Analysing Privacy Risks in Children’s Educational
Apps in Australia

Sicheng Jin, Rahat Masood, Jung-Sook Lee, and Hye-Young (Helen) Paik
University of New South Wales
Email: {stefan_zalkoszin.jin, rahat.masood, js.lee, h.paik} @unsw.edu.au

Abstract—The integration of educational technology (edtech)
into primary and secondary schools has substantially accelerated,
making digital applications core components of modern learning
environments. While ostensibly beneficial, these apps introduce
substantial privacy and security risks for children, frequently
through opaque data collection and sharing practices. However,
existing research on children’s applications has predominantly
relied on automated dynamic analysis tools which fail to replicate
authentic human behaviours, such as navigating parental gates,
configuring privacy settings, or specifically claiming as student
or teacher. Furthermore, prior studies have largely overlooked
the accessibility of privacy policies for non-legal experts and
do not reflect the current practices of Australian education
departments. This paper presents a comprehensive analysis of
approximately 200 Android applications sourced from both
Australian school recommendations and the Google Play Store’s
”Kids” and “Educational” categories. Our methodology follows
three-stepped approach: (1) static analysis of application code;
(2) dynamic analysis of live network traffic to observe real-world
data transmissions; and (3) textual analysis of privacy policies to
assess their readability and compare their disclosures against
observed behaviour. The findings indicate that a substantial
subset, 46% of apps, still engage in risky data practices, such
as transmitting persistent identifiers not explicitly mentioned in
their privacy policies. Additionally, these policies are typically
written at a reading level above that of the average Australian
parent. Our analysis shows that only 3% of privacy policies
meet the threshold of being “fairly easy” to read, leaving most
apps effectively inaccessible for parents. Policies rarely matched
practice: only about 1 in 4 apps were fully consistent, while the
remainder showed partial or conflicting disclosures, often omit-
ting the information about third-party recipients and timing of
collection. The vast majority (89.3%) of apps initiated outbound
connections before any user activity on the apps. These findings
offer crucial insights for educators, parents, developers, and
policymakers in Australia and abroad to make informed decisions
about selecting apps for children and shaping appropriate policy
frameworks for educational apps.

I. INTRODUCTION

Australian K-12 education is now deeply digital. The use
of digital products for educational delivery and administra-
tive services is ubiquitous in Australian schools [1]]. In the
Organisation for Economic Co-operation and Development
(OECD) Programme for International Student Assessment
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(PISA) 2022, Australia is one of the few countries with at least
one computer per student (compared to the OECD average of
0.81). Moreover, the South Australian department of education
now mandates device-to-student ratios of 1:3 in primary and
1:1 in secondary by the end of 2026, institutionalising digital
tools in everyday learninﬂ Similarly, in NSW and Victoria,
system-level policies and school-level Bring Your Own Device
(BYOD) programs normalise the use of third-party educational
apps [2]. For example, NSW public schools commonly publish
recommended iPad app lists for BYOD classes [3], [4], [5]
and in Victoria, the department maintains a central software
catalogue (Arc/eduSTAR) that schools draw on for classroom
software [6]], [7]].

While these educational technologies offer advantages such
as personalised learning and improved content delivery, they
also participate in a data economy, in which the collection
and commercialisation of user data is the main source of
profit [1]]. Many edtech companies engage in data collection
practices that threaten the right to privacy of millions of
children, collecting data well beyond what is necessary or
appropriate, and in many cases, sharing this data with a
murky list of third parties [8]], [9]. This situation is worsened
by the fact that the privacy policies, which are supposed to
disclose these data collection practices, are often inconsistent
to the actual behaviour of the app [10] and are written with
such a high degree of legalism that they are impossible to
understand for most users. Australian education is a regular
breach target: in January—June 2024 the OAIC recorded 44
notifications from the Education sector, placing it among
the top five most-affected industries [L1]. A concrete case
was the NSW Department of Education cyberattack in 2021,
which forced systems offline ahead of Term 3 [12]]. Risks
also arise within the learning tools themselves: Human Rights
Watch reported 145/163 (89%) government-endorsed EdTech
products surveilled or had the capacity to surveil children [[13],
and a 2022 credential-stuffing incident on Seesaw allowed
explicit links to be broadcast via school-home messaging [14].
These situations raise a major conundrum for schools and
parents, which have a legal and moral obligation to protect
the digital privacy of children.

Attributing these risks is a major challenge for educators
and parents, who often lack the technical capability to interpret
the black-boxed data practices of edtech vendors, resulting in
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a “culture of compliance” rather than best-practice protection
of students’ rights [1f]. Prior studies identified widespread
potential COPPA violations, such as the sharing of persistent
identifiers and poor use of third-party SDKs [8]], [15]. While
these studies have established valuable global benchmarks,
several critical considerations have been largely overlooked
by prior studies. Firstly, existing researches on child-focused
applications mostly relied on automated dynamic analysis
tools [15] which had distant usage patterns compared to a real
human user. Secondly, prior works predominantly focused on
the international extent, with less regard to the specifications
of the Australian curricula. We also noticed that few works
addressed the readability of policies, on whether they reflect
the average literacy level of Australian parents.

there is a need for a focused and up-to-date analysis of the
specific apps used by Australian children. These are the apps
that schools actively adopt, operate within Australia’s distinct
legal and assurance frameworks (such as the Privacy Act and
Safer Technologies 4 Schools (ST4S), and remain compara-
tively under-examined relative to those in US and EU contexts,
meaning that insights from such an analysis would directly
inform local procurement and child-safeguarding decisions.

In this paper, we make a contribution to the literature by
closing these gaps. We conduct an analysis of around 200
Android apps that are relevant to Australian children. Our
methodology involves three distinct analytical techniques to
provide a holistic view of each app’s behaviour: (i) Static
Analysis of the application’s source code to identify potential
risks; (ii) Differential Dynamic Analysis of live network traffic
to observe the app’s actual data transmission behaviour in
different states; and (iii) Privacy Policy Analysis to assess
readability using quantitative metrics such as Flesch-Kincaid
Grade Level and Gunning Fog Index, and to detect discrep-
ancies between disclosed practices and observed behaviours.
Through this comprehensive approach, we seek to answer the
following research questions:

o« RQI1: How do Australian-curriculum—focused apps cur-
rently handle user privacy in their design and operation,
including their practices around data disclosure to third
parties?

« RQ2: How prevalent are common security misconfigura-
tions, such as active hardcoded secrets or insecure data
transmission, in Australian-curriculum—focused apps?

e RQ3: To what extent do the privacy policies of
Australian-curriculum—focused apps accurately reflect
their actual data collection practices?

e RQ4: How accessible are the privacy policies of
Australian-curriculum—focused app? and to what extent
are the observed behaviours of these apps aligned with
their privacy policies?

Our analysis reveals a pervasive ecosystem within Aus-
tralian classrooms. We find that 89.3% of apps initiate idle
telemetry transmitting data to third parties immediately upon
first opening and before any user consent can be obtained.
Furthermore, 83.6% of apps transmit persistent identifiers

(such as Advertising IDs or Firebase IDs), often linking
them across sessions in ways that potentially violate COPPA
standards. Contrary to expectations, apps explicitly branded
for children (e.g., ”Kids,” ”Preschool”) were not safer than
general-audience tools; in fact, they were less likely to align
with their privacy policies, with 76% of child-targeted apps
exhibiting undisclosed or contradictory data practices. Finally,
we find that informed consent is structurally impossible: 97%
of privacy policies required university-level reading skills,
causing them inaccessible to the average parent or teacher.

The remainder of this paper is structured as follows. Sec-
tion [[I] reviews the regulatory background and related literature
work. Section details our four-pronged data collection
methodology. Section presents our findings for each re-
search question. Section [V| discusses the implications of our
findings, and Section [VI] concludes the paper.

II. BACKGROUND AND RELATED WORKS

This study sits between privacy regulation, technical anal-
ysis of app behaviours, and the socio-technical context of
educational technology. We provide an overview of the legal
and policy landscape around children’s data, followed by a
review of the academic literature on the technical analysis
of app behaviours, the privacy challenges in education in
particular, and the views of parents and developers.

A. Legal and Platform Policy Frameworks

Children’s data online is protected by a mosaic of national
laws and platform policies. Building on the pioneering work
of the Children’s Online Privacy Protection Act (COPPA),
the former stipulates rigorous requirements for operators of
online services directed at children under the age of 13.
This includes clearly describing data practices and obtaining
verifiable parental consent before collecting most forms of
Personally Identifiable Information (PII) [8]]. The PII term is
defined widely to include not only contact information and
geolocation, but also persistent identifiers such as cookies or
device IDs if they are used to recognise a user over time and
across services [9].

Recognising both the legal requirements and public pressure
stipulated by these regulations, app marketplaces have devel-
oped their own policies. To participate in the “Designed for
Families (DFF)” program, developers of child-directed apps
must attest to their compliance with COPPA [15]. Perhaps
more concerning, in compliance with COPPA, the DFF pro-
gram restricts the collection of the Android Advertising ID
(AAID) and precise location data from children and compels
the use of only Google-certified ad Software Development Kits
(SDKs) [15]. Additionally, the App Store Review Guidelines
for apps in the Kids Category prohibit containing third-party
advertising or analytics, and transmitting personally identifi-
able information to third parties [16]].

The General Data Protection Regulation (GDPR) (Regula-
tion (EU) 2016/679) is the European Union’s comprehensive
data-protection law. [[17] It governs the processing of personal



data of individuals in the EU/EEA and can apply extraterrito-
rially when organisations offer goods/services to, or monitor
the behaviour of, people in the EU/EEA. It sets core principles
(e.g., lawfulness, fairness, transparency, purpose limitation,
data minimisation) and requires a lawful basis for processing.
The GDPR also includes heightened protections for children
(e.g., a “digital consent” age set by Member States between
13 and 16). We mention the GDPR here only to contextualise
terminology commonly used in app privacy policies; our study
does not rely on, or assess, GDPR compliance.

In Australia, the Privacy Act 1988 provides the overarching
legal framework for data privacy. While not child-specific,
its principles guide the handling of personal information.
More specific guidance is provided by initiatives such as
the Safer Technologies 4 Schools (ST4S) framework, which
provides a national standard for assessing the security and
privacy of edtech products [1l]. These frameworks may lead
to a “culture of compliance” rather than a proactive adoption
of best practice, and their effectiveness is questioned in the
Australian context, characterised by its federated education
system.

B. Technical Analysis of Children’s Apps

Our study combines both static and dynamic analysis. Static
analysis examines an app’s code to identify potential risks,
such as embedded trackers, while dynamic analysis inspects
the app’s live network traffic to confirm whether data is
actually transmitted. This combined approach has been widely
used in prior longitudinal studies.

Reyes et al. [8] ran one of the first large-scale dynamic
studies on COPPA compliance and found that, of the 5,855
children’s apps analysed, a majority were likely to be in
violation of the law due to the use of advertising and analytics
SDKs. They found that 59% of the apps tested transmitted the
AAID, often in conjunction with non-resettable identifiers, and
40% transmitted sensitive data over insecure (non-TLS) con-
nections. Follow-up studies found similar widespread issues:
for example, Sun et al. [9]] ran a 2021 dataset and found that,
among “Family” apps, over 81% used one of the trackers not
allowed by Google’s policies.

More recently, Alomar et al. [15] offered an important
update based on 2023 data and demonstrated the effect of
stronger platform policies. They found a “drastic decrease”
in violations: specifically AAID transmission dropped from
59% down to 8.8%, and transmission of non-TLS data dropped
to less than 1%. However, they concluded that the improper
use and misconfiguration of third party SDKs was the main
source of privacy risks. This finding is consistent with those
of smaller-scale traffic studies of Android and iOS apps
[1O], [16]]. Our work extends this line of technical auditing
significantly, through a refined methodology to a new and
specific corpus of educational apps.

C. Challenges and Concerns of EdTech Ecosystem

The use of technology in schools is not benign. The
large-scale uptake of platforms provided by major technology

companies such as Google and Microsoft has been termed the
“Googlization” of education and has resulted in dependencies
being formed and corporate values of efficiency and productiv-
ity being inscribed into pedagogy [18]. These platforms have
a business model of “surveillance capitalism” [19]] in which
the commodity is student and other user data. While many
services may be provided to schools for free or for a nominal
fee, for the back-end business model of these platforms, it
is common to collect massive amounts of student data for
commercial purposes [18], [20].

This raises challenges for schools, which typically lack
the capacity to undertake effective privacy and security as-
sessments [[L], [20]. This gap in resources can result in an
“overtrust” in both big tech and the privacy claims of small
edtech vendors. In addition, the responsibility for compliance
can be spread. While the GDPR places the responsibility with
the school as data controller, schools may in turn delegate
this trust and responsibility to edtech vendors, creating gaps
in accountability [21], [20].

Many countries have established formal assessment or
guidance frameworks to examine the privacy and security
of edtech used. In Australia, ST4S provides privacy and
security asssessment of digital products that target children
and schools, and publishes guidance to vendors [22], [23],
[24]. The eSafety Commissioner’s Safety by Design program
prescribes design-level safety principles and has produced
toolkits for schools [25]], [26]]. There is also a Framework
for Generative Al in Schools, that defined six principles and
25 guiding statements for the use of safe and ethical Al in
schools [27]].

In the UK, the Age-Appropriate Design Code requires child-
targeting services to consider the best interests of children
when designing the default settings [28]], and the Department
for Education Cyber Security Standards inform security base-
lines to schools [29]. In the US, COPPA serves as the guideline
for child-directed software services. It states that services
need verifiable parental consent, and should treat persistent
identifiers as personal information [30]], [31]]. Schools also
operate under FERPA and PPRA which are designed by
the US Department of Education’s Student Privacy Policy
Office. There are also voluntary/third-party programs like the
Student Privacy Pledge and Common Sense Privacy Program
that evaluate practices [32], [33]. In Japan, the Ministry of
Education issues an Education Information Security Policy
Guideline for schools to develop security policies [34]].

These frameworks, although well established, present sev-
eral issues. For example, most do not require independent
validation of runtime telemetry across real devices or realistic
usages. In terms of the policy texts, they often are difficult to
access and lack plain-language summaries, with no regard to
the average education level of parents in their respective popu-
lations. The policies also focus towards different perspectives,
and not all are compulsory, therefore producing “grey areas”
for the apps not specifically targeting children.



D. The HCI Perspective on Children’s Privacy

While our work conducts a technical audit of privacy
practices, recent HCI literature highlights the user-centric
challenges in this domain. Wang et al. [35] identified a
disconnect between parents’ privacy concerns and their actual
management practices, often driven by the unreadability of
privacy policies, which is a claim our readability analysis
empirically supports. Similarly, Zhang et al. [36] argue that
the unclear distinction between child and parent users in app
design contributes to privacy vulnerabilities. Our findings on
widespread pre-interaction data collection provide the techni-
cal evidence underpinning these user-facing challenges.

E. Perspectives of Parents and App Developers

Understanding the privacy landscape requires consideration
of the perspectives of the human actors involved. Research into
parents’ views found a consistent set of top concerns: screen
time, inappropriate content, and contact with strangers [21].
Commercial data collection was a concern but less prominent.
Parents delegate trust to schools/educational authorities to vet
the technologies their children use, assuming that if a app
is approved by the school, it is “safe”. This delegation of
trust and responsibility, combined with a lack of technical
knowledge, meant that parents did not typically engage with
trust settings or privacy policies [21].

Similarly, several studies have been conducted on children’s
online-privacy. Qualitative studies show that children often
frame privacy mainly as interpersonal control while under-
estimating institutional and commercial data collection [37],
[38]. Studies with young children found that they understood
data collection in terms of its immediate benefits (e.g. saving
their progress in a game), and viewed privacy in an inter-
personal way (i.e. keeping a secret from people) rather than
an institutional one (i.e. corporate data collection) [9]. Their
understanding was driven by surface-level visual cues in the
interface of an app, and data collection that occurred invisibly
in the background was, conceptually speaking, non-existent
to them. This shows that children’s own conceptualisations of
privacy are still developing.

Prior work on children’s developing privacy literacy,
and ecosystem level risks in child-directed apps, moti-
vate our focus on minors and our measurement of pol-
icy—behaviour alignment, where such works propose concrete,
age-appropriate learning objectives to help youth reason about
data flows across contexts. [39] Recent dyadic interviews
with youth—parent pairs further reveal where parental guidance
helps (and where gaps persist), underscoring that privacy and
security knowledge co-evolves within families [40]. On the
ecosystem side, app-focused evidence shows persistent risks:
a scoping review finds many child-related apps exhibit weak
privacy/security practices and manipulative commercial fea-
tures [41], while a 2023 traffic analysis documents extensive
data sharing among children’s i0OS apps [16]. Together, these
studies justify a dedicated subsection on children and motivate
our own measurement of policy—behaviour alignment in apps
targeting (or routinely used by) minors [42].

On the other side of the app ecosystem, the same is true
for developers. Studies engaging with developers directly have
shown that, while most express a desire to protect children’s
privacy, they are limited by powerful systemic factors [43].
The main constraint is the prevailing business model of the
app economy, which is heavily advertising-based. Develop-
ers report that monetisation options other than ads are not
financially viable due to competition in the app store and
users’ expectations of free content [43]. As a result, they are
forced to incorporate third-party ad SDKs, even if they are
aware of the privacy costs. In addition, developers struggle
with a lack of clear, actionable design guidelines, and find
the landscape of third-party libraries opaque and difficult to
navigate, defaulting to popular (but data-intensive) libraries
from the big tech companies.

The previous works mentioned above primarily rely on static
analysis or single methods. In contrast, our study attempted
to combine four types of examination: Static inspection on
APKs; Dynamic runtime analysis; policy-behaviour alignment
checks and readability analysis of the privacy policies. Unlike
previous studies, where the corpus of apps are obtained from
one single store, our corpus is collected from various sources,
including Australian school websites, educational department
websites, and the Schools Catalogue Information Service.
Therefore, our results correlate strongly to the Australian con-
text. We also investigate further from, for example, the question
of whether trackers are present or not, to the examination of
when do data flows occur; what identifiers are sent, and who
receives them.

III. DATA COLLECTION

To ensure our analysis is both comprehensive and repli-
cable, we developed a multi-stage data collection procedure,
involving static and dynamic analysis of the apps, as well as
the analysis of the privacy policies.

A. App Corpus Curation

We collected a list of 200 unique child or student-focused
Android applications relevant to Australian children [44]]. To
achieve a sample that reflects the apps formally used in edu-
cation, such as the ones endorsed by relevant authorities, and
those available on the general market, we used an elicitation
distribution as follows.We collected these applications from
a range of publicly accessible and educationally endorsed
sources, including State Department of Education Websitesﬂ
, the Schools Catalogue Information Service (SCIS , the
Google Play Stor, and Australian schools’ official websites
listing recommended educational apps. More detailed distribu-
tion can be seen in Table [I} The categories of the applications
were modified based on Victoria’s official catalogue Arc[7],
with minor changes to facilitate the diversity of applications
within our corpus.

2For example: NSW Department of Education — https://education.nsw.gov.
au ; Victorian Department of Education — https://www.education.vic.gov.au

3https://www.scisdata.com

4https://play.google.com
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TABLE I
APP COUNTS BY PRIMARY CATEGORY AND SOURCE

Category Count  Category Count
Literacy/ELA 36  Edutainment/Game 15
Math 26  Coding/Robotics 9
Classroom Tools 20  Reference/Dictionary 8
Music/Art 16 Assessment/Quiz 5
Science/STEM 19  Communication 3
Library/eBooks 9  Social Studies 3
Languages 16 LMS/Portfolio 1
Wellbeing/SEL 11 Utilities 4
Source of Apps

SCIS 40 (20.0%)  School Sites 56 (28.0%)
Depart. Sites 35 (17.5%) Play Store 69 (34.5%)

B. Data Collection Pipeline

As stated, for the educational applications we examined, the
corpus covers popular learning tools recommended by various
Australian secondary schools and educational departments,
listings in the Australian SCIS, and high-ranking “Kids” and
“Educational” apps from the Google Play Store. We gathered
the set of analysis with the following pipeline illustrated in
Figure [I}

1) Static Analysis: We first collected static data using
the Mobile Security Framework (MobSF) [45] to generate
reports for each app. MobSF is an open-source toolkit for
mobile app security testing. For Android APKs, it performs
static, source-less analysis by decompiling the package and
extracting manifest and code artefacts. From this, it enumerates
requested permissions, embedded third-party packages/SDKs
and common issues such as hardcoded API keys/tokens. In
reports, we could identify potential risks by listing embedded
third-party libraries, the requested permissions in the app’s
AndroidManifest.xml, as well as security vulnerabilities
such as the hardcoded API keys. We also collected the
corresponding privacy policies of the apps from their websites.

2) Dynamic Analysis: We then performed dynamic analysis
where each app was installed via the Google Play store
on a rooted Pixel 8a Pro emulator running on a Windows
11 computer. We employed Burp Suite to act as the Man-
in-the-Middle proxy to intercept and decrypt the outbound
HTTPS traffic from the emulator. Some applications use SSL
pinning, which potentially could prevent Burp Suite from
capturing the traffic, as the application would not trust Burp’s
certificate. We employed PCAPdroicﬂ an on-device proxy tool
that can bypass this issue. Inspired by differential analysis
methodologies [46], we generated 2-3 distinct traffic logs per
app, to capture behaviour in different contexts:

o Stage 1 (S1): We recorded approximately 5 minutes of
network traffic immediately from the app’s first launch
after installing with no user input. We chose 5 minutes
window, as we noticed in early experimentations, that
first-run SDK and tracker initialisations (e.g., config

Shttps://emanuele-f.github.io/PC APdroid/

fetches, token exchanges, etc.) typically start within the
first 3 minutes of the app’s launching.

o Stage 2 (S2): We simulated user interaction by opening
the app and manually navigating through it for 5-10
minutes, intentionally accessing features that appear to
be related to privacy, such as account settings, privacy
settings, etc., We also explored normal functionalities of
the apps, such as the games or lessons, thus imitating
the behaviour of a normal adult user, such as a parent or
teacher.

o Stage 2b (S2b): If the app allows two types of logins
e.g., child and parent/teacher accounts, we revisit it to
imitate the behaviour of a child user.

After capture, each app’s runtime traffic was exported as
either a Burp XML HTTP history (when TLS interception
via Burp Suite succeeds) or a PCAP file (when we switch
to PCAPdroid to bypass SSL pinning). We kept both formats
because they originated from different toolchains; for anal-
ysis, we parsed them into a single, normalised schema so
downstream checks were identical regardless of source. For
each app, we retained up to four artefacts: i). The S1 and S2
logs; ii). S2b log if applicable; (iii) the Stage 2b (S2b) child-
behaviour log when a child account path exists, and (iv) the
MobSF static report.

To discover the discrepancies between what the static re-
ports claim and what the dynamic logs reveal, we integrated
both findings in three steps. First, we mapped each con-
tacted domain (e.g., app-measurement.com, sentry.io) to its
SDK/service family. Second, we cross-checked whether those
SDKs were present in MobSF outputs (packages, classes,
manifests). Third, we annotated identifier/timing events, e.g.,
co-occurrence of AAID and FID/Installation ID, and whether
transmissions occurred during idle (S1) vs interactive (S2)
or in child (S2b) sessions. We used LLMs (Gemini 2.5 Pro,
ChatGPT-5) to assist in analysing the dynamic logs and static
reports, and producing reviewer-facing summaries.

3) Privacy Policy Analysis: We then proceeded to source
the privacy policy texts of the tested applications, by manually
searching and going through the official websites of the
tested applications or the developers, then saving the links
to the policies in an excel sheet. Some of the applications /
developers did not have an official website and therefore we
could not capture the policies for those. We then used these
links to access the policies, and saved them in .txt files. We
used multiple python libraries to examine the readability of
the policy texts, for example, ranking with the Flesch-Kincaid
test, SMOG index and Gunning Fog. We also compared the
policies with the dynamic logs to check discrepancies between
the traffic and the policy.

IV. RESULTS

In this section, we explain the empirical findings across the
four types of analysis: static and dynamic analysis, policy-
behaviour alignment and readability.
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Fig. 1. Data Collection Pipeline

A. Static Analysis

1) Third Party SDKs: Our static analysis reveal that there is
widespread embedding of third-party components, with 67.9%
of applications containing at least one identifiable tracker
or analytics SDK, such as Firebase, AdMob, Unity
Analytics, Facebook SDK, etc. Across our corpus, the
density of third-party analytics/ads integrations is modest: we
observe a mean of 2.65 static tracker SDKs per app and 2.68
distinct runtime tracker domains. The top 10 most declared
trackers are shown in Table

TABLE 11
Topr 10 StATIC SDK/TRACKER FAMILIES IN APKS

SDK/Tracker Apps (count) % of Apps
Firebase 125 62.6
Crashlytics 67 335
Facebook SDK 49 24.5
Unity Analytics 32 16.1
Google Ads 30 14.8
AppsFlyer 23 11.6
RevenueCat 15 7.7
Adjust 12 5.8
Sentry 9 4.5

TABLE III
Top HARDCODED KEY/TOKEN AND SUBTYPES

Item Apps (count) % of Apps
Any hardcoded key/token 158 79
Firebase 64 32
Google x-goog-api-key 22 11.0
Crashlytics token/key 17 8.5
RevenueCat key / token 9 4.5
Google API key (generic) 7 3.5

Notes: ”Any hardcoded key/token” counts an app once if any secret subtype
is present. Subtypes are not mutually exclusive; therefore, subtype counts
need not sum to the “Any” total.

2) Hard-Coded API Keys: Hard-coded API keys or tokens
refer to credentials that are directly embedded within an
application’s code, such as in manifests, resource files, or
string constants compiled into classes. Because APKs are
easily decompiled, these secrets can be extracted, exposing the
application to several security risks, including, i) unauthorised
use of paid APIs or quotas leading to cost or fraud, ii) privilege

escalation against a vendor’s backend if the key provides
access to sensitive endpoints, iii) account takeover of telemetry
systems (e.g., falsifying crash or analytics data), and iv) cross-
application compromise when the same key is reused across
products or environments. As shown in Table our results
indicate that 79% of the analysed apps contained such hard-
coded API keys or tokens—most commonly Google API
keys found within Firebase or Analytics headers. The
most prevalent secret types are Firebase API keys (64/200;
32.3%) and Google x-goog-api-key (22/200; 11.0%).

In Table we demonstrate how prevalent are hard-coded
secrets in each category of app. The highest rate appears in
Library/eBooks (9/9; 100%), Math (24/26; 92.3%), Languages
(15/16; 93.8%), Wellbeing/SEL (10/11; 90.0%) and Edutain-
ment/Game.

In terms of the number of secrets per app, the most typical
case , i.e. the most frequent pattern is a single exposed
key (typically Firebase) used for analytics/configuration,
observed in 138/200 apps (69.0%), however, about 1 in 10
apps (20/200; 10.0%) embed multiple secret types.

The drastic difference between categories could be at-
tributed to the behavioural differences of the apps. For ex-
ample, Library and Reference apps exhibited the highest
percentage of exposed secrets (100%), which is likely due to
their reliance on external cloud services to retrieve dynamic
content, leading developers to embed cloud storage credentials
directly into the client-side code to assist with data fetching. In
contrast, music and art apps typically function as offline tools
to compose music or paint pictures which require minimal
connectivity.

3) Sensitive Information: 39.4% of apps requested sen-
sitive permissions that were never utilized during dy-
namic testing. The most common ’oversearched’ permissions
were CAMERA (16.8%), RECORD_AUDIO (14.2%), and
WRITE_EXTERNAL_STORAGE (13.5%).

Research Takeaway: Static analysis reveals a “risk-by-
design”footprint. Even before an app is run, the widespread
embedding of third-party trackers (67.9%) and hard-coded
secrets (79%) creates a large, latent attack surface. This,
combined with over-privileged permission requests (39.4%
unused sensitive permissions), suggests that developer con-
venience and reliance on third-party libraries often override



TABLE IV
OVERALL DISTRIBUTION OF HARD-CODED SECRETS BY CATEGORY
(APPS WITH >1 SECRET; CATEGORIES WITH >5 APPS)

Category Apps (n) With Prevalence
Secret (n) (%)
Library/eBooks 9 9 100.0
Languages 16 15 93.8
Math 26 24 92.3
Wellbeing/SEL 11 10 90.0
Edutainment/Game 15 13 86.7
Reference/Dictionary 8 7 87.5
Science/STEM 19 16 84.2
Coding/Robotics 8 6 75.0
Classroom Tools 20 15 75.0
Literacy/ELA 36 24 66.7
Music/Art 16 9 56.3

the principle of data mimimisation.

B. Dynamic Network Analysis

Dynamic testing confirmed that the majority of apps trans-
mit data almost immediately after installation. 89.3% of
applications generated outbound traffic before any user in-
teraction, for example, contacting Firebase Installations,
Google Analytics or AdMob endpoints within seconds
of launch. 83.6% transmitted at least one persistent identi-
fier (e.g. Firebase Installation ID, Advertising ID or
Crashlytics Installation ID). 86.4% apps disclosed some
form of device fingerprints.

1) Idle Traffic - Stage SI: As seen in Table
a striking 89.3% of applications initiated outbound
connections before any user behaviour, sometimes within
the first one to two seconds after installation. This “idle
telemetry” usually targets analytics destinations such
as firebaseinstallations.googleapis.com,
app-measurement. com or
config.uca.cloud.unity3d.com. Several apps,
including Math Lingo and Makers Empire 3D began
exchanging configuration packets while still displaying
the splash screen, well before any privacy prompt of
terms-of-service acceptance appeared.

From a consumer perspective, early network connections
may appear to be standard ’app startup’ behaviour. However,
our findings show these connections are not for functional
assets but for telemetry and profiling. Under Australian Privacy
Principles and COPPA, data collection should be governed by
informed consent; when 89.3% of apps transmit data before a
user can even open the privacy policy, the "notice-and-consent’
framework fails entirely. This effectively creates a shadow
handshake that identifies and profiles a child before they or
their parents have any agency in the process.

2) Interactive Traffic - Stage 2: During S2, most apps
continued the S1 identity and expanded with first-party feature
toggles and telemetry frameworks. For example, Sentry
and Amplitude logged feature-use and monetisation events
(e.g., paywall impressions/flows) with SDK metadata, and
sent exception/performance envelopes during user flows. 96%

apps contacted at least one external domain during the
testing, and most of these domains correlate closely to
Google (Firebase/Crashlytics, etc.), Unity, Meta,
Amplitude, etc. In terms of identifiers and fingerprints, S2
typically develops on top of the S1 baseline (e.g., app version,
feature flag).

Using the same app-category taxonomy as elsewhere in
the paper, we computed S2 (interactive use”) metrics by
category (Table [VI). Contact with analytics endpoints is most
prevalent in Assessment/Quiz (100%), Math (92.9%), and
Library/eBooks (83.3%). Advertising/marketing endpoints are
most common in Music/Art (30.0%), Literacy/ELA (24.0%),
and Edutainment/Game (20.0%). Persistent identifiers (AAID,
FID, or comparable device IDs) are widespread, with As-
sessment/Quiz (100%), Coding/Robotics (100%), and Sci-
ence/STEM (94.1%) showing the highest rates. As a linkability
indicator, we report the share of apps where AAID and FID
both appear somewhere in the dynamic record (e.g., Music/Art
90.0%, Science/STEM 94.1%, Wellbeing/SEL 87.5%).

As seen in Table [V and we stratified S2 behaviours
by subject category and child-facing branding (titles containing
key words such as Kids/Preschool/ABC/Phonics/Jr). Telemetry
remains prevalent in both groups (kids 78.9%, general 77.7%).
Ad-tech signals are somewhat less frequent in child-facing
titles (kids 42.1%, general 48.5%). Explicit S2 mentions of
persistent identifiers appear at low single-digit rates (kids
5.3%, general 7.8%), and location references are rare.

3) Child-Behaviour - S2b: We treat S2b as a separate user
on a new installation, not a continuation from S2, therefore
using a separate column in Table [V| We gathered 20 apps that
featured particular options to register as an underage user. In
S1+S2, identity is already established at idle for most apps
(global: identifiers in 83.6%; idle transmissions 89.3%). S2b
goes further for half the titles, where we see a new Firebase
Installation (new FID) or a new auth token for the same
FID at the start of the child path. This indicates that instead
of only continuing an existing analytics identity, S2b creates
or refreshes the identifier set for a second user, multiplying
identity records per device and widening linkage possibilities
across runs/users on the same handset. We see that less apps
in S2b expose hardcoded API keys, but the percentage of apps
transmitting persistent identifiers remained relatively similar.
In these apps with child-account options, we observe that
more would embed tracker SDKs, as well as leaking device
fingerprint fields.

These third-party SDKSs introduce concrete privacy—security
risks for children’s apps. Analytics SDKs (e.g., Firebase
Analytics, Amplitude) rely on device/installation iden-
tifiers (FID, device ID), which are persistent identifiers and
therefore “personal information” under COPPA; collection and
use outside “internal operations” requires consent and strong
governance [30], [47]], [48]. Crash reporting SDKs (e.g.,
Crashlytics, Sentry) can ingest sensitive data via custom logs,
keys, and breadcrumbs unless teams actively scrub/disable PII;
both vendors document PII-scrubbing controls, and prior large-
scale studies show sensitive information commonly appears



TABLE V
SUMMARY OF DYNAMIC ANALYSIS RESULTS BY STAGE

Metric S1+S2 (N=200)  S2b
Total apps analysed 200 20
Apps embedding > 1 tracker SDK 67.9% 85%
Apps exposing hardcoded API keys or tokens 73.6% 25%
Apps declaring unused permissions 48.6% 75%
Apps generating idle (pre-interaction) transmissions 89.3% n/a
Apps transmitting persistent identifiers (FID, AAID, etc.) 83.6% 85%
Apps leaking device fingerprint fields (any) 86% 95%

Note: The 73.6% rate for hardcoded secrets in SI1+S2 differs from the 79% previously reported (Table[ITl) as this column isolates findings observed specifically
within the combined S1 and S2 interaction logs. The unused permissions here include all permissions, hence higher than the previously reported 39.4%, which

only counts for sensitive ones.

TABLE VI
INTERACTIVE TRAFFIC AND RISK MARKERS BY CATEGORY OF APPS (N2>5)

Identifiers (%)

AAID+FID (proxy) (%) Unused sens. perms (%)

Category Analytics (%) Ads/Marketing (%)
Assessment/Quiz 100.0 0.0
Classroom Tools 82.4 11.8
Coding/Robotics 77.8 0.0
Edutainment/Game 73.3 20.0
Languages 72.7 18.2
Library/eBooks 83.3 0.0
Literacy/ELA 60.0 24.0
Math 92.9 14.3
Music/Art 60.0 30.0
Reference/Dictionary 50.0 0.0
Science/STEM 64.7 5.9
Wellbeing/SEL 75.0 12.5

100.0 0.0 80.0
88.2 17.6 100.0
100.0 11.1 88.9
80.0 20.0 93.3
81.8 18.2 90.9
83.3 333 100.0
80.0 24.0 88.0
85.7 14.3 85.7
70.0 10.0 90.0
87.5 12.5 100.0
94.1 353 94.1
87.5 25.0 87.5

Group Telemetry (%) Ads/AdTech (%) Persistent IDs (%) Location (%) Median runtime domains
Child-facing 78.9 42.1 5.3 5.3 1.0
General 77.7 48.5 7.8 0.0 3.0

TABLE VII
INTERACTIVE TRAFFIC (S2) BY BRANDING OF APPS.

in logs [49], [0}, [S1l]. Ads/attribution SDKs depend on
advertising or device identifiers for cross-app measurement;
Google Play’s Families Policy permits ads to children only
via self-certified ad SDKs and imposes extra restrictions for
mixed audiences [52].

4) Persistent Identifiers: We observed app- and device-
scoped identifiers that persist across sessions, such as the
Android Advertising ID (AAID/GAID)—a user-resettable,
device-wide ad identifier; the Firebase Installation ID
(FID), an app-instance identifier used across Firebase ser-
vices; and the Crashlytics installation UUID, which is an
app-instance identifier used for crash reports. Roughly 83.6%
of apps transmitted at least one persistent identifier, most
commonly the Firebase Installation ID (FID), Advertising
ID (AAID), or the Crashlytics Installation ID. These
identifiers are nominally pseudonymous but, when combined
across SDKs (e.g., an attribution SDK receiving its own
AppsFlyer ID alongside the device’s Android Advertising
ID), they allow the SDK operator to recognise the same device
across sessions and across other apps that embed the SDK.
Under COPPA, such use of persistent identifiers is treated as

collection of personal information over time and across online
services that can enable cross-session and cross-app linkage.

Traffic logs revealed multi-identifier transmissions within
the same POST payloads, a clear indication of SDK-level
correlation potential. For instance, Quizlet and Seesaw trans-
mitted both a Firebase ID and an AppsFlyer Install
ID, providing two orthogonal user anchors that third-party
processors can reconcile. This means that the FID enables
Firebase to link analytics and crash reports within a single
app installation, whereas the AppsFlyer ID, often transmitted
alongside the device-level GAID/AAID, allows AppsFlyer
to recognise and track the same device across multiple apps
that include its SDK. When several persistent identifiers are
sent together in one request, each provider gains a durable,
joinable key for that installation and, when GAID/AAID is
present, the capability for cross-app tracking. Only a small
minority (16%) confined themselves to ephemeral session
identifiers.

Additionally, 86% apps leaked detailed device finger-
prints, such as OS version, model string, locale, car-
rier name and build version. This fingerprint data is



often sent in JSON payloads like: "model":"Pixel
8 Pro", "locale":"en_AU", "density":2.625,
"osVersion": "Android 14". Such parameters, while
seemingly benign, when transmitted alongside other persistent
identifiers such as the advertising IDs, can assist in maintaining
stable user linkages as observed by Reyes et al. (2018) [8].

5) Runtime Domains: Runtime domains are the external
internet hosts an app talks to while it runs. There are two
types: first-party vendor APIs and third-party SDK backends
(analytics, crash, attribution). Runtime domains matter for
security and privacy because each extra external endpoint
expands the attack and trust surface and can expose more user
data.

Our analysis reveal that apps contact remote hosts almost
universally. 96% of apps reached at least one external
domain during the test sessions, while only 4% showed
no observable endpoints and no identifiers/fingerprints.
Among the apps that did connect, the destinations
remain highly centralised. The most frequently observed
domains across the corpus are Firebase endpoints (e.g.,
firebaseinstallations.googleapis.com,
firebaselogging—-pa.googleapis.com,
Crashlytics settings), Facebook Graph
(graph.facebook.com),

Unity config(config.uca.cloud.unity3d.com),
Google Play (play.googleapis.com),
app-measurement.com, and RevenueCat
(api.revenuecat.com). The fact that 96% of apps
reach a small set of third-party analytics/crash/attribution
providers (e.g., Google/Firebase & Crashlytics,
Meta/Facebook SDKs, Unity Analytics,
Amplitude, Sentry) indicates a concentrated telemetry
infrastructure: a few SDK operators receive data from
many unrelated apps. Prior work shows this ecosystem is
long-tailed but dominated by a handful of trackers, enabling
broad cross-service visibility for those providers [53]]. This
centralisation has broad implications. Firstly, when these SDK
endpoints receive persistent identifiers, they can recognise the
same user/device over time and across services. Secondly,
third-party libraries expand the attack and trust surface.
Empirical security work showed Android SDKs can introduce
vulnerabilities or misuse inherited permissions, amplifying
privacy risk for host apps [54].

Research Takeaway: Taken together, the runtime findings
depict an ecosystem where data disclosure precedes user
agency. Almost 9 in 10 apps initiate telemetry on boot, 5 in
6 maintain long-lived identifiers, and almost 7 in 8 export
a granular hardware profile. The median educational app
therefore operates closer to a consumer analytics client than
a classroom utility. These patterns, observed even among apps
promoted on state education portals, reveal a privacy model
that depends on user passivity and institutional trust, not on
genuine data minimisation.

TABLE VIII
ALIGNMENT DISTRIBUTION BY TARGET AUDIENCE

Target Audience  Conflict (%) Partial (%) Consistent (%) Other (%)
Child-targeted 38.1 38.1 23.8 0.0
General-audience 34.0 33.0 25.8 72

TABLE IX
POLICY COVERAGE BY CATEGORY.

Category Coverage (%)

First-Party Collection/Use 90.4
Third-Party Sharing/Collection 87.8
User Choice/Control 87.0
Data Security 79.1
Data Retention 74.8
Policy Change 72.2
Privacy Contact Information 71.3
Practice Not Covered 69.6
Introductory Generic 67.8
User Access, Edit and Deletion 67.0
International & Specific Audience 55.7
Do Not Track 39.1

C. Policy-Behaviour Alignment

1) Policy coverage by OPP-style categories: We code pol-
icy paragraphs using an OPP-style taxonomy derived from
the OPP-115 corpus, which organises privacy policy text
into 12 top-level, end-user-oriented categories (e.g., First-
Party Collection/Use, Third-Party Sharing/Collection, User
Choice/Control, Data Security, Data Retention, User Ac-
cess/Edit/Deletion, Do Not Track, International & Specific
Audience, etc.). In line with recent OPP-based classification
work that targets these 12 classes for paragraph-level labelling
[55], we operationalise coverage as a binary flag per app
indicating whether the policy contains at least one statement
in a given category. Policies with extraction failures (all zeros
across categories) are excluded from denominators.

Table reports the share of apps mentioning each cat-
egory. Coverage is highest for foundational topics—First-
Party Collection/Use (90.4%), Third-Party Sharing/Collection
(87.8%), and User Choice/Control (87.0%)—suggesting most
policies acknowledge core data flows and some notion of
user agency. Mid-tier coverage appears for Data Security
(79.1%) and Data Retention (74.8%). Lower attention is paid
to International & Specific Audience (55.7%) and especially
Do Not Track (39.1%), indicating that cross-border issues and
DNT signalling are less consistently addressed in policy text.

We next show that the comparison between developers’
declared privacy practicies and their apps’ observed network
behaviour revealed a striking and perhaps systematic pattern
of misalignment. Although privacy policies are intended to
provide transparency and consent foundations under the Aus-
tralian Privacy Principles and comparable child-data regimes,
the majority of the sampled policies failed to describe what
the applications actually did. This misalignment is not an
isolated occurrence; rather, it appeared to be structural, and
measurable.



2) Overall Distribution: Out of the policies analysed, only
a fractional minority exhibited direct textual consistency with
empirical evidence. We classify the behaviour of applications
into five types, as described in Table

These proportions reveal that nearly half of the policies only
appear compliant on the surface, while roughly another one-
quarter engage in partial or misleading disclosure. Less than
2% of developers could be verified as entirely first-party and
telemetry-free.

3) Patterns of divergence: The data shows three recurring
types of misalignment, each representing a different failure:

(a) Partial-disclosure of analytics frameworks: Even when
policies admitted “usage analytics”, 25.4% of those cases
failed to name the specific SDKs involved, as seen in Table
For instance, Maker’s Empire declared the use of “anony-
mous analytics for service improvement”’, but dynamic inspec-
tion uncovered Firebase Analytics, Amplitude, and
RevenueCat concurrently sending session-linked identifiers
to multiple third-party domains. Such omissions undermine
meaningful consent because parents or teachers cannot know
which entities process the data.

(b) Contradiction: A significant group of apps, around one-
fifth (20.8%)—explicitly claimed no personal data collection,
but as seen in Table [X] still transmitted persistent installation
or advertising identifiers within seconds of startup. Matific, for
example, stated “no ads, no tracking”, but runtime logs showed
Unity Analytics and Google Favicon requests initiated
before user interaction. Similarly, Merriam-Webster Kids sent
both Firebase Install IDs and AdMob telemetry less than
three seconds after launch, despite a child-directed declaration
of “limited collection”. Three detailed examples can be seen
in table [XII

(c) Ambiguous: Many policies relied on general, vague
compliance text such as ”We may collect technical data includ-
ing device type for debugging purposes” without specifying
collection frequency, destination, or persistence. This language
creates the illusion of being compliant while offering no
practical transparency. The presence of may, might and such as
clauses correlate strongly with behaviour-policy misalignment:
82% of policies with these phrases are associated with apps
that transmitted persistent IDs.

4) Examples Cases: The divergence becomes clearer
through examples like below that contrast the apps’ written
disclosures with observed runtime behaviour such as identi-
fiers, timing, recipients, and security, to show where alignment
holds or breaks. Prior work shows that dynamic traffic often
reveals undeclared collection/sharing—especially of persistent
identifiers that qualify as personal information under COPPA;
therefore, these contrasts make divergence concrete [§]].

o Animal World (strong alignment): Consistent — observed
telemetry (Unity Analytics and Firebase log-
ging) matches declared third-party services (Unity,
Google); no undeclared SDKSs or ad networks detected.

o Phonics Hero (Partial alignment): Partial — declared
vendors match most observed functions, but Create]JS

and CloudFront SDKs used for gameplay assets are not
mentioned in the policy.

o CamScanner (Conflict): Inconsistent — network logs
show heavy third-party ad and tracking SDK activity
(Appsflyer, ByteDance, Facebook, Unity
Ads, AppLovin) exceeding what policy discloses as
“limited sharing”; policy minimises scope of ad data.

Research Takeaways: A closer inspection of app titles re-
veals that child-branded software does not equate to safer pri-
vacy behaviour. Using keyword cues such as kids, preschool,
ABC, and phonics, 21 applications in the corpus were identi-
fied as child-targeted, which directly reflects how these apps
were identified, while 158 were classified as general-audience
educational. Despite their explicit child focus and placement
in Kids or Early Learning categories, these titles displayed
comparable—if not slightly worse—policy—behaviour align-
ment outcomes than their general counterparts.

5) Deceiving Names: As observed in Table |VIII, two
observations stand out.

First, 76% of the child-targeted apps (Conflict + Partial) ex-
hibited at least one form of misalignment—undeclared SDKs,
contradictory ‘“no-data” claims, or ambiguous disclosures,
which is considerably higher than the 67% rate among general
educational titles. Second, only one in five child-targeted apps
could be verified as fully consistent with their stated privacy
commitments, compared with about one-quarter of general
apps.

The qualitative descriptions reinforce this pattern. Apps
with overtly child-friendly branding—~Merriam-Webster Kids,
Matific, Maker’s Empire, ABC Phonics—were routinely coded
as Partial or Conflict due to undisclosed Firebase, Unity, or
AdMob telemetry. By contrast, general-audience tools such
as Khan Academy or Quizlet were more likely to name their
analytics providers explicitly, suggesting more mature privacy
governance frameworks.

These findings illustrate what might be termed the illu-
sion of safety: labels like Kids, Preschool, or Educational
for Children cultivate parental trust and are often associated
with school recommendations, yet they do not correspond to
stronger technical or policy compliance. Instead, they may
mask legacy SDK integrations or inherited ad modules, repro-
ducing the same data-sharing behaviours seen in commercial
entertainment apps.

From a policy perspective, this insight challenges a persis-
tent regulatory assumption—that child-directed categorisation
ensures enhanced protection. The evidence here suggests the
opposite: child-facing branding is not a reliable proxy for
privacy assurance. Consequently, educators and procurement
bodies relying on “Kids” category listings as an implicit
compliance filter risk endorsing applications that transmit
identifiers and analytics data at the same rates as general-
audience tools.

D. Policy Readability

Beyond examining how well the behaviours of apps align
with their privacy policies, we also evaluated the interpretabil-

10



TABLE X
POLICY-BEHAVIOUR ALIGNMENT OVERVIEW

Category Share (%) Description

Consistent declared alignment 49.1 Policy and telemetry broadly consistent; declared SDKs match observed domains.
Partial disclosure 25.4 Policy admits analytics but omits specific SDK names or processors.

Conlflict / contradiction 20.8 Claims of “no personal data collection” contradicted by telemetry containing identifiers.
Ambiguous / mixed 29 Language partially consistent but internally contradictory or vague.

Strong compliance / no trackers 1.7 Verified first-party-only behaviour; no third-party endpoints detected.

TABLE XI
EXAMPLES OF “CONTRADICTORY CLAIMS” (POLICY/STORE CLAIM VS. OBSERVED RUNTIME IDENTIFIERS)

App (dataset) Public claim (policy/store)

Observed at startup (S1) Why contradictory

Merriam-Webster Kids Children’s/Kids product line; corporate policy
says it does not knowingly collect children’s

personal data and positions kid-oriented use

Women Who Changed the
World (Learny Land)

App Store listing marked “Data Not Collected”;
developer directs to a privacy policy claiming no
personal data from children

Bugs and Numbers (Bugs
series)

App Store privacy section marked “Data Not
Collected” for the title in the Bugs series

FID and AdMob initialization within ~3s of
launch; telemetry persists in S2

Immediate creation/use of per-
sistent identifiers despite child-
facing positioning

“Data Not Collected” label
conflicts with persistent
ID/analytics initialization

Firebase installation/analytics initialization at
first run; analytics events continue during S2

Public
claims are inconsistent
persistent identifier setup

“no data collected”
with

Startup traces show Firebase initialization and
continuing entitlement checks during S2

ity of the policies using four standard metrics: i) Flesch-
Kincaid Reading Ease (FRE), ii) Flesch-Kincaid Grade Level
(FKGL), iii) SMOG, and iv) Gunning Fog Index. 34 apps
were excluded from the analysis due to inaccessibility. In
this analysable subset, FRE had a median of 32.43; FKGL a
median of 14.81, SMOG had mean 16 and Gunning Fog mean
17.81. Only four policies (3%) achieved an FRE above 50, and
only one exceeded 60. Overall, the results suggest that the
typical privacy policy requires tertiary-level literacy, far above
the average Australian adult’s reading ability. For instance, in
FRE, a score above 50 is considered “fairly easy” to read. In
other words, an average parent would need a university-level
education to comfortably comprehend these texts.

This readability gap demonstrates that, with the previously
mentioned transparency deficit in section [[V-C| even when
policies do disclose analytics or data collection, the infor-
mation is often presented in a language manner exceedingly
complex to serve its intended reader. This aligns with prior
observations that child-relevant services frequently write vague
or inconsistent disclosures [46]. In parallel, platform and legal
institutions require accurate and accessible disclosures and, for
many processing purposes, verifiable parental consent [15][9].
Google Play’s policies expressly require developers to provide
links to privacy policies and warn that inaccurate disclosures
are “deceptive” [15[]. At law, simply notifying parents via a
policy is not sufficient, as COPPA an GDPR require verifiable
parental consent before collecting children’s data, especially
when identifiers are shared with third parties [9].

In Australian schools, there are acknowledged limitations
to the consent-centric privacy mechanism and difficulty for
schools in assessing vendors’ data practicies [1]. Consequently,
clearer, more readable policies are likely to improve admin-

istrators’ ability to verify claims against technical behaviour
and to implement appropriate consent flows and controls, for
example, SDK configurations and third-party tracking.

It is not impossible to construct accessible, “plain-English”
policy texts, as demonstrated by the few examples in our anal-
ysis; however, unfortunately they are not the common practice
currently. Developers can improve scores, for example, by
shortening sentences and reducing “legalese”.

V. DISCUSSIONS

This study analysed the Australian educational app echosys-
tem from four perspectives: static code, dynamic traffic,
policy-to-practice alignment, and policy readability. The find-
ings paint a concerning picture of an ecosystem that operates
on a foundation of implicit trust while engaging in risky and
opaque data practices. Our results can be synthesised into three
primary themes: a “risk-by-design” development culture, the
“illusion of safety” created by child-centric branding, and the
structural impossibility of informed consent.

A. Risk-by-Design and Non-Consensual Collection

Our results point to a risk-compliant culture in app de-
velopment. The static analysis revealed that a majority of
apps embed third-party trackers (67.9%) and, alarmingly, hard-
coded API keys (79%), creating a latent attack surface before
an app is even launched. This risk is immediately observed
upon launch, as shown by our dynamic analysis. The finding
that 89.3% of apps transmit data before any user interaction or
consent is a critical finding. This practice, combined with the
routine transmission of persistent identifiers like the Firebase
Installation ID (FID) by 83.6% of apps, demonstrates that
data collection is not an opt-in choice but a non-consensual
prerequisite for participation.
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B. Illusion of Safety

Perhaps the most striking finding is the “illusion of safety”
created by child-centric branding. Our policy-behaviour align-
ment analysis revealed that apps explicitly branded for “Kids,”
“Preschool,” or “ABC” were not safer than their general-
audience counterparts; in fact, they were less likely to be
consistent with their own policies (23.8% consistent vs. 25.8%
for general apps). A significant portion of apps (20.8%) exhib-
ited direct contradictions, such as claiming “no personal data
collection” while actively transmitting persistent identifiers.
This suggests that child-centric branding is often a marketing
tactic that cultivates a false sense of trust among parents and
educators, rather than a genuine indicator of enhanced privacy
or technical compliance.

C. Failure of Informed Consent

Even if an app’s practices were perfectly aligned with its
policy, our analysis shows that informed consent is structurally
impossible. The median Flesch-Kincaid Grade Level of 14.81
means these legal documents require a university-level educa-
tion to comprehend. With only 3% of policies being “fairly
easy” to read or better, the privacy policy serves as a tool for
legal defence for the company, not as a transparent disclosure
for the user. When this unreadability is combined with “idle
telemetry” (data sent before the policy can be read) and de-
ceptive disclosures, the entire “notice-and-consent” framework
is shown to be failing.

D. Implications

Taken together, our findings demonstrate a systemic failure.
Parents and educators, who are legally and morally obligated
to protect children, are being let down. They are forced to
rely on deceptive branding and unreadable legal documents,
all while apps silently transmit persistent identifiers to a
centralised group of third-party SDKs (e.g., Google/Firebase,
Meta, Unity). This aligns with findings from Pangrazio &
Bunn (2024), who identified a “technology overtrust” in Aus-
tralian schools, with our technical findings provide the empiri-
cal evidence for why this overtrust is considerably dangerous.
It confirms that the current model of self-regulation, and brand-
based trust is placing the burden of privacy on the very users
who are least equipped to manage it.

To address these systemic failures, our findings suggest
that policy and practice must shift from a reliance on self-
regulation toward proactive enforcement and technical ver-
ification. First, the categorisation of “child-directed” apps
requires stricter oversight. Currently, the “Kids” or “Edu-
cational” label appears to function primarily as a content
descriptor rather than a privacy assurance. We argue that
app stores and educational procurement frameworks (such as
ST4S) should mandate that any application marketing itself to
children must meet a verified technical baseline, specifically,
the absence of advertising and behavioural analytics SDKs
before being granted a “Kids” classification.
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Second, regulatory frameworks must explicitly prohibit
“idle telemetry.” Our data shows that 89.3% of apps trans-
mit data before user interaction. Policy interventions should
require that non-essential SDK initialisation be technically
deferred until affirmative consent is obtained. This would align
technical architecture with the legal principle that consent must
be prior and informed.

The privacy policies currently require on average university-
level literacy, which indicates a move toward standardised,
accessible disclosure formats. Rather than expecting parents
to parse complex legal texts, regulators should enforce the
use of plain summaries capped at a secondary-school reading
level. These measures would shift the burden of safety from
parents back to the developers and platforms profiting from
the educational data economy.

VI. CONCLUSION

This study provides an empirical examination of the privacy
and security risks and the transparency of educational Android
applications that are commonly used by Australian schools
or recommended by relevant authorities. We performed static
and dynamic analysis, where the static analysis revealed the
extensive use of embedded tracking and analytics libraries,
and the dynamic analysis demonstrated that many applications
commence network activity before meaningful user interac-
tion, and routinely transmit persistent identifiers, as well as
rich device profiles to multiple endpoints. We then analysed
the privacy policy of the applications, and discovered that the
privacy disclosures are often incomplete or misleading. The
policy texts overall scored unsatisfactorily in our readabilty
tests, with the scores indicating that an average parent would
struggle to comprehend the privacy policies.

Our corpus of applications is focused on Australia and
Android; therefore, the results might differ for iOS and other
platforms, or other countries and regions. Applications evolve
fast, and our measurements could only capture specific ver-
sions and time windows. For the dynamic analysis, the traffic
was recorded on test devices configured for interception with
a man-in-the-middle. We used a rooted emulator, with a user-
installed certificate to bypass the SSL pinning of the appli-
cations. This may alter SDK behaviour as some SDKs might
detect emulators or rooted devices, and some traffic flows may
be under-observed. Our domain-to-recipient mapping might
be inconcise, as domain fronting/CDNs and multi-user cloud
services might blur the boundaries. Some privacy policies were
excluded due to being inaccessible, and the readability scores
are approximations that might be influenced by other factors
such as the presense of non-English text, meaning the scores
may not perfectly reflect comprehensibility especially for non-
English speakers.

Future work can expand in several directions. First, platform
and region coverage can be broadened by conducting a similar
analysis on i0OS applications and comparing the results with
non-Australian app markets to distinguish global trends from
regional patterns. Second, a longitudinal update analysis would
enable researchers to track how changes in SDKs, Google Play



policies, and evolving privacy legislation influence developer
behaviours over time. Finally, a categorical analysis comparing
free and paid applications could help determine whether these
groups differ in their behaviour patterns or in the degree to
which their practices align with stated privacy policies.
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