policy
authoring interface, as highlighted in Fig. 1. According to Fig.
1, the policy generation process starts when the administrator
provides a high-level NL requirement specification document

Policy Authoring Interface

>l
£
i H Learnability ‘ l Memorability ‘ l Errors l Efficiency Subjective satisfaction
% : System Administrator
P
g
S
2
-
2 |
R
L
System feedback
/| Step 1: Pre-processing Y Step 7: Feedback Step 8: Policy refinement and re-
J ! Generation training with human feedback
E i | Step2: Access control policy | ! 1
S | | | identification !
2 ' f Incorrectly generated policy @ Refined policy
CIRE g
& | i | Step3: Access control rule v
@ | 1 | decision identification | @ [Siep6: Generatcd | © Comecty generated)
2 ' policy verification policy
B, | | | Step4: Access control policy !
£ | | | component/rule extraction '
— ' E @ Re-training
H

Step 5: Access control policy
\ | transformation g . . N
: ./ Policy Generation Pipeline

<«— Data Flow —

Fig. 1: Proposed access control policy generation framework

as input to the policy generation pipeline through the interface.
Once the document is provided, it will first be pre-processed.
Then, NLACPs from the pre-processed document will be
identified in Step 2, and the rules of identified NLACPs
will be classified according to their access decision (i.e.,
allow or deny) in Step 3. After the above classification steps,
we propose extracting necessary information such as policy
components (i.e., users, actions, resources, purposes, and con-
ditions)/access control rules from the NLACPs in Step 4, and
transforming them into machine-executable format in Step 5.

However, the automated policy generation might not be
accurate every time [18], [21]. It can generate incorrect poli-
cies, either due to the inherent complexities and ambiguities
of unconstrained NLACPs [14], [43] or due to the false
positives and false negatives of the NLP/ML models used
to generate policies [14], [18], [22]. Therefore, we propose
identifying such incorrectly generated policies (i.e., policies
that do not match the high-level requirements) via an automatic
verification mechanism [28], [29] in Step 6. Then, identified
incorrect policies will be returned to the administrator with
automatically generated feedback in Step 7, expecting the
administrator’s expertise to refine them. In that case, since
administrators are also involved in ensuring the correctness
of the policies by providing feedback, it will improve the
reliability of the generated policies [18].

However, that feedback should be presented to system
administrators in an easily explainable way by incorporating
explainable security (XSec) concepts [46]. At the same time,
administrators should be able to provide their feedback to
refine incorrect policies without making human errors. There-
fore, while improving the usability of policy generation, we
propose designing a usable graphical policy authoring inter-
face according to Nielsen’s five usability quality components:
memorability, efficiency, learnability, errors, and subjective
satisfaction [47]. Finally, we suggest using the administrator’s
feedback collected through the interface to refine the incor-
rectly generated policy and to re-train the policy generation
pipeline in Step 8 to improve the reliability and, in turn,

security of access control policy generation further.

A. Policy Generation Pipeline

The policy generation pipeline is designed to generate
machine-executable access control policies from high-level
requirement specifications written in unconstrained natural
language, according to eight steps shown in Fig. 1.

1) Step l: Pre-processing

2) Step 2: Access control policy identification

3) Step 3: Access control rule decision identification
4) Step 4: Access control component/rule extraction
5) Step 5: Access control policy transformation

6) Step 6: Generated policy verification

7) Step 7: Feedback Generation

8) Step 8: Policy refinement and domain adaptation

1) Step 1: Pre-processing: The input to the policy gen-
eration framework (i.e., high-level requirement specification
documents) often provides details on how information access
is manipulated within the organization and who, under what
circumstances, can access what resource in NL [14]. Those
documents are often unstructured, ambiguous, and contain un-
wanted sentences [11]. Therefore, first, we propose removing
such unwanted sentences, such as titles, using concise grammar
rules, as advised by Slankas et al. [16], [17]. Secondly, we
propose resolving co-references of the retained sentences as
the next stage in the pre-processing step, which is rarely con-
ducted in previous literature [14]. By resolving co-references,
the meaning of the NLACP can be improved. For example,
consider a NLACP saying that, “Nurses are allowed to read
the prescription, but they are not allowed to change it.”. After
resolving co-references, the above NLACP will be modified
as “Nurses are allowed to read the prescription, but nurses
are not allowed to change the prescription.”, resulting in more
meaningful and exclusive rules (i.e., “Nurses are allowed to
read the prescription” and “nurses are not allowed to change
the prescription”) [15]. Then, we suggest performing subword
tokenization, which breaks each sentence into sub-words and
represents them with integers [48] using a technique such as
Byte-Pair Encoding [49]. Ultimately, the NL sentences in high-
level requirement specification documents will be represented
by a set of integer sequences to feed into the LMs for further
processing.

2) Step 2: Access control policy identification: After the
pre-processing, in this step, the tokenized input sentences will
be classified as NLACPs or sentences that do not contain
access control policies (non-NLACPs). Among many tech-
niques used in previous literature, such as Support Vector
Machine (SVM) [17] and k-Nearest Neighbours (k-NN) [16],
a transformer-based LM (BERT [27]), has achieved the highest
policy identification Fl-score of 0.92 [13]. Therefore, we
suggest using transformer-based LMs, such as BERT [27], that
are proven effective in text classification tasks [50] to classify
sentences as NLACP and non-NLACP with high reliability.

3) Step 3: Access control rule decision identification:
After identifying NLACPs, we propose classifying the access
control rules of NLACPs based on their rule decision (i.e.,
rules that allow users to access a resource and rules that prevent
users from accessing a resource) [13]. This step was rarely con-
ducted in the existing automated policy generation frameworks

due to the lack of domain-related data to train ML/NLP models
to identify allow and deny access control rules separately [13],
[18]. Nonetheless, we propose performing this step, as it helps
decide whether or not the generated access control rule should
be applied to the authorization system based on the default
rules. For example, if the authorization system follows the
default-deny principle, deny access control rules do not need
to be added to the system to avoid redundant non-functional
rules [10]. Therefore, similar to step 2, we propose using
transformer-based bi-directional LMs such as BERT [27] to
classify each access control rule of NLACPs into allow or deny
rules [13]. After classifying the input sentences in Steps 2 and
3, access control rules/policy components from the NLACPs
will be extracted in Step 4.

4) Step 4: Access control component/rule extraction:
The high-level requirement specification documents often con-
tain NLACPs written in unconstrained natural language that
are sometimes ambiguous and complex in structure [15],
[43]. Therefore, to extract their access control policy compo-
nents/rules, deep learning-based information extraction tech-
niques were often used in previous literature, such as neural
network-based semantic role labeling (SRL) [13], [44]. By
doing so, Xia et al. [13] were able to achieve the highest
F1 score so far in access control rule extraction, which is
0.72, using a transformer-based SRL model [51]. However,
almost all the deep learning-based access control policy com-
ponent/rule extraction techniques used in previous literature
were not fine-tuned using domain-related datasets [13]-[15],
[44]. As a result, not only those extraction techniques have
failed to extract access control policy components/rules with
higher accuracy, but also they were not able to extract complex
policy components such as purposes and conditions accurately
[13], [14]. Therefore, we suggest utilizing transformer-based
LLMs such as Falcon [26] and LLaMa [52] that show superior
performances in similar tasks, including code generation from
NL [53] to extract access control components/rules from
NLACP, via supervised fine-tuning. To do that, we utilize
the dataset introduced by Slankas et al. [16], which contains
data from real-world high-level requirement specification doc-
uments. Then, we improve the dataset by generating synthetic
data via augmentation techniques (e.g., back translation [13])
and annotating them manually. Using the improved dataset,
LLMs can be adapted to the access control domain by im-
proving the reliability of policy generation [44].

5) Step 5: Access control policy transformation: Even
if the access control policy components are extracted from
NLACPs, they cannot be directly applied to the authorization
system, as they are not in a machine-executable format. There-
fore, as the fifth step, we propose transforming the above infor-
mation into a machine-executable policy in an access control
language such as XACML (eXtensible Access Control Markup
Language) [41], [42], [45] or in an intermediate representation
format such as JSON (JavaScript Object Notation) [54], [55].

6) Step 6: Generated policy verification: Fully automated
policy generation is not always successful as the ML/NLP
techniques used for policy generation are often prone to
false positives and false negatives (due to lack of domain
adaptation [15]) [22]. As a result, the frameworks developed
for automated policy generation might generate incorrect ac-
cess control policies from NLACPs, leading to access control

failures [56]. Furthermore, such incorrect policies will also be
generated due to the complexity or [14], ambiguity [43] of
NLACPs. Therefore, in contrast to existing fully automated
policy generation pipelines [13], [14], [16], [18]-[20], we
propose utilizing the administrator’s feedback on refining such
incorrectly generated policies before adding them to the autho-
rization system to avoid access control failures. To do that, in
Step 6, we suggest identifying incorrectly generated policies
first, through an automatic verification mechanism using a
trained verifier [28], [29]. Based on the verification result (i.e.,
the probability of the generated policy being correct given the
NLACP), incorrectly generated policies will be identified using
a verification probability threshold [28].

7) Step 7: Feedback Generation: Once a generated policy
was identified as incorrect, we then suggest generating au-
tomatic system feedback in Step 7 using techniques such as
reasoning (e.g., Chain-of-Thought [57]), mentioning the iden-
tified mistakes in the written NLACP and suggestions to avoid
them [30]. By doing so, we attempt to make administrators
more cautious when writing NLACPs, leading them to write
more complete and unambiguous NLACPs that can be used to
generate correct access control policies accurately.

8) Step 8: Policy refinement and domain adaptation: As
the last step, we propose allowing administrators to provide
feedback on the incorrectly generated policy based on the sys-
tem feedback. Administrator’s feedback can be a NL sentence
describing why the generated policy was incorrect, such as
missing rules or policy components. It will be used as part of
the input to LLM (i.e., prompt) to generate more accurate pol-
icy iteratively [58] and to re-train the policy generation pipeline
with the unique access requirements of the organization [18],
using techniques such as Reinforcement Learning with Human
Feedback (RLHF) [25] or Direct Preference Optimization
(DPO) [59]. Consequently, the reliability of the policy gen-
eration will improve further [25] as it minimizes the data drift
[60]. For instance, recent research utilized human feedback
via RLHF [25] as well as automatic feedback via iterative
prompting [58] to improve the reliability of domain-specific
LLMs. Therefore, we suggest adopting a similar technique to
fine-tune the policy generation pipeline using the organization-
specific policies with the administrator’s feedback.

Using the proposed policy generation pipeline, we attempt
to improve the reliability of the overall access control policy
generation process: (1) by making the administrator more
cautious when writing NLACPs via system feedback (step 7)
and (2) by refining generated policies and improving the policy
generation pipeline via administrator’s feedback (step 8). How-
ever, even if the system feedback is automatically generated, it
should be presented to administrators in an easily explainable
way to understand the feedback without misinterpreting it [47].
At the same time, administrators should also be allowed to
provide feedback on the incorrectly generated policies to refine
them before adding them to the authorization system. To do
that, we propose designing a usable policy authoring interface,
improving the usability of access control policy generation.

B. Policy Authoring Interface

We propose designing the policy authoring interface ac-
cording to Nielsen’s five usability quality components: memo-

rability, efficiency, learnability, errors, and subjective satisfac-
tion [47] as shown in Fig. 1.

1) Memorability: Memorability measures how easily ad-
ministrators can reestablish their proficiency in using the policy
authoring tool even after not using it for some time [47]. To
achieve that, we propose a minimalistic interface with features,
presented according to XSec [46] in easily understandable
language and familiar concepts that match with real-world
[61], [62]. For example, as shown in Fig. 2(e) in Appendix
A, to navigate through incorrectly generated policies, we used
left (go backward) and right (go forward) arrows as a metaphor
that users might be familiar with [62], [63]. Such familiar
metaphors, as well as the simple and descriptive language used
to describe the functionality of a feature (using tooltips as
in Fig. 2(i)), will help administrators recall how that feature
works, even after not using the tool for some time [47], [62].
We then propose iteratively improving the initial interface
via user studies by utilizing techniques such as Conceptual
Design [64] as advised by Brostoff et al. [10]. Finally, to check
the administrator’s knowledge retention on how the interface
works, we suggest conducting a longitudinal study [47], [65],
which has not been conducted in the existing related literature.

2) Efficiency: Manual policy authoring [8], [10], [33] is a
repetitive and time-consuming process, as administrators have
to repetitively extract NLACPs from high-level requirement
specification documents and write them manually using the
policy authoring tool [11]. Therefore, we propose allowing
administrators to input high-level requirement specification
documents directly instead of engaging in the mentioned
time-consuming process using a file browser, as shown in
Fig. 2(a). As a result, the time administrators spend reading
those documents and extracting policy sentences manually
will be saved, increasing their efficiency [11]. Furthermore,
administrators spend a significant amount of time searching for
permissions of existing users before adding new permissions
to them [34], which are often difficult to find in most policy
authoring tools [2], [34]. Therefore, as a solution, we propose
visualizing such information using a visualization technique
(e.g., access matrix [66]) as shown in Fig. 2(h). Consequently,
administrators can quickly find information about existing
permissions without navigating through multiple windows or
many lines of code, improving their efficiency [2], [34]. Fol-
lowing the same approach, Reeder et al. reduced the average
policy configuration task completion time by 35.3s (40%)
compared to the traditional Windows XPFP interface [2].

3) Learnability: According to Nielsen’s usability quality
components, “Learnability” measures how easy it is to learn
and perform a given policy authoring task for the first time
using the policy authoring tool [47]. Therefore, to improve the
learnability of the policy authoring interface, we first propose
making its features easily explainable by using label names and
tooltips provided in a simple and descriptive way as shown in
Fig, 2(i) in Appendix A. It will guide administrators step-by-
step through the policy generation process, allowing them to
learn the process easily [10], [62]. Brostoff et al. utilized the
mentioned learnability improvement technique to improve their
policy authoring interface by simplifying its label names used
to define its policy configuration features, resulting in higher
learnability [10]. Furthermore, according to Nielsen, allowing
users to understand the current status of a system is another

way of improving the learnability of the system as it bridges
the gulf of evaluation [62], [64]. Therefore, to improve the
learnability of the policy authoring interface as well as the
underlying policy generation process, we then propose utilizing
techniques such as progress bars and a summary of the current
system status [62] to inform users about the ongoing policy
generation as highlighted in Fig. 2(c) and Fig. 2(d).

4) Errors: In the proposed policy generation framework,
human errors can occur either when adding new access control
policies, such as goal errors [34], or when providing feedback
on the incorrectly generated policies without understanding
their errors [30]. For example, suppose administrators attempt
to allow a group in an organization to access a resource without
knowing about its permissions as well as the permissions of
its users. In that case, they might even accidentally allow
a group member to access the resource (i.e., a goal error
[34]), even though that member is already restricted from
accessing it, causing access control failures [3]. Therefore, to
avoid such errors, we propose providing information about
existing permissions in the system saliently and accurately
within the interface using a visualization technique such as
access matrices [2], [34] as shown in Fig. 2(h). By doing so,
since the information required to write new policies is readily
available, policy authoring mistakes due to goal errors will be
reduced [34]. By following the same approach, Reeder et al.
were able to achieve a 27.1% increment in policy configuration
accuracy compared to the Windows XPFP interface [2]. How-
ever, even though some errors can be reduced by providing
information about the existing policies, still the underlying
policy generation pipeline can make errors when translating
high-level requirements, as we pointed out in Section III-A.
In such scenarios, the administrator should be able to clearly
understand those errors and provide accurate feedback to refine
the incorrectly generated policies [30]. To do that, we then pro-
pose presenting the system feedback in an easily explainable
way, according to the XSec concepts [46] as highlighted in
Fig. 2(f), to help administrators correctly understand the error
and provide feedback [47].

5) Subjective satisfaction: Subjective satisfaction refers to
how pleasant the interface is to use by the system admin-
istrators [47]. Therefore, to make the interface pleasant, we
first propose organizing the features of the interface so that
similar features are clustered together [67], as shown in Fig.
2. For example, we divide the interface shown in Fig. 2 into
two portions: the left portion for providing inputs and setting
configurations (highlighted in green) and the right portion
for displaying results (highlighted in yellow). Furthermore,
we present an incorrectly generated policy in a table, clearly
categorizing similar policy components together as highlighted
in Fig. 2(g), improving its readability. As a result, the interface
will become more organized, making it easy for administrators
to find necessary information, leading to higher pleasantness
and higher subjective satisfaction [67]. Secondly, we propose
allowing administrators to provide policies in unconstrained
natural language in contrast to existing policy authoring tools
[10], [41], [42], [45], to improve subjective satisfaction further.
By doing so, since the “naturalness” of the language used to
write policies is improved, administrators will easily be able
to transfer their mental plans into the policy authoring tool,
improving their satisfaction with it [8], [43]. For instance,
as Shi et al. observed, after utilizing a Controlled Natural

Language instead of syntactically strict PERMIS language to
write policies, user study participants preferred the proposed
tool over the traditional PERMIS policy authoring tool [42].

IV. CONCLUSION AND FUTURE WORKS

When system administrators attempt to write machine-
executable access control policies directly from high-level
requirement specifications written by security experts, admin-
istrators sometimes make mistakes [12]. Even though there
are numerous tools and frameworks proposed to help admin-
istrators avoid such mistakes, they either lack usability [2],
[41], [42] or lack reliability [11], [18], [21]. Therefore, to
help administrators correctly generate access control policies
from high-level requirement specifications by improving both
the reliability and usability of traditional policy generation
approaches [13], [16], [20], [41], in this paper, we propose
a novel policy generation framework.

Through the framework, we introduced a novel policy
generation pipeline that was designed to translate high-level
requirement specifications into low-level access control con-
figurations reliably using feedback mechanisms (i.e., system
and administrator). Those feedback mechanisms also improve
the adaptability of the policy generation framework to dif-
ferent and unique access requirements of different types of
organizations, which is lacking in the current policy gen-
eration frameworks [15], [18]. Secondly, we explained how
the elements of the policy generation pipeline shown in Fig.
1 can be incorporated to design a usable policy authoring
interface shown in Fig. 2 according to Nielsen’s usability
quality components [47]. For example, by presenting the
automatically generated system feedback (step 7 in Fig. 1) in
an easily explainable way through XSec, administrators will
be able to easily understand errors and recover from them [30],
[62]. Similarly, we explained how to improve the learnability,
efficiency, memorability, and subjective satisfaction of the
policy generation tool and, in turn, improve its usability.

We designed and developed the initial prototype of the
proposed policy generation framework. As future works, first,
we develop the policy generation pipeline discussed in Sec-
tion III-A using transformer-based LMs/LLMs to improve the
reliability of the policy generation compared to the existing
frameworks [13] in terms of F1 score [13]. Secondly, we
iteratively improve the policy authoring interface by involving
system administrators through participatory design [68]. After
implementing the entire framework (reliable policy genera-
tion pipeline and usable interface according to Nielsen’s five
usability quality components [47] as discussed in Sections
III-A and III-B) through the prototype, its reliability and
usability will be evaluated empirically through a lab study
[2], [41], involving system administrators. Once administrators
interacted with the developed prototype, we will evaluate their
satisfaction with the prototype in the end, according to standard
evaluation instruments (e.g., SUS (System Usability Scale)
[69] and PSSUQ (Post-Study System Usability Questionnaire)
[70]), and think aloud data will be used to evaluate the overall
reliability (i.e., security) of the policy generation.

ACKNOWLEDGMENT

The authors thank MBIE (Ministry of Business, Innovation,
and Employment), New Zealand for funding this research.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

C. Page, “Microsoft ai researchers accidentally exposed
terabytes of internal sensitive data,” Sep 2023. [Online].
Available: https://techcrunch.com/2023/09/18/microsoft-ai-researchers-
accidentally-exposed-terabytes-of-internal-sensitive-data/

R. W. Reeder, L. Bauer, L. F. Cranor, M. K. Reiter, K. Bacon,
K. How, and H. Strong, “Expandable grids for visualizing and authoring
computer security policies,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 2008, pp. 1473-1482.

R. W. Reeder, L. Bauer, L. F. Cranor, M. K. Reiter, and K. Vaniea,
“More than skin deep: measuring effects of the underlying model
on access-control system usability,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2011, pp. 2065—
2074.

C. Morisset and D. Sanchez, “On building a visualisation tool for access
control policies,” in International Conference on Information Systems
Security and Privacy. Springer, 2018, pp. 215-239.

A. Bertard and J.-K. Kopp, “Using sugiyama-styled graphs to directly
manipulate role-based access control configurations,” in International
Conference on Human-Computer Interaction. Springer, 2020, pp. 405—
412.

K. Vaniea, Q. Ni, L. Cranor, and E. Bertino, “Access control policy
analysis and visualization tools for security professionals,” in SOUPS
Workshop (USM), 2008, pp. 7-15.

C. Morisset and D. Sanchez, “Visabac: A tool for visualising abac
policies.” in ICISSP, 2018, pp. 117-126.

B. Stepien, A. Felty, and S. Matwin, “A non-technical user-oriented
display notation for xacml conditions,” in International Conference on
E-Technologies. Springer, 2009, pp. 53-64.

R. W. Reeder, C.-M. Karat, J. Karat, and C. Brodie, “Usability chal-
lenges in security and privacy policy-authoring interfaces,” in IFIP
Conference on Human-Computer Interaction. Springer, 2007, pp. 141-
155.

S. Brostoff, M. A. Sasse, D. Chadwick, J. Cunningham, U. Mbanaso,
and S. Otenko, “‘r-what?’development of a role-based access control
policy-writing tool for e-scientists,” Software: Practice and Experience,
vol. 35, no. 9, pp. 835-856, 2005.

M. Narouei, H. Khanpour, and H. Takabi, “Identification of access
control policy sentences from natural language policy documents,”
in IFIP Annual Conference on Data and Applications Security and
Privacy. Springer, 2017, pp. 82-100.

L. Bauer, L. F. Cranor, R. W. Reeder, M. K. Reiter, and K. Vaniea,
“Real life challenges in access-control management,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
2009, pp. 899-908.

Y. Xia, S. Zhai, Q. Wang, H. Hou, Z. Wu, and Q. Shen, “Automated ex-
traction of abac policies from natural-language documents in healthcare
systems,” in 2022 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM). 1EEE, 2022, pp. 1289-1296.

M. Narouei and H. Takabi, “Automatic top-down role engineering
framework using natural language processing techniques,” in IFIP
International Conference on Information Security Theory and Practice.
Springer, 2015, pp. 137-152.

——, “Towards an automatic top-down role engineering approach using
natural language processing techniques,” in Proceedings of the 20th
ACM Symposium on Access Control Models and Technologies, 2015,
pp. 157-160.

J. Slankas, X. Xiao, L. Williams, and T. Xie, “Relation extraction
for inferring access control rules from natural language artifacts,”
in Proceedings of the 30th annual computer security applications
conference, 2014, pp. 366-375.

J. Slankas and L. Williams, “Access control policy extraction from
unconstrained natural language text,” in 2013 International Conference
on Social Computing. 1EEE, 2013, pp. 435-440.

J. Heaps, R. Krishnan, Y. Huang, J. Niu, and R. Sandhu, “Access control
policy generation from user stories using machine learning,” in IFIP
Annual Conference on Data and Applications Security and Privacy.
Springer, 2021, pp. 171-188.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

M. Alohaly, H. Takabi, and E. Blanco, “Automated extraction of
attributes from natural language attribute-based access control (abac)
policies,” Cybersecurity, vol. 2, no. 1, pp. 1-25, 2019.

X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie, “Automated ex-
traction of security policies from natural-language software documents,”
in Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, 2012, pp. 1-11.

M. Kaur, M. van Eeten, M. Janssen, K. Borgolte, and T. Fiebig, “Human
factors in security research: Lessons learned from 2008-2018,” arXiv
preprint arXiv:2103.13287, 2021.

J. M. Del Alamo, D. S. Guaman, B. Garcia, and A. Diez, “A systematic
mapping study on automated analysis of privacy policies,” Computing,
pp. 1-24, 2022.

Z. C. Lipton, C. Elkan, and B. Naryanaswamy, “Optimal thresholding
of classifiers to maximize fl measure,” in Machine Learning and
Knowledge Discovery in Databases: European Conference, ECML
PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part
Il 14. Springer, 2014, pp. 225-239.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” arXiv preprint
arXiv:2203.02155, 2022.

G. Penedo, Q. Malartic, D. Hesslow, R. Cojocaru, A. Cappelli,
H. Alobeidli, B. Pannier, E. Almazrouei, and J. Launay, “The refined-
web dataset for falcon 1lm: outperforming curated corpora with web
data, and web data only,” arXiv preprint arXiv:2306.01116, 2023.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

A.Ni, S. Iyer, D. Radev, V. Stoyanov, W.-t. Yih, S. Wang, and X. V. Lin,
“Lever: Learning to verify language-to-code generation with execution,”
in International Conference on Machine Learning. PMLR, 2023, pp.
26 106-26 128.

J. Shen, Y. Yin, L. Li, L. Shang, X. Jiang, M. Zhang, and Q. Liu,
“Generate & rank: A multi-task framework for math word problems,”
arXiv preprint arXiv:2109.03034, 2021.

T. Xu, H. M. Naing, L. Lu, and Y. Zhou, “How do system administrators
resolve access-denied issues in the real world?” in Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems, 2017,
pp. 348-361.

M. X. Heiligenstein, “Facebook data breaches: Full
timeline through 2023,” May 2023. [Online]. Available:
https://firewalltimes.com/facebook-data-breach-timeline

B. Stepien, A. Felty, and S. Matwin, “A non-technical xacml target
editor for dynamic access control systems,” in 2014 International
conference on collaboration technologies and systems (CTS). IEEE,
2014, pp. 150-157.

M. Johnson, J. Karat, C.-M. Karat, and K. Grueneberg, “Optimizing
a policy authoring framework for security and privacy policies,” in
Proceedings of the Sixth Symposium on Usable Privacy and Security,
2010, pp. 1-9.

R. A. Maxion and R. W. Reeder, “Improving user-interface depend-
ability through mitigation of human error,” International Journal of
human-computer studies, vol. 63, no. 1-2, pp. 25-50, 2005.

J. Slankas and L. Williams, “Classifying natural language sentences
for policy,” in 2012 IEEE International Symposium on Policies for
Distributed Systems and Networks. 1EEE, 2012, pp. 33-36.

——, “Access control policy identification and extraction from project
documentation,” SCIENCE, vol. 2, no. 3, pp. 145-159, 2013.

M. Alohaly and H. Takabi, “Better privacy indicators: a new approach
to quantification of privacy policies,” in Twelfth Symposium on Usable
Privacy and Security (SOUPS 2016), 2016.

M. Alohaly, H. Takabi, and E. Blanco, “Towards an automated extrac-
tion of abac constraints from natural language policies,” in IFIP Inter-
national Conference on ICT Systems Security and Privacy Protection.
Springer, 2019, pp. 105-119.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

M. Johnson, J. Karat, C.-M. Karat, and K. Grueneberg, “Usable policy
template authoring for iterative policy refinement,” in 2010 IEEE Inter-
national Symposium on Policies for Distributed Systems and Networks.
IEEE, 2010, pp. 18-21.

M. Narouei, H. Khanpour, H. Takabi, N. Parde, and R. Nielsen,
“Towards a top-down policy engineering framework for attribute-based
access control,” in Proceedings of the 22nd ACM on Symposium on
Access Control Models and Technologies, 2017, pp. 103-114.

C. A. Brodie, C.-M. Karat, and J. Karat, “An empirical study of
natural language parsing of privacy policy rules using the sparcle policy
workbench,” in Proceedings of the second symposium on Usable privacy
and security, 2006, pp. 8-19.

L. Shi and D. W. Chadwick, “A controlled natural language interface
for authoring access control policies,” in proceedings of the 2011 ACM
Symposium on Applied Computing, 2011, pp. 1524-1530.

P. Inglesant, M. A. Sasse, D. Chadwick, and L. L. Shi, “Expressions
of expertness: the virtuous circle of natural language for access control
policy specification,” in Proceedings of the 4th symposium on Usable
privacy and security, 2008, pp. 77-88.

M. Narouei, H. Takabi, and R. Nielsen, “Automatic extraction of access
control policies from natural language documents,” IEEE Transactions
on Dependable and Secure Computing, vol. 17, no. 3, pp. 506-517,
2018.

C. Brodie, C.-M. Karat, J. Karat, and J. Feng, “Usable security and
privacy: a case study of developing privacy management tools,” in
Proceedings of the 2005 symposium on Usable privacy and security,
2005, pp. 35-43.

L. Vigano and D. Magazzeni, “Explainable security,” in 2020 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW).
IEEE, 2020, pp. 293-300.

J. Nielsen, Usability engineering. Morgan Kaufmann, 1994.

S. J. Mielke, Z. Alyafeai, E. Salesky, C. Raffel, M. Dey, M. Gallé,
A. Raja, C. Si, W. Y. Lee, B. Sagot er al, “Between words and
characters: a brief history of open-vocabulary modeling and tokenization
in nlp,” arXiv preprint arXiv:2112.10508, 2021.

R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” arXiv preprint arXiv:1508.07909,
2015.

M. Hoang, O. A. Bihorac, and J. Rouces, “Aspect-based sentiment
analysis using bert,” in Proceedings of the 22nd nordic conference on
computational linguistics, 2019, pp. 187-196.

P. Shi and J. Lin, “Simple bert models for relation extraction and
semantic role labeling,” arXiv preprint arXiv:1904.05255, 2019.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Roziere, N. Goyal, E. Hambro, F. Azhar er al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

D. Zan, B. Chen, F. Zhang, D. Lu, B. Wu, B. Guan, W. Yongji, and J.-G.
Lou, “Large language models meet nl2code: A survey,” in Proceedings
of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2023, pp. 7443-7464.

F. Liu, S. Wilson, P. Story, S. Zimmeck, and N. Sadeh, “Towards
automatic classification of privacy policy text,” School of Computer
Science Carnegie Mellon University, 2018.

M. Rosa, J. P. Barraca, A. Zuquete, and N. P. Rocha, “A parser to
support the definition of access control policies and rules using natural
languages,” Journal of Medical Systems, vol. 44, no. 2, pp. 1-12, 2020.

I. F. del Amo, J. A. Erkoyuncu, R. Roy, R. Palmarini, and D. Onouftriou,
“A systematic review of augmented reality content-related techniques
for knowledge transfer in maintenance applications,” Computers in
Industry, vol. 103, pp. 47-71, 2018.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in Neural Information Processing Systems,
vol. 35, pp. 24 824-24 837, 2022.

N. Yoshikawa, M. Skreta, K. Darvish, S. Arellano-Rubach, Z. Ji,
L. Bjgrn Kristensen, A. Z. Li, Y. Zhao, H. Xu, A. Kuramshin et al.,
“Large language models for chemistry robotics,” Autonomous Robots,
pp. 1-30, 2023.

[591

[60]

[61]

[62]
[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and
C. Finn, “Direct preference optimization: Your language model is
secretly a reward model,” arXiv preprint arXiv:2305.18290, 2023.

A. Mallick, K. Hsieh, B. Arzani, and G. Joshi, “Matchmaker: Data drift
mitigation in machine learning for large-scale systems,” Proceedings of
Machine Learning and Systems, vol. 4, pp. 77-94, 2022.

B. Saket, A. Endert, and J. Stasko, “Beyond usability and performance:
A review of user experience-focused evaluations in visualization,” in
Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel
Evaluation Methods for Visualization, 2016, pp. 133-142.

J. Nielsen, “Ten usability heuristics,” 2005.

G. Lakoff and M. Johnson, Metaphors we live by.
Chicago press, 2008.

University of

D. A. Norman, “Some observations on mental models,” in Mental
models. Psychology Press, 2014, pp. 15-22.

J. Kjeldskov, M. B. Skov, and J. Stage, “Does time heal?: a longitudinal
study of usability,” in Proceedings of the Australian Computer-Human
Interaction Conference 2005 (OzCHI’05). Association for Computing
Machinery, 2005.

B. W. Lampson, “Protection,” ACM SIGOPS Operating Systems Review,
vol. 8, no. 1, pp. 18-24, 1974.

P. Balatsoukas, A. Morris, and A. O’Brien, “Designing metadata surro-
gates for search result interfaces of learning object repositories: Linear
versus clustered metadata design.” in ELPUB, 2007, pp. 415-424.

D. Schuler and A. Namioka, Participatory design: Principles and
practices. CRC Press, 1993.

J. Brooke, “Sus: a “quick and dirty’usability,” Usability evaluation in
industry, vol. 189, no. 3, pp. 189-194, 1996.

A. Fruhling and S. Lee, “Assessing the reliability, validity and adapt-
ability of pssuq,” AMCIS 2005 proceedings, p. 378, 2005.

[Online]. Available: https://wave.h20.ai/

APPENDIX A
POLICY AUTHORING INTERFACE

The designed policy authoring interface according to the

guidelines described in Section III-B can be shown as follows.

£, AccessFormer

Write the policy in natural language Natural language access control policy

The doctor nurse can read patient's record... The doctor nurse can read patient's records to prescribe medicine. (e)

Or

@ /I\ Feedback

Severity: Medium (D
Insight: Properly seperate and mention subjects of the policy when writing the policy. Adding

conditions/constraints will improve the policy.
Suaaestion: Subiects can be mentioned as "The doctor and the nurse"

<K 11 DI

Or drag and drop a file here.
Subject Action Resource Condition Purpose

Verification probability threshold

o O o5

Generate the policies Cancel (2)

Generating Progress

doctor read patient's records None prescribe medicine

() Reset table

C ——————————————
() ‘ (o o~ Status of the policy generation system
0} m
Export

(d) C 1 Export as JSON Export as XML
ntrol (High confide e): 0

Control (Low confidence . z i
}o View as an Access Graph EE View as an Access Matrix

Inputs and configurations Results

(h)

Fig. 2: Proposed policy authoring interface created using H20 Wave Framework [71]. (a) High-level requirement specification
document upload or manual policy input. (b) Configurable policy verification threshold that decides when to query the
administrator. (c) Progress bar indicating the current policy generation progress. (d) System status that indicates what is happening
behind the interface. (e) Poorly written access control policy with the error message in red. (f) Feedback from the system as
insights on how to improve the NLACPs related to low-confident machine-executable policies. (g) Area to provide administrator’s
feedback on the incorrectly generated policies identified using the verification probability threshold. (h) Visualize and export all
generated policies in different formats. (i) Tool-tip provided to describe the features.

