
Programmer’s Perception of Sensitive Information in
Code

Xinyao Ma, Ambarish Gurjar, Anesu Chaora, L. Jean Camp
Luddy School of Informatics, Computing, and Engineering,

Indiana University Bloomington
Indiana, USA

maxiny@iu.edu, agurjar@iu.edu, achaora@iu.edu, ljcamp@indiana.edu

Abstract—This study delves into the crucial role of developers
in identifying privacy sensitive information in code. The context
informs the research of diverse global data protection regulations,
such as the General Data Protection Regulation (GDPR) and
the California Consumer Privacy Act (CCPA). It specifically
investigates programmers’ ability to discern the sensitivity level
of data processing in code, a task of growing importance given
the increasing legislative demands for data privacy.

We conducted an online card-sorting experiment to explore
how the participating programmers across a range of expertise
perceive the sensitivity of variable names in code snippets. Our
study evaluates the accuracy, feasibility, and reliability of our
participating programmers in determining what constitutes a
’sensitive’ variable. We further evaluate if there is a consensus
among programmers, how their level of security knowledge
influences any consensus, and whether any consensus or impact of
expertise is consistent across different categories of variables. Our
findings reveal a lack of consistency among participants regarding
the sensitivity of processing different types of data, as indicated
by snippets of code with distinct variable names. There remains
a significant divergence in opinions, particularly among those
with more technical expertise. As technical expertise increases,
consensus decreases across the various categories of sensitive
data. This study not only sheds light on the current state of
programmers’ privacy awareness but also motivates the need for
developing better industry practices and tools for automatically
identifying sensitive data in code.

I. INTRODUCTION

There are myriad requirements for privacy and data pro-
tection. Advances in data protection legislation implement
different requirements in specific domains, such as in the
manipulation of general health data or DNA. There are varying
global requirements for privacy, beginning with the General
Data Protection Regulation. American states have unique
requirements, from the list of variables in the California
Consumer Privacy Act to the limits on biometrics in Illinois,
Texas, and Washington. There are also combinations of these;
for example, New York banned all biometrics in schools for
three years and then extended that ban to facial recognition [1].
As a result, developers may reasonably be expected to be aware
of the potential for privacy issues in code. This study aims to

shed light on these perceptions and how they correlate with
expertise.

Specifically, we explore the degree to which identification
of privacy sensitivity in code is a cognitively feasible task. We
instrument this by asking participants to identify code with
named variables as processing data defined as sensitive by the
GDPR and CCPA. Building on previous usability research,
which has focused on developers as users as well as creators
of technology, we examine the degree to which developers
of differing levels of expertise can identify the sensitivity
of variables according to the CCPA and the GDPR. We
selected variables and code snippets that process data that has
been found to be personally identifiable information (PII) or
privacy sensitive. We examined how programmers perceive the
sensitivity information that is embedded or conveyed in code.
Additionally, we analyzed their awareness of the sensitivity
level for the ten categories of personal information as defined
by the GDPR and CCPA. We conducted an online card-sorting
experiment to assess programmers’ perceptions of variable
name sensitivity under specific conditions. The study aimed
to answer the following questions:

1) Is there a consensus among programmers about what
constitutes ’sensitive’ information?

2) Does security knowledge level affect the awareness
of privacy issues?

3) Is any consensus or the impact of expertise consistent
across different categories of PII?

4) How do human classification patterns differ from that
of Large Language Models?

The ability of participants to correctly and consistently identify
code snippets with privacy-sensitive variables is the measure
we use to address the more specific research questions below,
and inform the questions above. There are four specific hy-
potheses the experiment reported here was designed to address.

H1: Is there agreement among programmers across a wide
range of technical expertise as to which code snippets and
variables have indicators that they are processing sensitive
data?

We report on the accuracy of classification and agree-
ment among participants based on their identification of code
snippets which process clearly named sensitive variables. We
found that participant consensus varies for different kinds of
information.

H2: Are perceptions of sensitivity of data, as measured by
perceptions of variables shown in the context of code snippets,

Symposium on Usable Security and Privacy (USEC) 2024
26 February 2024, San Diego, CA, USA
ISBN 979-8-9894372-5-2
https://dx.doi.org/10.14722/usec.2024.23075
www.ndss-symposium.org, https://www.usablesecurity.net/USEC/

influenced by the technical expertise of the developer?
We compare the agreement and accuracy of participants

sorted by expertise. Developers were evaluated based on their
knowledge. Those who answered all the knowledge questions
incorrectly also fail to identify most PII categories, but they
put more emphasis on Account/Identifier Identifiers. Expertise
is measured using the questions developed by Kelley et al. [2],
[3].

H3: Is the difference in the classification of code more a
function of expertise than an individual variable?

Our results identify the most and least correlated variables.
Accuracy and agreement are reported for the ten data cate-
gories examined in the experiment. We illustrate that these
differences are categorical. Thus, the differences we see can
not reasonably be argued to be a result of the difficulty of
reading the name or identifying the category of a variable, as
these are internally consistent. However, the contrast between
groups with different levels of expertise suggests that these
groups of participants have very different overall perceptions
of sensitivity.

H4: Is the categorization of code snippets similar between
LLMs and human participants?

As Large Language Models have been trained upon human
text and human decision, it is reasonable to assume that their
decisions would align with those of human participants. Should
LLMs accurately identify sensitive code, then the diffusion
of such models has the potential to resolve the cognitive
challenges we have identified here.

Our results indicate that programmers don’t often agree
on the sensitivity of the data being processed, as indicated
by variables embedded in code snippets. We identify here
expertise of knowledge, specifically on participants’ ability to
answer four security questions selected from previous related
literature. Higher levels of expertise decrease, rather than
increase, levels of agreement about the privacy sensitivity of
data as indicated by code snippets. We report these patterns in
terms of expertise and category of information.

While most developers understand that code can hold sen-
sitive data, when asked to evaluate code snippets with clearly
named variables they do not consistently identify those as
being privacy-sensitive. Experts and non-experts differ on what
is sensitive: non-experts generally agree more with each other,
while experts disagree more, especially on which variables are
most sensitive. These disagreements are even more pronounced
when different categories of sensitive data are compared. After
we detail our experiment, we provide a summary of the
performance of artificial intelligence when given the same
task. For this comparison, we queried the LLMs on snippets
with variables clearly defined as sensitive by the GDPR or
CCPA. In tWe note that there are also systematic failures in
LLMs in identifying sensitive information embedded in code.
We can conclude that querying an LLM about the sensitivity
of a code snippet is an unreliable way forward. We close
with possible paths forward to support developers, and those
who rely on their code, in evaluating the risks of processing
sensitive information in non-obfuscated code.

II. BACKGROUND AND RELATED WORK

Development practices play a critical role in security and
privacy. Significant work has been done to understand the role
of incentives and usability in the production of insecure or less
secure code.

Here, we discuss two areas of work with the greatest
influence on the development of our research questions and
experiment design. The first of these is analyses of coding
practices, in particular, the examination of the use of permis-
sions. The second is an examination of the factors that create
security errors in code.

A. Privacy in the Permissions Landscape

If we consider the possibility that lack of awareness about
privacy is due to insufficient expertise or knowledge, then
research on permissions could prove illuminating. Privacy in
the mobile phone ecosystem is managed in apps by using
permissions for requesting data categories.

An early study found chronic over-permission and repeated
research has reified this. Such over-permissions included re-
quests that were deprecated or not accessible by the app,
and, therefore, by definition, not needed for the program to
operate [4]. The authors proposed that the driving forces
behind this included bad information from peer sources (i.e.,
StackOverflow) and practices that placed functionality over
security and privacy (e.g., including entire categories instead
of specific permissions). A follow-up paper illustrated that the
examination of SDK provided a more nuanced understanding
of data use [5]. More recently, an examination of compliance
with Apple privacy labels found the same types of errors and
incorrect assertions about data use [6]. A study of IoT apps
found that nearly one-third (1,973 out of 6,208 apps) of those
interacting with IoT expose data without proper disclosure and
thus without consent. The scale and scope of undisclosed data-
shared illustrated a pervasive pattern of sharing data across
jurisdictions, including highly sensitive information [7].

Previous work suggests that over-permissions and data
leakage are not purposeful noncompliance but instead driven
by the contested and multidimensional nature of privacy.
Another work also examined significant differences in work
practices, licensing models, and development cultures between
the iOS and Android ecosystems, arguing that the source of the
over-permission was Android’s open-source nature. Developers
have more flexibility and fewer privacy constraints than iOS,
leading to different Android values, including permissions
and user requests [8]. Except for the inherent open-source
community nature, lack of formal knowledge is another pos-
sible reason identified as to why developers cannot embed
privacy into software systems. For example, Senarath’s find-
ings revealed that most developers lack formal knowledge of
privacy practices and that they try to integrate privacy features
into software designs without much understanding [9], [10].
This may particularly be the case for dependencies where
developers have significant confusion about the privacy risks
of libraries [11]. A mixed method evaluation of developers’
challenges in creating correct privacy labels for apps explored
the issue as one of interaction design; our results indicate
the lack of understanding of the sensitivity of data is a core
challenge [12].

2

In a study close to the human-subjects research on devel-
opers, Chamila and Nalin conducted a qualitative study with
40 software developers. They revealed that most programmers
believe they should be responsible for end-user security [13].
Yet this does not result in secure code, nor do the developers
report following best practices. Their lack of security expertise
and the extra time required for testing were two main reasons
for not following the secure development standards. Our results
indicate a similar lack of privacy expertise [4].

It is reasonable to hypothesize that greater expertise in
security and privacy may yield a better understanding of
sensitive data. However, a study of over 700 participants,
augmented with a qualitative evaluation of interactions with
experts, contravenes this hypothesis [14]. The level of sensi-
tivity or privacy of both individual data and categories was
contested among the large sample of MTurk participants, yet
the small expert group also failed to find a consensus.

This study is specifically on popular code found in GitHub,
as opposed to mobile apps, so part of our analysis was
necessarily determining how to define privacy. We describe our
definition of privacy after a brief discussion of related work
on security errors in coding.

B. Security Errors in Code

If we consider an inability to identify sensitivity in code
as a usability error, then the research on human factors in the
creation of coding errors is relevant. Here, we focus on studies
that, like our work, examine the interaction of developers
and code. An early call for understanding the requirements
of developers provided a set of ten principles for creating
secure and usable APIs, focusing on the high cost of flawed
cryptographic APIs [15]. They advocate for aligning APIs
with pre-existing perceptions and recognizing the limits of
the average developer’s understanding of cryptography. Just
as cryptographic APIs embed an expectation of high levels
of security expertise, privacy requirements may depend upon
developers’ understanding of the compliance risks of all the
contexts in which code may be used or the risks of a particular
snippet or dependency in their targeted context.

Our research is further motivated by Acar et al.’s work [16]
that call on a research agenda for developers. This research
is aligned with the call for a better understanding of both
developers’ knowledge and the status quo. Specifically, we
seek to better understand developers’ privacy knowledge and
measure the status quo by evaluating the interaction of human
subject participants with code snippets obtained from popular
GitHub repositories. As with previous work, we use GitHub
as a sample for code; however, our recruitment of developers
was less targeted [17].

Previous analysis of GitHub has shown that security prac-
tices are lacking, sometimes in obvious ways. An analysis of
coding practices on GitHub has been done by Yasemin Acar
et al.. They recruited 307 active Github users to complete the
same security-relevant programming tasks, and they found be-
ing a professional did not increase a participant’s likelihood of
writing functional or secure code statistically significantly [17].
Another work on security issues about Github examined
billions of files including real-time public commits and a
snapshot covering 13% of open-source repos. They also found

that the issue of confidential information being inadvertently
disclosed on public repository platforms remains widespread
and unresolved. This situation continuously exposes both de-
velopers and services to heightened risks of security breaches
and potential misuse [18]. Besides the risks caused by the
programmers, we found chronic exposure to authenticating
information, such as keys and passwords [19], [20]. The
authors found authenticating data in public repositories along
with their variable names, including ”pwd”, and ”password”.
A particularly famous example of a password leak was the
administrator password solarwinds123 being posted in public
for some months and not changed for several weeks after this
was reported, before the Solar Winds debacle [21].

Lack of reliable sources and inefficient sources have been
identified as drivers for such insecure practices. An exami-
nation of the manner in which developers search for coding
examples found that peer-based systems are a source of failures
in practice [16]. In a comparison of four experimental groups
of developers asked to implement security functions, those
using Stackoverflow were found to be most likely to provide
insecure implementations. Those using formal company doc-
umentation were most correct in terms of secure implementa-
tions but also most likely not to complete the tasks. A follow-
up focused on misconfiguration and other security errors in
Android found that 15.4% of a 1.3 million sample contained
security-related code snippets from Stack Overflow. Out of
these 97.9% contain at least one insecure code snippet [22].
The most widely used snippets included security warnings
but were nonetheless included. Similarly, in our selection of
snippets from GitHub, we focused on more popular and widely
used code.

Schoenherr emphasizes the need for an ethics of cyber-
security that goes beyond traditional paradigms of computer
and information ethics. It highlights the necessity to account
for social and cognitive factors influencing users and calls
for developers to understand these mental models to develop
effective cybersecurity strategies [23]. Acar et al.’s findings of
functionality over security were reified in a series of interviews
with developers on insecure handling of passwords [24]. The
reviewers implemented a mixed methods approach with a
logged implementation task, a survey, and an interview using
a think-aloud protocol with 20 developers. As with our results,
there is a significant gap between perceptions and reality;
however, we report on perceptions of privacy rather than
security. In security, there are also increasingly available tools
to identify data leaks, particularly in terms of static [25]
and dynamic [26] code analysis tools. Our research asks if
developers can identify privacy concerns beyond permissions
and leaks. These results suggest that there is widespread
confusion in developers’ peer sources; our results echo this
in the case of privacy.

The existence of nudges and sample code has proven effec-
tive in altering the security and privacy choices of developers in
other domains [27]. Thus development and diffusion of usable,
clear, secure examples are components of our research, and
potentially a contribution in themselves.

III. METHODOLOGY

In this section, we start by outlining our data acquisi-
tion process, followed by a description of our recruitment

3

Category Repos Lines Variable Code Snippets
Unique Device ID 6 958 27 25
Individual Identifier 9 1643 29 28
Demographics 6 179 20 21
Internet Traffic 7 2549 46 57
Financial Information 8 1068 44 50
Biometrics 5 490 32 38
Multimedia Data 4 1388 20 31
Employment 7 943 29 31
Location 8 1472 50 58
Education 2 102 7 6

TABLE I. SUMMARY OF VARIABLE CODE CORPUS

procedures and the resulting participant pool. We provide a
description and image of instructions provided to participants
and a sample of the classification task.

A. Data Acquisition

One of the difficulties in exploring perceptions of privacy
is the level to which privacy definitions would vary based
on jurisdiction and content. In evaluating security compliance
or permissions in code, there are pre-existing requirements
and categories. In order to ground our definitions of privacy
sensitivity, we began with the categories of information clearly
identified in the CCPA and GDPR. Each enumerates data
types that are considered privacy sensitive and, therefore,
indicate sensitive data with compliance considerations. Re-
viewing the regulations, we chose ten information categories:
1. Unique Device ID, 2. Individual Identifier, 3. Demographics,
4. Internet traffic, 5. Financial information, 6. Biometrics,
7. Multimedia data, 8. Employment, 9. Education, and 10.
Location. Detailed category and variable information can be
found in Appendix B.

For this experiment, we focused our scope on Python
code. We searched for identifiable variables in the selected
categories, based on brainstorming and previous literature.
GitHub is the biggest open-source code-sharing platform with
a wide range of code from individuals [28], making it the
obvious choice of source for acquiring a large code database.
As we focused on code with potential privacy implications,
we searched all Python GitHub repositories for a small set
of data privacy-related keywords and data types. Searching
for these keywords resulted in a corpus of 53 repositories,
30 keywords, and 86 variables with their related variables
and code expressions in total. We used different keywords
for each category domain to search the repositories on the
GitHub platform. We also extract the nearby variables and
code segments that have the value transmission with the picked
variable.

Please see the following example of a code snippet con-
taining financial information that would be classified as PII
under GDPR and the CPRA. In addition, a compilation of
such information might create risks because of its potential
for abuse. Thus, we would expect all participants to classify
this as sensitive to some degree. (All human subjects did in
fact classify this as sensitive to some degree. Yet the artificial
intelligence fared much worse than human judgement in this
category. Note in TableVII, ChatGPT 3.5 identified only 12.5%
of financial information snippets as sensitive; ChatGPT 4.0
identified only 25% of such snippets, and Bard correctly
classified 37.5% of snippets including financial information

as sensitive under GDPR or CCPR. Please see Section IV-D
for details.)

online_bank_statement_provider = fields.Selection(
selection=lambda self: self.env[

"account.journal"
]._selection_online_bank_statement_provider(),
help="Select the type of service provider (a model)",

)
online_bank_statement_provider_id = fields.Many2one(

string="Statement Provider",
comodel_name="online.bank.statement.provider",
ondelete="restrict",
copy=False,
help="Select the actual instance of a configured
provider.\n"

)

B. Experiment Design

We conducted an online experiment used to collect pro-
grammers’ perceptions of variable names’ sensitivity under
certain conditions. The experiment consisted of two parts:
the first part was to classify the variable name into different
sensitivity levels, and the second part was to choose which
category the variable belongs to. The variable names and their
code snippets are selected from the dataset described in Table I
for each category.

Our experiment combined survey questions about expertise
with an online experiment on collecting perceptions of code
and privacy. Our specific goal was to discover how our partic-
ipants categorized and related the concepts of sensitivity with
the code samples provided. Providing such an understanding
is the core function of card sorting as a method [29]. Since
card sorting was introduced in the seventies, it has been used
to explore the decision-making of participants [30].

We developed a classification website using card sort-
ing [30] for better usability and more accurate results. The
classification interface for participants is shown in Figure 2.
Card sorting is particularly appropriate for this experiment
because it is designed to illuminate how participants categorize
and relate concepts [29], [30]. Compared with the survey,
card sorting decreases the cognitive burden on the participants
as well as being more effective in measuring subject deci-
sions [31]. One concern in our design was the cognitive load on
participants, as each sorting action required that a participant
to read multiple lines of code. We were informed by previous
research that leveraged card sorting to illuminate privacy and
security perceptions of expert and non-expert participants [32]–
[34].

In this study, participants had to sort variables into different
classifications that represent different levels of sensitivity:
highly sensitive, sensitive, less sensitive, and not sensitive.
In part, this is motivated by our grounding of sensitive data
in legal doctrine. Whether data are sensitive and subject to
compliance or not is sometimes conditional or contested. For
example, extensive litigation was needed to determine if IP
addresses are PII under the European Data Protection Directive
(Directive 95/46/EC) [35], [36], which was the precursor to
the GDPR [37]. We rejected a binary classification based on
previous research, which found that if developers considered
an item contextually sensitive or less sensitive, they might
identify it as neither sensitive nor privacy-violating overall [8],
[9], [11], [23]. Thus we wanted more than a simple Boolean
choice.

4

Having decided against a simple yes/no decision, the
obvious design would include a standard Likert Scale of one
to five. In our experiment, we sought to determine which
data are perceived as sensitive and a neutral response would
not align with these goals. Further, marketing research has
repeatedly found a pattern of people choosing ”medium” or the
middle answer when faced with a range of choices and a lack
of certainty about their preferences [38]–[40]. The traditional
five-point scale enables participants to make that medium or
indeterminate choice. Thus, we provided the option to choose
less sensitive or not sensitive, but no indeterminate choice.
Our goal was to observe decision-making; thus, we removed
the option not to decide.

An instructions page was provided before the sorting task
itself, as shown in Figure 1. These instructions present the
layout of the sorting pages, highlighting the information and
actions required for the sorting task. During the sorting task,
each participant was required to read a small snippet of code
and classify each one of the forty snippets as shown in
Figure 2.

Fig. 1. The participants were given the following image for instructions. In
the experiment itself, the variable was presented as part of a code snippet.
The details were not included in the instruction to simplify the instructions.

Fig. 2. Each participant had to read a small snippet of code and classify
each one of the snippets shown using a drag-and-drop card sorting experiment.
The example variable “session cookie value” is highlighted. The context of
each snippet was provided so that under-specified variables (e.g., mark) or the
purpose of the variable (e.g., date) was clear.

C. Recruitment and Participants

All recruitment and enrollment were preceded by review
and approval by the institutional IRB. We primarily sought to

recruit participants with computer science backgrounds who
have some coding experience. In addition, we evaluated their
level of expertise in cybersecurity. We advertised our survey
on the computer science department email list and the Prolific
platform. Each qualified response was paid 4 dollars based on
our assumption that the survey would take fifteen minutes, thus
resulting in a wage of $15 an hour. Qualified responses were
those with valid answers to the attention check question, which
took greater than the minimal possible time to read through
the survey; and having completed the survey. Specifically, valid
responses placed the attention check card in the correct cate-
gory and required more than 5 minutes to complete. In total,
160 people with varied computing backgrounds completed the
survey, but only 99 responses were selected for further analysis
based on this criterion. The demographic information for the
99 participants is shown in Table II. The 99 participants are
divided into different groups of more or less experts, based on
their answers to the four security expertise questions. (These
questions are provided in Appendix A.)

TABLE II. DEMOGRAPHICS OF PARTICIPANTS

Item Options n

Gender

Male 63
Female 29
Non-binary 5
Prefer not to answer 2

Age

18-25 44
26-35 37
36-45 13
46-55 3
56+ 2

Major
Computer Science 81
Non-Computer Science 14
Prefer not to answer 4

Programming Duration

Less than 1 year 10
1 - 3 years 40
4 - 6 years 26
7 - 10 years 8
More than 10 years 7
Prefer not to answer 8

Programming Languages

1 - 2 25
3 - 4 41
5 - 6 18
7 - 8 2
More than 8 5
Prefer not to answer 8

IV. RESULTS

We found that participants diverged significantly in opin-
ions when it comes to determining the sensitivity levels of
variables, with no strong consensus emerging. Interestingly,
the data suggests that as programmers gain more security
knowledge, their awareness of privacy issues might increase
on average, but this differs across categories. While there is
a general acknowledgment among developers that code can
contain sensitive information via variables, there is a tendency
to overlook certain categories of sensitive data. There is no
notable difference between non-expert and expert groups on
agreement on variable sensitivity: they all tend to have no
or fair agreement on which variable should be unified and
sensitive. however, the experts have a higher disagreement in
general. We also found that the discrepancy varied across the
different categories.

5

Fig. 3. Sensitivity identification for different security-expertise levels group

A. Sensitivity Identification

For each personal information category we explored in this
study, Figure 3 depicts the sensitive identification ability corre-
sponding to different security knowledge levels, calculated by
the standardized scores with binary classification: “sensitive”
and “not sensitive”. The Y-axis represents the percentage
of four levels of expertise: the programmers are divided
into four groups, ”non-expertise”, ”less expertise”, ”moderate
expertise,” and ”expert”, based on their security knowledge.
The X-axis displays the sensitivity scores calculated by each
variable according to its category. For the scores, variables
that have been accurately identified are accounted by a value
of ’1’, whereas those that have been characterized as ”not
sensitive” have a value of ’-1’. Based on the scores, most of
the groups identified these 40 variables as sensitive, a score
larger than 0, except for the programmers who answered no
security questions correctly. They had negative scores in ”edu-
cation”, ”multimedia data,” and ”unique device ID” categories.
However, they put more emphasis on the ”account/individual
identifier” category, which contains variables like ”email”,
”name”, and ”username”, (the full list of variables can be found
in Appendix B) than any other group. Interestingly, the group
with less expertise, defined as the group that answered only
one technical question correctly, identified the variables as the
most sensitive in eight categories and performed better than the
other three groups. Less expertise group performs even better
than moderate and expert groups in seven out of ten categories
when their categorizations are better.

We perform the ANOVA test for the group’s evaluation
of the variables’ sensitivity score based on its correlation
with different categories in Table III. We did not include the
participants’ education category since the differences in the
classification of code are clearly more a function of expertise
than individual variables. In each category, there is little
difference between the classification of the variables. Only ‘In-
ternet traffic’ shows significant in-category differences. These
differences were marginally significant with 99 participants, an

TABLE III. ANOVA TEST FOR DIFFERENT CATEGORY

Category F-value p-value
Unique Device ID 1.362 0.246
Individual Identifier 0.638 0.635
Location 2.138 0.075
Demographic 1.500 0.201
Internet traffic 3.087 0.016
Financial 1.201 0.309
Biometrics 1.296 0.272
Employment 0.888 0.471
Multimedia Data 1.593 0.176

TABLE IV. ANOVA TEST FOR DIFFERENT GROUPS

Group F-value p-value
Expert 6.214 2.88E-27
Moderate 6.675 3.18E-30
Less Expertise 4.868 9.48E-19
Non Expertise 6.794 1.29E-30

F-value of 3.087 and a p-value between 0.015 < 0.05. In all
other cases, the variables in a given category were categorized
in a similar manner by human participants.

The same ANOVA test has been applied to the correlation
between the category sensitivity score with four groups of
different expertise levels IV. That is, all the categories were
combined for the participants to create four sets of data for the
sensitivity level of 1-4. These datasets were compared across
the four groups without regard to category. The differences
were remarkable. Interestingly, the results show that all groups
have a significantly different evaluation of categories’ sensitiv-
ity (all p-value< 0.001), which means the category sensitivity
was distinctive at every expertise level.

The results imply that at each level of expertise, the
participants classified variables in the same category in a
similar way. Yet, when looking at overall patterns, different
levels of expertise resulted in highly different levels of catego-
rization. Additional expertise does not result in more accurate
assessments; however, it does appear to create a systematic
difference in the classification of data as more or less sensitive.

6

Fig. 4. Sensitivity Ranking and Score for Non-Expert and Expert illustrating

In the following analysis, we categorized individuals with
no expertise or limited expertise as ’Non-expertise’ and those
with moderate to high expertise as ’Expert’ for subsequent
analyses. This approach was adopted to ensure a sufficiently
large sample size in the ’Expert’ group, facilitating meaningful
comparisons with other groups. As illustrated in Figure 4,
a score below ’1’ indicates that the item is deemed non-
sensitive by all participant assessments. The ’Expert’ group
identified the categories of ’Multimedia,’ ’Unique Device ID,’
’Education,’ and ’Employment’ as non-sensitive. In contrast,
the only distinction for the ’Non-expertise’ group was in the
’Employment’ category. These findings suggest that the ’Non-
expertise’ group exhibits marginally better performance than
the ’Expert’ group in this context.

B. Sensitive Similarity for Category and Variables

In this section, we discuss the results of a similarity matrix.
The data is derived using a cosine similarity algorithm on
the sensitivity score of each variable. Full visualizations of
these are provided in the released code and data link to
present them at a large scale. A notable observation is the
existence of strong similarity clusters. We selected 7 variables
to identify the correlation between general programmers and
programmers with more security knowledge. Figure 6 depicts
the most and least correlated three variables among the less-
expert (combined none and less programmers) group and
the expert (combined moderate and expert) group. The most
correlated variables are the same for the two groups, which
are also the most sensitive variable information: ”password”,
”PAYMENT TOKEN,” and ”paypal mapping id”. The cosine
similarity of these three groups is close to 0.9. However,
there are highly uncorrelated variables as well: ”driver”,
”gdf mask”, ”MP4ASampleEntryBox,” and ”skill”. These are
also those with lower average scores; i.e., they were identified
as being less sensitive. Those participants with high levels
of expertise appeared to split all the variables into three
big categories. (This is clearly visible in the three darker
square areas in the appended heatmap.) The first of these
expert categories includes the variables ”gdf mask”, ”skill”,
”gmaps”, and finally the variable ”long”. The second of these
categories includes all the financial-related variables as well
as ”password”, which all were rated as having a high level of
sensitivity. This distribution shows they tend to group all the
related variables together and rank them at a similar sensitive
level. It is possible that more expert participants have heuristics

or rules of thumb that cause these patterns. This can not be
verified by the results; instead, it provides a research question
for future qualitative research. Participants with less expertise
did not appear to have the same grouping behavior.

Fig. 5. The most and least correlated variables among participants with non
or low expertise differs from the high expertise group with the inclusion of
MP4ASampleEntryBox as shown in the fourth row

Fig. 6. The most and least correlated variables among participants with high
expertise differs from those with less expertise in the inclusion of skill as
shown in the bottom row.

To better understand the relationship between the variables
and participants within different categories and groups, we
established a ”sensitivity score” scale ranging from -1 to 3,
indicating levels from ”not sensitive” to ”highly sensitive.”
Figure 4 depicts the sensitivity scores for each category and
both groups. Consistent with the sensitivity level findings,
the top four categories (”financial information,” ”location,”
”individual identifier,” and ”demographic”). In all cases except
educational variables, experts ranked data as more sensitive.
The means test for each category and variable can be found in
the Appendix. Location data is rated as being more sensitive
than all other categories except financial by non-experts. While
location is considered less sensitive than unique identifiers by
experts, the general increase in awareness of sensitivity results
in experts ranking location as more sensitive (9) than non-

7

experts (8).

Fig. 7. Category similarity Matrix for those with less expertise reflects the
differences in patterns of rankings from that of experts.

Fig. 8. Category similarity of the expert group shows different patterns of
correlations than those found among those with less expertise.

From the category similarity matrix for the non-expert
group, we note that ”demographics,” ”employment,” and ”ed-
ucation” tend to group together, and ”Internet traffic,” ”in-
dividual identifier” with ”location” categories tend to have
similar sensitive level classification non-expert programmers.
However, the expert group sorted them into three main clusters,
”education” and ”multimedia”, ”biometrics” and ”financial”,
and all remaining categories are the third cluster. This is illus-
trated in Figure 7 and Figure 8. These provide a heatmap of the
similarity matrix of the ten categories. The dendrogram lines
connect the categories that have similar aggregated sensitivity
levels. The similarity matrix calculation makes it infeasible

to reject our hypothesis that expertise does not influence the
categorization of variables as sensitive across different variable
names.

C. Agreement on Variable Sensitivity

We found that the non-expert programmers have more
unified opinions compared with security expert programmers
in general, and a large discrepancy exists for different cat-
egories. Recalling our H1 is whether the programmers have
a unified opinion on the sensitivity of privacy information in
code and if there is any difference between the experts and
general programmers. In order to evaluate that quantitatively,
we used the Fleiss’ Kappa score to evaluate raters’ agreement
on the sensitivity classification. Fleiss’ kappa is a statistical
measure for assessing the reliability of agreement between
a fixed number of raters when assigning categorical ratings
to a number of items or classifying items. In this context, a
kappa value less than 0 means no agreement, and the level of
agreement increases with this Kappa value, the max value is
1, which means substantial agreement.

Table V presents the Fleiss Kappa scores for both non-
expert and expert groups across two different settings: one
with 4 sensitive levels and another with 2 sensitive levels
(sensitive and not sensitive). In this table, the non-expert
group had a Fleiss Kappa score of 0.117 when evaluating
data with 4 sensitive levels, while the expert group scored
slightly lower with 0.112. When the data was simplified to
only 2 sensitive levels, sensitive or not sensitive, the Fleiss
Kappa scores increased for both groups: 0.217 for the non-
expert group and 0.203 for the expert group. The increase
in scores suggests that both groups found it easier to agree
when there were fewer sensitive levels to consider. Based on a
comparison between the two groups, the Fleiss Kappa scores
for the non-expert group are consistently higher than those for
the expert group. This suggests that the non-expert group tends
to be more unified in their assessment of sensitivity levels for
variables.

TABLE V. FLEISS KAPPA SCORE FOR 4 AND 2 SENSITIVE LEVELS:
SENSITIVE AND NOT SENSITIVE

Fleiss Kappa score Non-Expert group Expert group
4 sensitive levels 0.117 0.112
2 sensitive levels 0.217 0.203

Table VI presents Fleiss Kappa scores based on four sen-
sitivity levels for each category we evaluated, comparing the
agreement among raters in both non-expert and expert groups.
Each row in the table represents a different category of data,
such as “Location,”, “Unique device ID,” “Demographics,”
and so on. The scores range from negative to positive, with
positive scores indicating a greater level of agreement among
the raters. For instance, the category “Individual identifier” had
the highest Fleiss Kappa scores for both groups, with 0.263
for non-experts and 0.231 for experts. This suggests that there
is a relatively higher level of agreement among raters when it
comes to assessing the sensitivity of individual identifiers.

On the other hand, some categories like “Biometrics”
and “Education” have negative Fleiss Kappa scores for both
groups, indicating a lack of agreement among the raters
for these categories. Interestingly, some categories, such as
“Employment” and “Unique device ID”, show significantly

8

different scores between non-experts and experts. For “Em-
ployment,” experts have a Fleiss Kappa score of 0.158, con-
siderably higher than the non-experts’ score of 0.058. This
discrepancy could reflect differing perspectives on data sensi-
tivity between the two groups.

Overall, Table VI offers a detailed look into how different
categories of data are perceived in terms of four levels of
sensitivity by non-expert and expert groups, as evidenced
by their Fleiss Kappa scores. However, we have to mention
that this standard is not universally accepted because the
number of categories and subjects will largely affect the kappa
value; for example, the kappa is higher when there are fewer
categories [41], so we cannot use the score to compare with
other studies using the same standard, but it still feasible when
we evaluate the results for different categories only within our
own experiments.

TABLE VI. FLEISS KAPPA SCORE FOR TEN CATEGORIES

Fleiss’ Kappa score Non-Expert Expert
Location 0.060 0.033
Unique device ID 0.052 0.111
Demographics 0.029 0.027
Internet traffic 0.015 0.014
Individual identifier 0.263+ 0.231+

Employment 0.058 0.158
Biometrics -0.012 -0.009
Education -0.023 -0.019
Multimedia Data 0.031 0.010
Financial information 0.074 0.062

Recall that the lower the Fleiss Kappa score, the less the
agreement. Scores of lower than 0.2 indicate an absence of
consensus. The only significant agreement about sensitivity
was for individual identifiers, where participants across levels
of expertise identified these as sensitive. These results indicate
that it is not reasonable to accept the hypothesis that there is
significant agreement among programmers about what infor-
mation is sensitive.

D. Large Language Models

A clear question arising from these results is the extent to
which the judgment of LLMs can replace human judgment or
highly specialized tools. To determine if this is a clear path
forward, we selected sensitive code and developed a query
to multiple LLMs: ChatGPT 3.5, Chat GPT 4.0, and Google
BARD.

Based on limits on query size, we asked about four snippets
per query: ”Given below are 4 fragments of code. Each of them
is separated by a ’===’. Considering the first code as ’1’ and
the fourth as ’4,’ identify if the fragments contain sensitive
data according to GDPR or CCPA guidelines, indicating your
response as ’code fragment number: Sensitive or Not Sensi-
tive’.” In cases where the language models’ responses were
ambiguous, we employed additional targeted prompts to clarify
their assessments [42].

The results were not promising. As with human decision-
making, there were clear patterns in failing to identify code as
processing sensitive data. Demographic data and geofencing or
location code were considered not sensitive. Code clearly con-
taining the date of birth was classified as non-sensitive by both
versions of ChatGPT and Bard. While the human participants

identified unique identifiers as being sensitive, the LLMs miss-
classified code containing unique device identifiers, financial
information, and biometrics as not sensitive; see Table VII for
detailed information.

TABLE VII. PERCENTAGE OF FALSE NEGATIVES WHEN LARGE
LANGUAGE MODELS WERE QUERIED

Category Samples ChatGPT 3.5 ChatGPT 4.0 Bard
Unique Device ID 11 90.91% 36.36% 54.55%
Individual Identifier 5 60% 20% 40%
Location 7 100% 0.00% 42.86%
Demographic 4 75% 25% 100%
Internet traffic 7 85.71% 42.86% 28.57%
Financial 8 87.5% 75% 62.5%
Biometrics 2 100% 0.0% 50%
Employment 7 85.71% 14.29% 57.14%
Education 2 50% 50% 100%
Multimedia Data 4 75% 100% 50%
Total 57 84.21% 40.35% 54.39%

While the evaluation of LLMs in the identification of
sensitive data in code is not human subjects, this comparison
illustrates that there is no simple or obvious way forward for
providing developers the support needed for the identification
and processing of privacy-sensitive information.

E. Results Summary

In this work, we proposed four research questions to
address the larger issue of feasibility and accuracy of human
participants’ classifying code, which contains variables that
indicate that PII is being processed. We measured these by
the ability of participants to classify code snippets containing
variables that reference PII as sensitive. Here, we summarize
the results of these.

H1: There is agreement among programmers across a wide
range of technical expertise as to which code snippets and
variables have indicators that they are processing sensitive data.

We found that there is little agreement beyond three
common variables about the sensitivity of code. Our results
require that we reject H1.

H2: Technical expertise does not influence the identification
of variables in code snippets as being indicators of processing
sensitive data.

Participants with little knowledge fail to identify several PII
categories, but they put more emphasis on Account/Identifier
Identifiers. Most expert participants agree only on three cate-
gories (Individual Identifier, Employment, Unique Device ID)
and disagree more in other categories. Our results require that
we reject H2. This implies that increased technical education
will not resolve the challenge of identification of data as
sensitive (i.e., defined as PII by the GDPR).

H3: Is the difference in the classification of code more a
function of expertise than an individual variable?

We applied an Analysis of Variance(ANOVA) test for the
variable sensitivity score based on per category and per group.
We found that whether the variable is sensitive or not is highly
correlated with the category it belongs to, with a little variance
in the classification of variables within a group. However,
when the overall classification levels are compared across
groups, the difference is highly significant. The relationship
between the expertise of participants and the category of data

9

is suggestive; however, we could not reject H3. This could
be seen as implying not a misunderstanding of the code but
instead the sensitivity of the underlying variable, despite the
differences in technical expertise.

H4: The categorization of code snippets is similar between
LLMs and human participants.

LLMs failed at categorization with higher false positive
rates than human participants. The categories where human
participants erred were different from those where LLMs
failed. Our results require that we reject H4. However, these
differences suggest that interactions that leverage the strengths
of both human and artificial intelligence may be a promising
way forward.

V. DISCUSSION

These results contribute to understanding the perceptions of
developers, particularly in terms of the status quo of developers
in terms of privacy perceptions. Of course, this is true only
to the degree to which both our coding samples and our
participants are representative, or at least illustrative. We found
that additional expertise does not result in more accurate
assessments; however, it does appear to create a systematic
difference in the classification of data. The different groups
had very different overall classifications of more experts, with
experts having a mean estimate of (1.43) and least experts
having a mean estimate of (1.24). Further, greater expertise
resulted in less consensus about sensitivity. Thus increasing
the expertise of programmers as a way to increase privacy
awareness and sensitivity is not supported by our results.

One possible way forward might be the use of queries
to LLMs but our initial results for these are less promising.
Another possible next step is the development of privacy APIs,
of which mobile app permissions might be considered both
examples and sources of concern for the limitations of such
an approach. Improved secure by default APIs have been
identified as a possible way forward, particularly by Green
and Smith [15]. Yet while the general applicability of usability
principles to security APIs has been widely explored, the result
has not been a theory that is both comprehensive and clearly
actionable [43]. A further complication is that cryptographic
security can be subject to general agreement, and privacy
sensitivity and compliance vary widely.

Developing support for coders to identify privacy-sensitive
operations or data in general-purpose code is an open chal-
lenge. This challenge will be exacerbated by the proliferation
of AI, which will have more opaque models where determining
the inclusion of sensitive data is particularly difficult. Note
that this is an effort to address this, as one of the factors in
the Software Bill of Materials (SBOM) in the ISO Standard
from the Software Package Data Exchange (SPDX) AI &
ML Working Group [44] is privacy sensitivity. Consider that
all software provided to the US Department of Defense,
and potentially used by the US government, will soon be
required to document dependencies using an SBOM. This
requirement, if expanded to include privacy sensitivity, requires
improved support for the development and analysis of code for
sensitivity. Should labels or SBOMs increase the demand for
privacy-aware and secure code, there may be a demand for
support for such development.

Our experiment was focused on Python. Additional lan-
guages may be more or less transparent, and a comparison
of clarity of code or obfuscated code is beyond the scope of
this work. The rules and standards can be applied to other
coding languages in the future, and any tool developed to assist
programmers and compliance personnel in identifying privacy
sensitivity would have a larger scope than our human subjects
research.

After our experiment design was complete, Privado re-
leased its code for finding privacy-sensitive code open
source [45]. This validated our selection of variables and
the choice to use embeddings. Privado searches for explicit
strings as variable names, while our experiment included code
embeddings. We found examples where Privado would mis-
classify code based only on the variable name. For example,
the variable name “mask” was included in two snippets in our
experiment. In one case, it was for analysis of biometrics, in
the other, the variable was for masking IP addresses. Based
on the context, “mask” may either indicate the use of highly
sensitive biometric data for facial recognition, or it could
indicate that the programmer is stripping IP addresses so that
the data is neither uniquely identifiable nor sensitive.

VI. FUTURE WORK

In future work, we seek to both deepen our investiga-
tion, and design tools which integrate our current level of
understanding. In terms of expanding our understanding, we
will use qualitative measures to investigate how more or less
expert developers group variables or use rules of thumb; and
how their reasoning is reflected in their choices. Possible
explorations include think-aloud experiments as developers
categorize personal information as more or less sensitive,
or interviews about their perspectives on privacy after the
categorization.

Concurrently, we will seek to build upon warnings and
visualizations to assist developers in identifying compliance
and privacy risks based on the processing of PII in code.
Visualizations have been found effective in a range of security
challenges, and this is our first area of exploration. Specifically,
our efforts moving forward will build on previous work on sys-
tem configuration and access control. As with privacy, access
control is nuanced and governed by policies that are difficult
to implement in practice. An early study on the mitigation of
human error in access control and system configuration was
done by Maxion and Reeder [46]. They found that visualization
improves the rate of completing the configuration tasks by a
factor of three. The error in these completed activities was also
reduced by up to 94%. An access control interaction evaluated
by Vaniea et al. [47] mapped policy decisions into access
control rules, suggesting that mapping privacy policy to code
is a promising way forward. Similarly, another study that reaf-
firms the importance of visualization is the results by Andalibi,
who documented significant improvement in identifying access
control risks by providing a visualizer for manufacturer’s
recommended access control policies [48]. Work by Xu and
colleagues [49] investigated the uncertainties in access control
policy decisions, and found that a lack of feedback forced the
administrators who intend to resolve access control conflicts
into a trial and error mode. We will explore if there is similar

10

potential for the efficacy of feedback in assisting developers
to avoid privacy risks.

VII. CONCLUSION

There is an increase in the number of legal controls on data
processing both within the US and across the globe. This work
asked the core question of whether it is feasible to ask those
with technical expertise to be able to identify privacy-sensitive
code using two well-known privacy regulations: GDPR and
CCPA. We found that even experts require some assistance in
identifying sensitive data. In fact, greater expertise correlated
with less consensus on which code snippets indicated the risk
of processing privacy sensitive data. As privacy regulations,
and thus differences between privacy regulations, there is no
reason to expect that greater complexity and diversity will
result in greater consensus. Thus, the work motivates future
work in two dimensions. First is the need for automated
guidance in evaluating the compliance of code for a given reg-
ulatory environment. Second, the development of interactions
or compliance risk communication to enable programmers
to know the level of risk of including a particular snippet
or dependency. Third, the potential for creating interactions
that inform non-technical decision-makers, such as those with
expertise in the law, to collaborate with programmers to
annotate code as more or less sensitive. As programming
becomes more accessible, the use case for automated privacy
compliance checking becomes stronger.

DATA AVAILABILITY

In terms of data availability, we release our tools, including
the card sorting code and our set of code snippets, to enable
the reproduction of the experiment. The code and dataset
can be found here:https://github.com/xinyao1108/Cardsorting
ProgrammerPerception. As this is human subjects research,
sharing the data would violate the IRB by risking the privacy
of participants.

ACKNOWLEDGMENT

This research was supported in part by CTIA and the
Comcast Innovation Fund. We would like to acknowledge Prof.
Tatiana Ringenberg’s contributions. Undergraduate researcher
Paul Forst of Indiana University replicated the statistical analy-
sis. Amol Sangar provided essential contributions to the coding
and optimization of the card-sorting experimental harness.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of Comcast, CTIA nor Indiana
University. We acknowledge support from the US Department
of Defense [Contract No. W52P1J2093009]. This material is
based upon work supported by the U.S. Department of Home-
land Security under Grant Award Number 17STQAC00001-07-
00.” The views and conclusions contained in this document
are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed
or implied, of the U.S. Department of Homeland Security nor
the US Department of Defense.

REFERENCES

[1] J. Parker. (2023) New york lifts ban on biometric
technologies in k-12 schools. [Online]. Available: https://www.
securityinfowatch.com/access-identity/biometrics/news/53074206/
new-york-lifts-ban-on-biometric-technologies-in-k12-schools

[2] T. Kelley and B. I. Bertenthal, “Attention and past behavior, not security
knowledge, modulate users’ decisions to login to insecure websites,”
Information & Computer Security, vol. 24, no. 2, pp. 164–176, 2016.

[3] T. Kelley, M. J. Amon, and B. I. Bertenthal, “Statistical models
for predicting threat detection from human behavior,” Frontiers in
psychology, vol. 9, p. 466, 2018.

[4] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in ACM Conference on Computer and Com-
munications Security (CCS). ”ACM SIGSAC”, 2011, pp. 627–638.

[5] M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weisger-
ber, “On demystifying the android application framework:{Re-Visiting}
android permission specification analysis,” in 25th USENIX security
symposium (USENIX security 16), 2016, pp. 1101–1118.

[6] Y. Xiao, Z. Li, Y. Qin, X. Bai, J. Guan, X. Liao, and L. Xing, “Lalaine:
Measuring and characterizing non-compliance of apple privacy labels
at scale,” 2022.

[7] Y. Nan, X. Wang, L. Xing, X. Liao, R. Wu, J. Wu, Y. Zhang, and
X. Wang, “Are you spying on me?{Large-Scale} analysis on {IoT}
data exposure through companion apps,” in 32nd USENIX Security
Symposium (USENIX Security 23), 2023, pp. 6665–6682.

[8] K. Shilton and D. Greene, “Linking platforms, practices, and developer
ethics: Levers for privacy discourse in mobile application development,”
Journal of Business Ethics, vol. 155, pp. 131–146, 2019.

[9] A. Senarath and N. A. Arachchilage, “Why developers cannot em-
bed privacy into software systems? an empirical investigation,” in
Proceedings of the 22nd International Conference on Evaluation and
Assessment in Software Engineering 2018, 2018, pp. 211–216.

[10] S. A. Horstmann, S. Domiks, M. Gutfleisch, M. Tran, Y. Acar,
V. Moonsamy, and A. Naiakshina, ““those things are written by lawyers,
and programmers are reading that.” mapping the communication gap
between software developers and privacy experts,” Proceedings on
Privacy Enhancing Technologies, vol. 1, pp. 151–170, 2024.

[11] R. Balebako, A. Marsh, J. Lin, J. Hong, and L. F. Cranor, “The privacy
and security behaviors of smartphone app developers,” in Workshop on
Usable Security. Citeseer, 2014, pp. 1–10.

[12] T. Li, K. Reiman, Y. Agarwal, L. F. Cranor, and J. I. Hong, “Under-
standing challenges for developers to create accurate privacy nutrition
labels,” in Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems, 2022, pp. 1–24.

[13] C. Wijayarathna and N. A. G. Arachchilage, “Am i responsible for
end-user’s security? a programmer’s perspective,” in 4th Workshop on
Security Information Workers, 2018.

[14] R. Balebako, R. Shay, and L. F. Cranor, “Is your inseam a biometric? a
case study on the role of usability studies in developing public policy,”
USEC: NDSS Colocated Usable Security Symposium, vol. 14, 2014.

[15] M. Green and M. Smith, “Developers are not the enemy!: The need
for usable security apis,” IEEE Security & Privacy, vol. 14, no. 5, pp.
40–46, 2016.

[16] Y. Acar, S. Fahl, and M. L. Mazurek, “You are not your developer,
either: A research agenda for usable security and privacy research
beyond end users,” 2016 IEEE Cybersecurity Development (SecDev),
pp. 3–8, 2016.

[17] Y. Acar, C. Stransky, D. Wermke, M. L. Mazurek, and S. Fahl, “Security
developer studies with {GitHub} users: Exploring a convenience sam-
ple,” in Thirteenth Symposium on Usable Privacy and Security (SOUPS
2017). ”USENIX”, 2017, pp. 81–95.

[18] M. Meli, M. R. McNiece, and B. Reaves, “How bad can it git?
characterizing secret leakage in public github repositories,” in NDSS,
2019.

[19] S. Website. (2013) Github kills search after hundreds of private
keys exposed. [Online]. Available: https://it.slashdot.org/story/13/01/
25/132203/github-kills-search-after-hundreds-of-private-keys-exposed

[20] slashdot. (2023) aws urges devs to scrub secret keys from github.
[Online]. Available: https://developers.slashdot.org/d

11

https://github.com/xinyao1108/Cardsorting_ProgrammerPerception
https://github.com/xinyao1108/Cardsorting_ProgrammerPerception
https://www.securityinfowatch.com/access-identity/biometrics/news/53074206/new-york-lifts-ban-on-biometric-technologies-in-k12-schools
https://www.securityinfowatch.com/access-identity/biometrics/news/53074206/new-york-lifts-ban-on-biometric-technologies-in-k12-schools
https://www.securityinfowatch.com/access-identity/biometrics/news/53074206/new-york-lifts-ban-on-biometric-technologies-in-k12-schools
https://it.slashdot.org/story/13/01/25/132203/github-kills-search-after-hundreds-of-private-keys-exposed
https://it.slashdot.org/story/13/01/25/132203/github-kills-search-after-hundreds-of-private-keys-exposed
https://developers.slashdot.org/d

[21] P. Datta, “Hannibal at the gates: Cyberwarfare & the solarwinds
sunburst hack,” Journal of Information Technology Teaching Cases,
vol. 12, no. 2, pp. 115–120, 2022.

[22] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack overflow considered harmful? the impact of copy&paste
on android application security,” in Symposium on Security and Privacy
(SP). IEEE, 2017, pp. 121–136.

[23] J. Schoenherr, “Whose privacy, what surveillance? dimensions of the
mental models for privacy and security,” IEEE Technology and Society
Magazine, vol. 41, no. 1, pp. 54–65, 2022.

[24] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand,
and M. Smith, “Why do developers get password storage wrong? a
qualitative usability study,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 311–
328.

[25] O. Tripp, S. Guarnieri, M. Pistoia, and A. Aravkin, “Aletheia: Improving
the usability of static security analysis,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
2014, pp. 762–774.

[26] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow, “jäk: Using
dynamic analysis to crawl and test modern web applications,” in
Research in Attacks, Intrusions, and Defenses: 18th International Sym-
posium, RAID 2015, Kyoto, Japan, November 2-4, 2015. Proceedings
18. Springer, 2015, pp. 295–316.

[27] M. Tahaei and K. Vaniea, ““developers are responsible”: What ad
networks tell developers about privacy,” in Extended Abstracts of the
2021 CHI Conference on Human Factors in Computing Systems, 2021,
pp. 1–11.

[28] “Github, howpublished = https://github.com/, note = Accessed: 2023-
11-28.”

[29] M. Kuniavsky, Observing the User Experience: A Practitioner’s Guide
to User Research. Elsevier, 2003.

[30] E. F. Cataldo, R. M. Johnson, L. A. Kellstest, and L. W. Milbrath,
“Card Sorting as a Technique for Survey Interviewing*,” Public
Opinion Quarterly, vol. 34, no. 2, pp. 202–215, 01 1970. [Online].
Available: https://doi.org/10.1086/267790

[31] Q. Duan and Z. Tan, “Factors affecting low response effort in online
survey tasks for passive stakeholders: Insights from a design ethnogra-
phy research,” in International Conference on Applied Human Factors
and Ergonomics. Springer, 2020, pp. 402–409.

[32] F. Asgharpour, D. Liu, and L. J. Camp, “Mental models of security
risks,” in Financial Cryptography and Data Security, S. Dietrich and
R. Dhamija, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 367–377.

[33] S. Jones and E. O’Neill, “Feasibility of structural network clustering
for group-based privacy control in social networks,” in Proceedings
of the Sixth Symposium on Usable Privacy and Security, ser. SOUPS
’10. New York, NY, USA: Association for Computing Machinery,
2010. [Online]. Available: https://doi.org/10.1145/1837110.1837122

[34] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user
confidence in smartphone security and privacy,” in Proceedings of the
Eighth Symposium on Usable Privacy and Security, ser. SOUPS ’12.
New York, NY, USA: Association for Computing Machinery, 2012.
[Online]. Available: https://doi.org/10.1145/2335356.2335358

[35] J. J. McIntyre, “Balancing expectations of online privacy: Why internet
protocol (ip) addresses should be protected as personally identifiable
information,” DePaul L. Rev., vol. 60, p. 895, 2010.

[36] N. Witzleb and J. Wagner, “When is personal data about or relating to an
individual a comparison of australian, canadian, and eu data protection
and privacy laws,” Can. J. Comp. & Contemp. L., vol. 4, p. 293, 2018.

[37] W. Wiewiórowsk, The History of the General Data Protection Regula-
tion. Brussels, Belguim: European Union Data Protection, 2023. [On-
line]. Available: https://edps.europa.eu/data-protection/data-protection/
legislation/history-general-data-protection-regulation en

[38] A. Schwartz, “Regulating for rationality,” Stanford Law Review, pp.
1373–1410, 2015.

[39] B. Lurger, C. Vogrincic-Haselbacher, F. Caks, J. Anslinger, I. Dinslaken,
and U. Athenstaedt, “Consumer decisions under high information load:
How can legal rules improve search behavior and decision quality?”
Available at SSRN 2731655, 2016.

[40] G. Howells, “The potential and limits of consumer empowerment by
information,” Journal of Law and Society, vol. 32, no. 3, pp. 349–370,
2005.

[41] K. A. Hallgren, “Computing inter-rater reliability for observational
data: An overview and tutorial,” Tutorials in quantitative methods for
psychology, vol. 8, no. 1, p. 23, 2012.

[42] J. Wei, X. Wang, D. Schuurmans, M. Bosma, b. ichter, F. Xia, E. Chi,
Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in
large language models,” in Advances in Neural Information Processing
Systems, vol. 35. Curran Associates, Inc., 2022, pp. 24 824–24 837.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf

[43] P. L. Gorski and L. L. Iacono, “Towards the usability evaluation of
security apis.” HAISA, vol. 10, pp. 252–265, 2016.

[44] J. Dev, “Putting privacy on the map,” 2023.
[45] Privado. [Online]. Available: https://github.com/Privado-Inc/privado
[46] R. A. Maxion and R. W. Reeder, “Improving user-interface depend-

ability through mitigation of human error,” International Journal of
human-computer studies, vol. 63, no. 1-2, pp. 25–50, 2005.

[47] K. Vaniea, Q. Ni, L. Cranor, and E. Bertino, “Access control policy
analysis and visualization tools for security professionals,” in Sympo-
sium on Usable Security and Privacy, 2008, pp. 7–15.

[48] V. Andalibi, J. Dev, D. Kim, E. Lear, and L. J. Camp, “Is visualization
enough? evaluating the efficacy of mud-visualizer in enabling ease
of deployment for manufacturer usage description (mud),” in Annual
Computer Security Applications Conference, 2021, pp. 337–348.

[49] T. Xu, H. M. Naing, L. Lu, and Y. Zhou, “How do system administrators
resolve access-denied issues in the real world?” in Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems, 2017,
pp. 348–361.

APPENDIX A
EXPERTISE QUESTIONS AND ANSWERS

• Q1: What is the purpose of an X.509 certificate for
websites?

◦ The certificate provides encryption
◦ The certificate protects information
◦ The certificate shows the website is registered

and valid
◦ The certificate actively is secure and safe

against malicious stuff, including hackers
◦ The website is trustworthy and has proper

privacy protection and is accountable for in-
formation use

◦ I Do Not Know

• Q2: SQL injection is a technique to:
◦ Inject a malicious virus into the SQL database

engine
◦ Inject a security patch into the SQL database

engine in response to the discovery of new
threats

◦ Inject a statement that checks the database
integrity through a website

◦ Inject root user privileges to a regular user
without using the graphical user interface
(GUI) of the database

◦ Inject a malicious statement into the database
through a website

◦ I Do Not Know

• Q3: Which option is correct for the difference between
a passive and active IDS(Intrusion Detection System)?

◦ Passive IDS is software based and active is
hardware based

12

https://github.com/
https://doi.org/10.1086/267790
https://doi.org/10.1145/1837110.1837122
https://doi.org/10.1145/2335356.2335358
https://edps.europa.eu/data-protection/data-protection/legislation/history-general-data-protection-regulation_en
https://edps.europa.eu/data-protection/data-protection/legislation/history-general-data-protection-regulation_en
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://github.com/Privado-Inc/privado

◦ Passive IDS provides only alerts and active
IDS can retaliate by sending malicious code
to the attacker

◦ There are no real differences, they are just
brand names

◦ Passive IDS is included in a Firewall while
active IDS is a standalone network component

◦ Active IDS can reprogram the Firewall and
passive IDS does not

◦ I Do Not Know

• Q4: Without any other changes in the default settings
of a web server, what can the motivation for closing
port 80 be?

◦ Block incoming XMLhttp Request
◦ Block File Transfer Protocol daemon
◦ Block Hypertext Transfer Protocol daemon
◦ Block incoming and outgoing requests from

SMB/CIFS clients
◦ Block Hypertext Transfer Protocol Secure dae-

mon
◦ I Do Not Know

APPENDIX B
VARIABLES AND CATEGORY DATASET

These are the categories of data selected as privacy sensi-
tive from the GDPR and the CCPA.

CATEGORIES Variables
Location addr, address, latitude, locs, long
Unique device ID addrinfo, api key, gdf mask, input ips, pings
Demographics age, gmap3, mdy, sender, yrmtdy
Internet traffic browserhistory, his, session cookie structure, ses-

sion cookie value
Individual identifier driver, email, name, password, username
Employment employees, new empID, profile, skill
Biometrics face, face locations, known face encodings
Education institution
Multimedia data m3u8 url, MP4ASampleEntryBox, stream
Financial information online bank statement provider, tax, transaction id,

PAYMENT TOKEN, paypal mapping id

The CCPA lists the following data categories.
(A) “Unique identifier” or “unique personal identifier” means a
persistent identifier that can be used to recognize a consumer, a
family, or a device that is linked to a consumer or family, over
time and across different services, including, but not limited to,
a device identifier; an Internet Protocol address; cookies, bea-
cons, pixel tags, mobile ad identifiers, or similar technology;
customer number, unique pseudonym, or user alias; telephone
numbers, or other forms of persistent or probabilistic identifiers
that can be used to identify a particular consumer or device
that is linked to a consumer or family.
(B) Any personal information described in subdivision (e) of
Section 1798.80.
(C) Characteristics of protected classifications under California
or federal law. Race, age, gender, orientation, religion,
(D) Commercial information, including records of personal
property, products or services purchased, obtained, or consid-
ered, or other purchasing or consuming histories or tendencies.
(E) Biometric information.
(F) Internet or other electronic network activity information,
including, but not limited to, browsing history, search history,
and information regarding a consumer’s interaction with an
internet website application, or advertisement.

(G) Geolocation data.
(H) Audio, electronic, visual, thermal, olfactory, or similar
information.
(I) Professional or employment-related information.
(J) Education information, defined as information that is not
publicly available personally identifiable information as de-
fined in the Family Educational Rights and Privacy Act (20
U.S.C. Sec. 1232g; 34 C.F.R. Part 99).
(K) Inferences drawn from any of the information identified
in this subdivision to create a profile about a consumer
reflecting the consumer’s preferences, characteristics, psycho-
logical trends, predispositions, behavior, attitudes, intelligence,
abilities, and aptitudes.
(L) Sensitive personal information.

The GDPR identifies the following data categories, stating,
‘Sensitive personal information means’:
(1) Personal information that reveals:
(A) A consumer’s social security, driver’s license, state iden-
tification card, or passport number.
(B) A consumer’s account log-in, financial account, debit
card, or credit card number in combination with any required
security or access code, password, or credentials allowing
access to an account.
(C) A consumer’s precise geolocation.
(D) A consumer’s racial or ethnic origin, religious or philo-
sophical beliefs, or union membership.
(E) The contents of a consumer’s mail, email, and text mes-
sages unless the business is the intended recipient of the
communication.
(F) A consumer’s genetic data.
(2)
(A) The processing of biometric information for the purpose
of uniquely identifying a consumer.
(B) Personal information collected and analyzed concerning a
consumer’s health.
(C) Personal information collected and analyzed concerning a
consumer’s sex life or sexual orientation.

13

	Introduction
	Background and Related Work
	Privacy in the Permissions Landscape
	Security Errors in Code

	Methodology
	Data Acquisition
	Experiment Design
	Recruitment and Participants

	Results
	Sensitivity Identification
	Sensitive Similarity for Category and Variables
	Agreement on Variable Sensitivity
	Large Language Models
	Results Summary

	Discussion
	Future Work
	Conclusion
	References
	Appendix A: Expertise Questions and Answers
	Appendix B: Variables and Category Dataset

