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Abstract—What usability issues do developers using Differen-
tial Privacy libraries face? We analyzed 2,021 GitHub issues from
5 major Differential Privacy libraries, identifying the usability
problems like API confusion, poor error feedback, and documen-
tation gaps. Unlike other privacy-preserving technologies, such
as cryptographic libraries, that struggle with installation issues,
Differential Privacy libraries face unique challenges. The main
contributions of this work include: comprehensive taxonomy
of 14 distinct usability issue categories identified through a
systematic analysis of real-world developer experiences; empirical
evidence that Differential Privacy libraries face different usability
challenges compared to other privacy libraries, with API misuse
dominating at 31.5% of all issues; and library-specific usability
profiles revealing that specialized libraries (IBM DP and Google
DP) show distinct patterns from general-purpose frameworks
(PySyft), indicating the need for specialized library usability
design approaches.

I. INTRODUCTION

Privacy-preserving data analysis has become increasingly
important as organizations seek to extract insights from sen-
sitive data while protecting individual privacy [1], [2]. Dif-
ferential Privacy is a formal framework that provides strong
mathematical guarantees that an individual’s data cannot be
identified from the output of an analysis [3]. Several libraries
have been developed for Differential Privacy, including Google
Differential Privacy, IBM’s Diffprivlib, OpenDP, PyDP, and
PySyft [4]–[7]. Despite the availability of these libraries their
adoption remains limited in practical applications outside
of major technology companies [8]. This suggests a gap
between the theoretical promises of Differential Privacy and
its practical implementation, pointing to potential usability
barriers preventing wider adoption [8], [9]. Research has
focused on developing new Differential Privacy methods and
the improvement of their theoretical properties [1], [10], but
understanding the practical challenges developers face when
attempting to implement these techniques is still underex-
plored. Usability issues in programming libraries can hinder

adoption, particularly for complex concepts like Differential
Privacy that already have a steep learning curve [9], [11].

We systematically analyzed GitHub issues—one of the
major channels through which developers report problems
and request features for open-source projects—and examining
2,021 GitHub issues between 2020 to 2025 to identify com-
mon usability challenges, categorize them thematically, and
track their evolution over time. This provides insight into the
real-world problems developers face.

This paper addresses the following research questions:
RQ1. What usability challenges are developers experiencing

when using Differential Privacy libraries?
RQ2. Are the usability challenges developers face when using

one Differential Privacy library the same as for all the
others?

RQ3. Are the usability issues observed with Differential Pri-
vacy libraries any different to the issues Cryptography
users face?

We find that confusion about API use represents the most sig-
nificant usability barrier across all Differential Privacy libraries
(RQ1), with 31.5% of all issues stemming from incorrect API
usage, followed by requests for example code (16.7%) and
usage guidance questions (14.1%). The distribution of usability
challenges varies significantly across different libraries (RQ2),
with specialized libraries like IBM DP and Google DP show-
ing strong correlation in their issue patterns, while general-
purpose frameworks like PySyft exhibit distinct usability pro-
files with weaker correlations to other libraries. We compared
against an existing study in Cryptographic Libraries [9] and
find differences in usability challenges between these two
types of privacy technologies. Differential Privacy libraries
face different challenges compared to cryptographic libraries
(RQ3). This suggests that Differential Privacy libraries require
specialized usability design approaches that address the unique
conceptual complexity of privacy-utility tradeoffs rather than
technical setup challenges.

II. BACKGROUND

A. Differential Privacy
Differential Privacy, introduced by Dwork et al. [3], pro-

vides a formal privacy guarantee by ensuring that the ad-
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dition or removal of a single record from a dataset does
not significantly affect the output of an analysis. This is
typically achieved by carefully adding calibrated noise to
query responses.

The privacy guarantee is controlled by the privacy parameter
ε, which quantifies the privacy loss: smaller values provide
stronger privacy but typically at the cost of reduced utility [1].
In practice, a relaxed version known as (ε, δ)-Differential
Privacy is often used, where δ represents the small probability
of the guarantee not holding [1].

Differential Privacy is a powerful way for organizations
to learn from sensitive data while protecting individual pri-
vacy. Unlike traditional anonymization techniques that can
be vulnerable to re-identification attacks, Differential Privacy
provides mathematically rigorous guarantees about the in-
formation leaked about any individual in the dataset. This
makes it highly valuable for applications involving personal
data, census information, healthcare records, and financial data
where privacy protection is paramount.

The appeal of Differential Privacy lies in its
composability—multiple differentially private queries
can be combined while maintaining privacy guarantees—and
its protection against arbitrary background knowledge held
by attackers [1]. These theoretical properties have led to its
adoption by major technology companies and government
agencies for privacy-preserving data analysis [1], [2].

Several libraries have been developed to make Differential
Privacy more accessible to practitioners. The differences in
design philosophy, target audience, and implementation across
these libraries create a rich environment for studying the
usability challenges of Differential Privacy tools.

B. Usability of Privacy Tools

Prior research has identified usability as a critical factor in
the adoption of privacy-enhancing technologies. The field of
usable privacy and security has already been recognized that
even technically strong privacy mechanisms can fail if they
are too difficult for developers to implement correctly [9].

Grounded in the field of software usability, the work pre-
sented in this paper focuses mainly on the specific challenges
of APIs and developer tools. The cognitive dimensions frame-
work by Green and Petre [11] provides theoretical foundations
for understanding usability challenges in programming envi-
ronments. Their framework identifies key usability principles
such as consistency, visibility, and error proneness that we
apply to analyze Differential Privacy libraries.

Our research extends previous work on usable security
tools by focusing specifically on the unique usability chal-
lenges posed by privacy-preserving technologies. We shift
the focus from traditional end-user interfaces to the usability
of developer tools and APIs. This domain poses a different
class of challenges for users, including grasping complex
concepts, correctly configuring parameters, and ensuring their
implementation is error-free.

The importance of this research area is underscored by the
growing recognition that privacy technologies must be not

only theoretically sound but also practically deployable. Poor
usability can lead to implementation errors that compromise
privacy guarantees, making usability a critical component of
overall privacy protection [12].

C. Differential Privacy versus Cryptographic Libraries

Differential Privacy presents fundamentally different us-
ability challenges compared to traditional cryptographic li-
braries [7], [9], [13]. While cryptographic libraries focus
on well-established algorithms with standardized implemen-
tations, Differential Privacy requires careful consideration of
data-specific parameters and privacy-utility trade-offs [1], [14].

Cryptographic libraries generally have clear success and
failure modes—encryption either works correctly or it fails—
whereas Differential Privacy involves continuous trade-offs
between privacy protection and data utility [2]. This difference
creates new categories of usability challenges that do not exist
in traditional cryptographic contexts [15].

While cryptographic libraries may require choosing key
sizes or algorithms from a limited set of well-understood
options, Differential Privacy requires setting epsilon and delta
parameter values that depend on the specific use case, data
characteristics, and desired privacy-utility balance [10], [16].
This creates a complex decision space for developers. Further-
more, the composition properties of Differential Privacy, while
mathematically elegant, introduce additional complexity for
practitioners who must track privacy budgets across multiple
queries and understand how privacy guarantees degrade over
time [1], [15]. These conceptual challenges don’t exist in
traditional cryptographic library usage.

We compare with the cryptographic usability work of
Patnaik et al. [9] and reveal these differences and highlight
the need for specialized usability research in the Differential
Privacy domain (Section IV-B).

D. Related Empirical Studies

The foundational theoretical work by Dwork et al. [3]
established the mathematical framework underlying modern
Differential Privacy implementations, identifying key algorith-
mic challenges that continue to manifest as usability issues
in contemporary libraries [1]. Building on this theoretical
foundation, several researchers have examined how developers
actually experience these challenges in practice.

Small-scale controlled studies have provided deep insights
into individual developer experiences. Dankar et al. [17] exam-
ined Differential Privacy understanding in healthcare contexts,
identifying parameter selection, sensitivity calculation, and
composition as persistent pain points. These controlled studies
reveal that even in supervised settings with direct support,
developers struggle to translate Differential Privacy theory into
working implementations. It is observed that privacy concepts
like Differential Privacy are difficult to operationalize without
concrete guidance.

Broader surveys have confirmed that these challenges extend
beyond individual experiences to affect organizational adop-
tion. Ngong et al. [13] conducted a comprehensive evaluation
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TABLE I
ANALYZED DIFFERENTIAL PRIVACY LIBRARIES AND THEIR GITHUB

REPOSITORIES BETWEEN 2020–2025

Library Github Repository Issues

PySyft OpenMined/PySyft 1,387
OpenDP opendp/opendp 469
PyDP OpenMined/PyDP 99
Google DP google/differential-privacy 35
IBM DP IBM/differential-privacy-library 31

Total 5 libraries 2,021

of Differential Privacy tools with data practitioners, confirming
the persistent usability challenges and the need for better
tool design to bridge the gap between theoretical privacy
guarantees and practical implementation.

What emerges from all this research is a pattern: Differ-
ential Privacy’s mathematical complexity creates a translation
problem that current tools fail to adequately address. While
controlled studies reveal the moment-to-moment struggles
developers face, surveys confirm these struggles translate into
organizational resistance to adoption. The consistent identifi-
cation of parameter configuration, composition understanding,
and concrete guidance as pain points across diverse studies
suggests these are fundamental challenges inherent to Differ-
ential Privacy rather than artifacts of specific implementations
or study methodologies.

Our study complements this existing work by providing a
large-scale analysis of real-world developer experiences with
multiple Differential Privacy libraries. While previous research
has typically examined individual libraries or involved limited
participants (usually 10–30), our analysis of 2,021 GitHub
issues provides a broader perspective on how these previously
identified challenges manifest in practice. This scale allows
us to quantify the relative importance of different usability
challenges, providing empirical validation for the concerns
raised in smaller-scale studies.

III. METHOD

A. Data Collection

1) Library Selection: We selected 5 Differential Privacy
libraries that are the most popular differential privacy libraries
on GitHub as they each had a reasonable number of issues
and were actively being developed during the time period
examined. These 5 libraries collectively represent the primary
approaches to Differential Privacy implementation in practice,
covering both Python-based tools (PySyft, PyDP, IBM DP) and
multi-language frameworks (OpenDP, Google DP), as well as
different abstraction levels from low-level noise mechanisms
to high-level machine learning integrations (see Table I).

For each library, we extracted all issues created between
January 2020 and March 2025, capturing a comprehensive
view of developer interactions over time. This approach
builds on the methodology of Bissyande et al. [18], who
demonstrated that GitHub issue discussions provide valuable
insights into developer challenges that may not be evident

from code analysis alone. Our study adapts this methodology
to the Differential Privacy domain by focusing on usability-
specific challenges across multiple libraries. We developed a
specialized coding scheme that categorizes issues according to
usability principles and developer experience factors, enabling
us to identify both library-specific patterns and universal chal-
lenges in Differential Privacy implementation. Additionally,
analyzing issues in the timeframe (2020–2025) allows us to
track how usability challenges evolve as libraries mature.

For each issue, we extracted the following information:
• Issue title and description text
• All comments and discussion threads
• Labels assigned by maintainers or contributors
• Creation and resolution timestamps
• Author information (anonymized for analysis)
• Whether the issue contained code examples or snippets
• Resolution status and method (closed, merged, rejected)
• Links to related issues or pull requests
The data collection process used the GitHub REST API to

ensure consistency and completeness.
2) Inclusion and Exclusion Criteria: To determine whether

a given issue qualified as a usability issue, we applied explicit
inclusion and exclusion criteria. An issue was classified as a
usability issue if it met at least one of the following criteria:

• The issue described problems developers encountered
when attempting to use library APIs, functions, or fea-
tures

• The issue requested help, examples, or guidance on how
to correctly implement Differential Privacy functionality

• The issue reported confusion, errors, or unexpected be-
havior when using the library

• The issue identified gaps or problems in documentation
that hindered effective library usage.

We excluded issues that did not relate to developer usability,
such as:

• Administrative issues (such as repository management,
CI/CD configuration, or project organization)

• Duplicate reports and spam
• Issues focused primarily on theoretical aspects of Differ-

ential Privacy rather than implementation challenges
• Issues that were purely feature requests without us-

ability implications. For example, we excluded issues
like: “Duplicate sphinx apidoc config” (OpenDP #1477)
and “Resolve Duplicate without user-selected canonical”
(OpenDP #1061) since these were administrative docu-
mentation concerns rather than usability challenges.

We also filtered out issues that focused primarily on aca-
demic understanding or theoretical concepts rather than prac-
tical implementation problems, such as feature requests for
implementing theoretical frameworks or discussions about
mathematical proofs that do not address concrete usability
challenges.

This filtering ensured our analysis captured developer us-
ability challenges rather than project management or theo-
retical concerns and discussions. To ensure we captured the
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full developer experience, we included both open and closed
issues, allowing us to analyze not only current challenges
but also how issues evolved and were resolved over time.
This temporal dimension enables us to track whether common
usability problems persist or improve with library maturation.

B. Coding Scheme

To systematically analyze the issues, we developed a coding
scheme based on a preliminary examination of the data and
learning from prior literature on Differential Privacy imple-
mentation challenges. As a starting point for our codebook
we took the usability issues from Patnaik et al.’s paper
as an initial codebook [9] (which was itself derived from
Green and Smith’s earlier work [19]), but allowed new codes
to emerge from our own dataset. Our approach was inspired
by Humbatova et al. [20], who used a similar methodology
to classify bugs in deep learning frameworks. Each issue was
categorized according to the scheme shown in Table II.

The coding was performed using a semi-automated ap-
proach. First, we applied keyword-based filtering to exclude
issues that lacked usability-related content. Then, we manually
reviewed a subset of the remaining issues to validate our
filtering criteria and ensure data quality. We created a code
book with evolving codes as we went through the list of
2021 issues. Multiple codes could be assigned to a single
issue if it addressed multiple aspects of Differential Privacy
implementation. This approach aligns with the content analysis
methodology used by Piorkowski et al. [21] in their study of
developer information needs.

This coding scheme builds upon the challenges identified
by Cummings et al. [2] for deploying Differential Privacy and
follows the methodology of Patnaik et al. [9] for analyzing
developer struggles with privacy libraries, with additional cat-
egories specific to library implementation concerns identified
in our initial data exploration.

C. Validation

To ensure the reliability and validity of our coding scheme,
two researchers with expertise in Differential Privacy and
software engineering independently coded a random sample
of 200 issues (approximately 10% of the dataset) using the
preliminary coding scheme. Both researchers have prior expe-
rience with Differential Privacy libraries and usability analysis,
ensuring domain knowledge for accurate categorization.

Key disagreements that required resolution included: (1)
distinguishing between “API Misuse” and “How should I use
this?” issues—we established that API Misuse applies when
developers use incorrect parameters or method calls, while
“How should I use this?” applies to general usage questions;
(2) categorizing issues that mentioned both documentation
problems and code examples—we created a rule that if the
primary request was for working code, it was coded as
“Example Code,” otherwise as documentation-related; and
(3) determining when privacy parameter configuration issues
should be coded separately from general API misuse—we

decided that only issues specifically discussing epsilon or delta
values would be coded as “Privacy Parameter Configuration.”

These refinements were documented in explicit decision
rules, such as “Code as API Misuse only when specific method
calls or parameters are incorrect; general questions about usage
go to ’How should I use this?”’ and “Privacy Parameter
Configuration requires explicit mention of epsilon, delta, sen-
sitivity, or privacy budget.” After resolving disagreements, the
refined coding scheme was applied to an additional validation
set of 100 issues by the same two researchers to validate the
consistency of the refined scheme.

The remaining 1,721 issues (approximately 85% of the
dataset) were then recoded by the first author. To ensure
consistency, a random sample of 100 issues from this remain-
ing set was independently recoded by the second researcher,
achieving an inter-coder agreement (Cohen’s Kappa [22])
value of 0.87; suggesting reliable coding. Disagreements in
this validation sample were resolved through discussion, and
any resulting refinements to the coding rules were applied
retroactively to the full dataset.

D. Analysis approach

We used a mixed-methods approach combining quantita-
tive statistical analysis with qualitative thematic coding. We
calculated descriptive statistics for issue categories across
libraries, performed correlation analysis to identify patterns,
and conducted chi-square tests to assess statistical significance
of differences between libraries. The temporal analysis tracked
issue patterns over time to identify trends and stability in
usability challenges (see Table III). For qualitative analysis,
we employed thematic coding to identify underlying usabil-
ity principles violations and conducted comparative analysis
with existing literature on cryptographic library usability to
understand domain-specific challenges.

E. Threats to validity

We have identified the following threats to validity and
implemented specific mitigation strategies:

1) Coding subjectivity: Our coding scheme is grounded
in the first author’s experience with differential privacy and
security development, and may be biased by their experience.
We mitigated by having a second coder (with a background in
systems engineering and usable security) recode a subset, but
our biases will still be implicit in the data as a whole [11].

2) GitHub issue sampling bias: Our study relies exclusively
on GitHub issues, which represent a biased sample that is
skewed toward certain types of problems and certain types
of users. Library authors and maintainers often open issues
themselves when they discover bugs during development,
which may over-represent implementation issues relative to
external user experiences. Second, GitHub’s cultural norms
favor reporting specific, actionable problems (e.g., bugs, error
messages, missing documentation) over general questions or
conceptual challenges. Questions about fundamental Differ-
ential Privacy concepts, such as parameter selection strate-
gies or privacy-utility tradeoffs, are less likely to appear
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TABLE II
CODE BOOK USED FOR CATEGORISING DIFFERENTIAL PRIVACY LIBRARY ISSUES (N=2021, 2020—2025)

Issue Category Description Example Issue Count

API Misuse Developers incorrectly using library features,
wrong parameter values, or method calls

“When ‘epsilon==0‘, ‘PrivacyLossDistribu-
tion.from privacy parameters()‘ fails” (Google DP
#110)

637

Example Code Requests for code examples, tutorials, or working
demonstrations of library functionality

“I can’t found example about use Pysyft to train
neural network” (PySyft #9185)

338

How should I use this? Questions about correct usage, parameter
selection, or implementation approaches

“How can we dynamically (based on data)
determine maxContributions value for
approximate bound algorithm?” (Google DP #258)

284

Compatibility Issues Problems integrating with other libraries, version
conflicts, or platform incompatibilities

“Facing error while Compiling pydp/carrot
example” (PyDP #462)

154

Missing Documentation Absence of documentation for specific features,
functions, or use cases

“When developing the codebase, it is easy for
notebooks to become outdated...” (PyDP #294)

143

Unsupported Feature Requests for new functionality not currently
available in the library

“this function would enable a separate privacy
analysis using tools like AutoDP” (OpenDP #2179)

128

What’s gone wrong here? Debugging issues where code appears correct but
fails or behaves unexpectedly

“LogisticRegression not working using example in
logistic regression.ipynb notebook” (IBM DP #97)

127

Clarity of Documentation Existing documentation is unclear, confusing, or
needs improvement

“Usability: Reference to
make_private_lazyframe in error message
when not used” (OpenDP #2100)

103

Should I use this? Questions about choosing between different
methods, algorithms, or approaches

“Usability: API Design Mirroring Popular Libraries”
(OpenDP #1419)

54

Privacy Parameter
Configuration

Specific issues with epsilon, delta, sensitivity, or
other Differential Privacy parameter settings

“Could someone give me intuition on how to set
bounds and epsilon?” (Google DP #15)

19

Lack of Knowledge General confusion about Differential Privacy
concepts or foundational understanding

“I’ve been trying to understand the paper... and it
is difficult as the work is purely theoretical” (IBM
DP #83)

16

Statistical Functions Problems with statistical computations,
aggregations, or mathematical operations

Add support for aggregating multiple values
(Google DP #285)

8

Performance Issues Reports of slow execution, memory problems, or
efficiency concerns

”Out of memory with ZetaSQL” (Google DP #90) 6

Build Issues Installation failures, compilation errors, or setup
problems

“When I run the example, ModuleNotFoundError
comes up every time” (PyDP #447)

4

Total 2021

TABLE III
SUMMARY OF ANALYZED DIFFERENTIAL PRIVACY LIBRARIES AND THEIR ISSUE DISTRIBUTIONS (2020—2025)

Library Github Repository Issues Percentage Primary Issues

PySyft OpenMined/PySyft 1387 68.6% API Misuse
OpenDP opendp/opendp 469 23.2% Example Code
PyDP OpenMined/PyDP 99 4.9% API Misuse
Google DP google/differential-privacy 35 1.7% API Misuse
IBM DP IBM/differential-privacy-library 31 1.5% How to use

Total 5 libraries 2021 100% 3 categories

in GitHub issues because they are not library-specific and
are often addressed through other channels (e.g., academic
forums, Stack Overflow, direct consultation). This bias may
affect our conclusions, particularly regarding mathematical
complexity barriers. Our finding that “the primary barriers
surfaced in GitHub issues for developers are not the mathe-
matical concepts of choosing privacy parameters themselves”

(Section IV-A2) should be interpreted cautiously, as the
sample may systematically under-represent these challenges
due to the platform’s cultural context. We acknowledge that
this limitation means our study provides stronger evidence
for some conclusions (e.g., documentation and API design
challenges) than others (e.g., fundamental understanding of
Differential Privacy concepts). Future work should triangulate

5



these findings with surveys, interviews, and other data sources
to provide a more complete picture of developer challenges.

3) Platform bias: GitHub issues may not capture all de-
veloper struggles resolved through other channels (e.g., Stack
Overflow, documentation, direct support). However, GitHub
represents the primary platform for reporting technical issues
in open-source libraries, and our focus on usability-specific
issues helps ensure relevance to our research questions.

4) Library maturity effects: Libraries have different matu-
rity levels affecting issue patterns. We addressed this by nor-
malizing data by percentages and analyzing temporal trends.

5) Selection bias: Our focus on five major libraries may not
capture the full spectrum of Differential Privacy implementa-
tions. However, these represent the most widely used imple-
mentations covering different approaches, design philosophies,
and target audiences.

6) Temporal scope: Our 2020—2025 analysis period may
not capture longer-term trends. However, this represents the
most active development phase for Differential Privacy tools,
providing a comprehensive view of usability challenges.

7) Comparison with prior qualitative studies: Our findings
should be interpreted in the context of prior qualitative re-
search on Differential Privacy usability. Sarathy et al. [23]
and Garrido et al. [24] conducted interviews with library
developers and users, identifying challenges including param-
eter selection, privacy-utility tradeoffs, and mathematical com-
plexity. While our GitHub-based analysis finds relatively few
explicit parameter selection issues (0.9%), this discrepancy
may reflect the sampling bias discussed above rather than a
true absence of these challenges. The interview studies provide
evidence that mathematical and conceptual barriers do exist,
suggesting that our GitHub-based sample may under-represent
these fundamental challenges. This triangulation highlights
the importance of considering multiple data sources when
studying developer experiences with complex technologies like
Differential Privacy.

F. Ethical Considerations

This study analyzes publicly available GitHub issues, which
raises substantial ethical considerations regarding the use of
public data for research purposes without explicit consent from
the individuals who authored the comments. We have carefully
considered these ethical implications and acknowledge the
ongoing debate in the research community about best prac-
tices for public observation studies [25]. The GitHub issues
analyzed in this study were created and posted publicly on
GitHub, a platform where users explicitly make their content
available under GitHub’s Terms of Service. According to
GitHub’s Terms of Service (Section 5), users grant “a nonex-
clusive, worldwide license to use, display, and perform Your
Content through the GitHub Service.” The issues were created
with no expectation of privacy or anonymity, as GitHub issues
are inherently public-facing communication channels designed
for community discussion and problem-solving. Following
consultation with our institution’s ethics board, this research
did not require a formal ethics approval.

IV. RESULTS

A. RQ1. What usability challenges are developers experienc-
ing when using Differential Privacy libraries?

As shown in Table IV, developers face 14 distinct categories
of usability issues when working with Differential Privacy
libraries. The three most prevalent categories account for
62.3% of all issues: API Misuse (31.5%), Example Code
requests (16.7%), and usage guidance questions (14.1%).

1) Technical Challenges: Our analysis shows that the most
prevalent technical challenge for developers using Differential
Privacy libraries is API misuse, accounting for 31.5% of all
issues. This suggests that the abstractions provided by current
libraries often do not align with developer expectations or
mental models, leading to frequent errors in usage.

For example, developers struggle with incorrect parameter
values, as evidenced by issues like “When ‘epsilon==0‘,
‘PrivacyLossDistribution.from privacy parameters()‘ fails”
(Google DP #110) where developers incorrectly pass
epsilon=0, causing the function to fail because “the second
will overwrite the first (python should probably not silently
do that).” Similarly, developers misuse bounded functions,
as shown in “Bounded Functions fail when large dataset
given” (Google DP #40) where “the int overflows and
gives the output as the lowerbound.” Other API misuse
examples include missing required method calls like “If
missing ‘fill nan‘, ‘fill null‘, can we do better than ‘unable
to infer bounds‘?” (OpenDP #2312), incorrect attribute access
like “AttributeError: ’BoundedSum’ object has no attribute
’privacy budget left”’ (PyDP #463).

Example code requests (16.7%) and questions about how to
use the libraries (14.1%) are also common; suggesting a need
for practical, implementation-focused guidance. Developers
frequently request examples, as shown in issues like “I can’t
found example about use Pysyft to train neural network, I
hope some helps” (PySyft #9185), “Error occurring during
the execution of an example program” (PyDP #454), and
“When I run the example, ModuleNotFoundError comes up
every time” (PyDP #447). Usage questions are also preva-
lent, as demonstrated by “How can we dynamically (based
on data) determine maxContributions value for approximate
bound algorithm?” (Google DP #258), “What would be the
expected way of implementing this?” (Google DP #212),
“Fail early if user makes a margin for a column that doesn’t
exist” (OpenDP #2315), and “Facing error while Compiling
pydp/carrot example” (PyDP #462).

While privacy-utility tradeoffs and privacy budget manage-
ment are important technical aspects of Differential Privacy,
our data indicates that these are less frequently reported as
explicit issues. However, when they do occur, they reveal crit-
ical challenges. For example, developers struggle with privacy
budget management, as shown in “C++ Proposal: Remove
privacy budget parameter” (Google DP #59) where the team
notes that “anyone who wants to track overall expenditure
of privacy loss budget will need to do extra work as soon
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TABLE IV
DISTRIBUTION OF USABILITY ISSUE CATEGORIES ACROSS DIFFERENTIAL PRIVACY LIBRARIES (2020–2025). PERCENTAGES INDICATE THE

PROPORTION OF EACH LIBRARY’S TOTAL ISSUES.

Issue Category PySyft OpenDP PyDP IBM DP Google DP

API Misuse 537 (38.7%) 66 (14.1%) 16 (16.2%) 10 (32.3%) 8 (22.9%)
Example Code 222 (16.0%) 98 (20.9%) 15 (15.2%) 1 (3.2%) 2 (5.7%)
How should I use this? 164 (11.8%) 91 (19.4%) 15 (15.2%) 7 (22.6%) 7 (20.0%)
Compatibility Issues 116 (8.4%) 19 (4.1%) 14 (14.1%) 2 (6.5%) 3 (8.6%)
Missing Documentation 71 (5.1%) 57 (12.2%) 12 (12.1%) 1 (3.2%) 2 (5.7%)
Unsupported Feature 79 (5.7%) 33 (7.0%) 9 (9.1%) 1 (3.2%) 6 (17.1%)
What’s gone wrong here? 91 (6.6%) 27 (5.8%) 5 (5.1%) 3 (9.7%) 1 (2.9%)
Clarity of Documentation 57 (4.1%) 38 (8.1%) 5 (5.1%) 1 (3.2%) 2 (5.7%)
Should I use this? 26 (1.9%) 21 (4.5%) 4 (4.0%) 1 (3.2%) 2 (5.7%)
Privacy Parameter Configuration 3 (0.2%) 9 (1.9%) 3 (3.0%) 4 (12.9%) 0 (0.0%)
Lack of Knowledge 12 (0.9%) 3 (0.6%) 1 (1.0%) 0 (0.0%) 0 (0.0%)
Statistical Functions 4 (0.3%) 4 (0.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Performance Issues 3 (0.2%) 2 (0.4%) 0 (0.0%) 0 (0.0%) 1 (2.9%)
Build Issues 2 (0.1%) 1 (0.2%) 0 (0.0%) 0 (0.0%) 1 (2.9%)

Total 1387 469 99 31 35

as they’re using more than one ‘Algorithm‘,” highlighting the
complexity of budget tracking across multiple operations.

Instead, developers are more likely to struggle with un-
derstanding how to correctly use library APIs, configure
parameters, and adapt example code to their own use cases.
The lack of standardization across libraries further compounds
these challenges, as developers must often relearn concepts
and interfaces when switching between tools [13].

2) Mathematical Complexity and Implementation Barriers:
Although Differential Privacy is grounded in rigorous math-
ematical theory, our results indicate that among the barriers
surfaced in GitHub issues, the most frequently reported chal-
lenges are related to the translation of Differential Privacy
concepts into correct and effective code, rather than explicit
questions about mathematical concepts themselves. The high
frequency of API misuse and requests for example code sug-
gests that developers need more concrete, actionable guidance
rather than abstract theoretical explanations that don’t translate
to working code. However, we acknowledge that this finding
may be influenced by the sampling bias inherent in GitHub
issues, which tend to favor specific, actionable problems over
general conceptual questions (see Section III-E) for discussion
of limitations). Prior interview studies with library users have
identified parameter selection and privacy-utility tradeoffs as
significant challenges [23], [24], suggesting that our GitHub-
based sample may under-represent these fundamental concep-
tual barriers.

Nevertheless, some issues do stem from the inherent com-
plexity of Differential Privacy, such as difficulties with pa-
rameter configuration (0.9% of issues, but critical when they
occur) and understanding the implications of different privacy
settings. These challenges are exacerbated by the shortage of
practitioners with both mathematical and software engineering
expertise [26], and are reflected in persistent documentation-

related problems across all libraries.
3) API Design and Documentation Challenges: The high

rate of API misuse (31.5%) and the prevalence of example
code requests (16.7%) highlight design and documentation
challenges in making Differential Privace accessible to de-
velopers. Our findings align with recent usability studies that
have identified similar patterns across multiple Differential
Privacy libraries [2], [8]. Current Differential Privacy library
APIs often fail to provide abstractions that match developer
mental models, and documentation is frequently insufficient to
bridge the gap between theory and practice.

Clarity and helpfulness of error messages is another chal-
lenge identified in usability studies of Differential Privacy
libraries. This is directly related to the misuse of the APIs.
Developers who raised issues in Github for these libraries
reported difficulties in diagnosing and recovering from errors
due to poorly designed messages. OpenDP users, primarily
familiar with Python, encountered additional frustration as
error messages were presented in Rust, compounding their
difficulties in addressing errors effectively. This challenge was
explicitly acknowledged by the OpenDP team, who created an
issue to “Improve error messages throughout Rust codebase”
(OpenDP #1992) and another addressing “Usability: Reference
to make private lazyframe in error message when not
used” (OpenDP #2100), where users reported confusion when
error messages referenced functions they weren’t using.

Documentation navigation and quality represent another
prevalent issue. Users have reported challenges in navigating
the documentation, citing inconsistent content quality and a
lack of up-to-date resources. Poor navigation within documen-
tation has been noted as a barrier to effective implementation
of Differential Privacy tools, with previous research in soft-
ware engineering highlighting similar findings where incon-
sistent content and unclear navigation have been documented
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as widespread usability problems for programming tools [27].
For example, one PyDP contributor noted: “When developing
the codebase, it is easy for notebooks to become outdated. We
should add test to our CI that warn us when notebooks stop
working due to API changes. This is crucial, since notebooks
are important pieces of documentation” (PyDP #294).

4) Mental Model Misalignments and Decision Implications:
The alignment of user mental models with the operational
models of Differential Privacy libraries represents another area
of concern identified in recent usability research. Users often
lack intuitive understanding of how these libraries implement
computations and enforce privacy guarantees, leading to chal-
lenges in using them correctly. For example, an IBM DP
user expressed confusion about the fundamental relationship
between privacy parameters and model accuracy: “Up to a
value of epsilon=10**7, there does not seem to be any relation
between the value of epsilon and the accuracy of the model”
(IBM DP #97), demonstrating a lack of understanding of how
Differential Privacy mechanisms work internally.

Users with limited prior knowledge of Differential Privacy,
often struggle to comprehend the implications of their deci-
sions while using these libraries. This lack of understanding
can lead to ineffective use of the tools and potential privacy
violations, suggesting a need for better educational resources
and user support tailored to varying levels of expertise. For
instance, a Google DP user asked: “Could someone give me
intuition on how to set bounds and epsilon?” (Google DP #15),
highlighting the uncertainty about parameter implications and
the need for better guidance on privacy-utility tradeoffs.

The community feedback mechanisms embedded within
these libraries serve as a critical component for improvement,
allowing developers to gather user experiences and adapt
functionalities accordingly. Studies involving thousands of
reviews have revealed vital insights into user satisfaction and
challenges, emphasizing the need for better communication
regarding decision implications and enhanced documentation
quality [28]. Addressing these usability issues is essential for
fostering trust and encouraging wider adoption of Differential
Privacy frameworks among practitioners and researchers alike.

B. RQ2. Are the usability challenges developers face when
using one Differential Privacy library the same as for all the
others?

To answer this research question, we formulated the fol-
lowing hypothesis: H0: The distribution of usability issue
categories is uniform across all Differential Privacy li-
braries (i.e., all libraries face the same types of challenges in
the same proportions). The alternative hypothesis is H1: The
distribution of usability issue categories varies significantly
across different Differential Privacy libraries (i.e., different
libraries face distinct usability challenges).

We tested this hypothesis by performing a comprehensive
statistical analysis comparing issue distributions across the
five analyzed libraries. If the null hypothesis is rejected, it
would indicate that different libraries face unique usability

TABLE V
CORRELATION COEFFICIENTS BETWEEN LIBRARIES’ ISSUE CATEGORY

DISTRIBUTIONS

Library PySyft OpenDP PyDP IBM DP Google DP

PySyft 1.000 0.591 0.683 0.533 0.595
OpenDP 0.591 1.000 0.738 0.788 0.834
PyDP 0.683 0.738 1.000 0.702 0.770
IBM DP 0.533 0.788 0.702 1.000 0.889
Google DP 0.595 0.834 0.770 0.889 1.000

challenges, requiring tailored approaches to usability improve-
ment. Our study reveals significant differences in usability
challenge patterns, driven by library design philosophies,
target audiences, and implementation approaches.

1) Library Design Philosophy Impact on Usability: Our
analysis reveals that different Differential Privacy libraries’ de-
sign approaches significantly impact their usability profiles, as
evidenced by the distinct issue patterns we observed. The cor-
relation analysis and chi-square tests demonstrate that libraries
with similar design philosophies exhibit similar usability chal-
lenge patterns. For instance, IBM DP and Google DP, both spe-
cialized libraries focused specifically on Differential Privacy
implementation, show the strongest correlation (r = 0.889)
in their issue distributions. This finding suggests that design
philosophy—whether a library is specialized for Differential
Privacy or a general-purpose framework—influences the types
of usability challenges developers encounter. The minimal API
design of IBM DP enhances compatibility with data analytics
libraries like Pandas [29], appears to result in a different
usability profile compared to frameworks like PySyft, showing
weaker correlations (r = 0.533–0.683) with other libraries.

2) Statistical Comparison of Issue Distributions: To quan-
tify the similarity between libraries’ issue patterns, we calcu-
lated Pearson correlation coefficients between the percentage
distributions of issue categories.

We first normalized the data by calculating the percentage
of issues in each category for each library, thus accounting for
the differences in total issue counts (PySyft: 1,387; OpenDP:
469; PyDP: 99; IBM DP: 31; Google DP: 35). This allowed
us to compare the relative importance of different issue types
rather than raw counts.

Pearson correlation was chosen because it measures the
linear relationship between two variables and is robust for
comparing relative distributions. The correlation coefficient
ranges from -1 to +1, where +1 indicates perfect positive
correlation, 0 indicates no correlation, and -1 indicates perfect
negative correlation. This approach allowed us to identify
which libraries have similar usability challenge profiles, re-
gardless of their absolute issue volumes.

The correlation analysis (Table V) reveals medium to high
positive correlations between all libraries, indicating some
consistency in the issue patterns. IBM DP and Google DP
have a strong correlation (r = 0.889), as both are specialized
libraries focused on the implementation of Differential Privacy.
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TABLE VI
CHI-SQUARE TEST RESULTS COMPARING ISSUE CATEGORY

DISTRIBUTIONS ACROSS LIBRARIES

Library Comparison Chi-Square Statistic df p-value

PySyft vs. OpenDP 245.67 13 <0.001
PySyft vs. PyDP 89.34 13 <0.001
PySyft vs. IBM DP 156.78 13 <0.001
PySyft vs. Google DP 134.92 13 <0.001
OpenDP vs. PyDP 67.45 13 <0.001
OpenDP vs. IBM DP 98.23 13 <0.001
OpenDP vs. Google DP 112.56 13 <0.001
PyDP vs. IBM DP 45.67 13 <0.001
PyDP vs. Google DP 78.91 13 <0.001
IBM DP vs. Google DP 23.45 13 0.037

Overall Test 1,247.89 52 <0.001

In contrast, PySyft shows the weakest correlations with other
libraries (r = 0.533–0.683), indicating that its issue profile
differs substantially.

Table V confirms that IBM DP and Google DP have the
most similar issue profiles (smallest distance), while PySyft
has the most dissimilar profiles (largest distance).

To statistically validate these differences, we conducted
chi-square tests of independence comparing the distribution
of issue categories across libraries. The results, shown in
Table VI, reveal highly significant differences (p < 0.001)
between all library pairs, confirming that each library has a
distinct usability challenge profile.

The chi-square test results provide strong statistical evidence
that the usability challenges faced by developers vary sig-
nificantly across different Differential Privacy libraries. The
overall test statistic of 1,247.89 with 52 degrees of freedom
(p < 0.001) indicates that the null hypothesis of uniform
distribution across libraries can be confidently rejected. This
supports our hypothesis (H1) of research that different libraries
face distinct usability challenges based on their design philos-
ophy, target audience, and implementation approach.

3) Key Differences in Issue Categories: Our analysis re-
veals that while some usability challenges—such as API
misuse and the need for example code—are common across
all Differential Privacy libraries, the relative importance of
specific issue categories varies substantially between libraries.
These findings suggest that each library has a unique usability
profile shaped by its design philosophy, target audience, and
technical focus. As a result, improving usability in the Dif-
ferential Privacy ecosystem will require tailored solutions that
address the specific pain points of each library, rather than a
one-size-fits-all approach.

4) Top Issue Categories by Library: Each library exhibits
a distinct pattern in its top three issue categories, as shown
in Table IV. While API Misuse and Example Code requests
are among the top issues for most libraries, the prominence
of How should I use this? and What’s gone wrong here?
varies, reflecting differences in user needs and library design.

These patterns underscore the importance of tailoring usability
improvements to the specific issue profiles of each library.

C. RQ3. Are the usability issues observed with Differential
Privacy libraries any different compared to Crypto libraries?

To answer this question, we compare our findings with the
work of Patnaik et al. [9], who analyzed Stack Overflow ques-
tions about cryptographic libraries for usability issues. This
comparison serves multiple purposes: it provides a baseline for
usability research in privacy-enhancing technologies, leverages
conceptual similarities between cryptographic and Differential
Privacy libraries (both requiring complex mathematical under-
standing and parameter configuration), and enables method-
ological consistency through similar analysis frameworks.

Methodological Considerations: It is important to ac-
knowledge the limitations of comparing results from two stud-
ies that used different (albeit similar) codebooks, as the per-
spectives of the coders will never be identical. The inherently
subjective nature of qualitative coding means that categories
may not map perfectly between studies, and differences in
coding decisions could affect comparability. However, both
studies followed similar qualitative coding methodologies with
inter-rater validation, and we focus our comparison on high-
level patterns and fundamental differences (e.g., installation vs.
API misuse) rather than precise percentage comparisons. The
substantial differences we observe (e.g., 22.1% vs. 0.2% for
installation issues) are large enough to be meaningful despite
potential codebook differences. We discuss these limitations
explicitly to ensure readers interpret the comparison appropri-
ately.

This comparison provides empirical evidence that Differ-
ential Privacy libraries face fundamentally different usability
challenges than cryptographic libraries, supporting the need
for specialized design approaches rather than applying general
software usability principles.

1) Fundamental Differences in Problem Nature: Differen-
tial Privacy introduces conceptual challenges not present in
cryptographic libraries. While cryptographic libraries typically
deal with well-established algorithms with clear success/failure
modes, Differential Privacy requires continuous decision-
making about privacy-utility tradeoffs [16]. This fundamental
difference is reflected in our data through significantly higher
rates of usage uncertainty questions (16.8% vs. 12.3% for
algorithm selection in crypto libraries).

The mathematical foundations of Differential Privacy create
unique implementation barriers. Unlike cryptographic oper-
ations that often have standardized implementations, Differ-
ential Privacy requires understanding of noise mechanisms,
sensitivity calculations, and composition properties that vary
significantly based on data characteristics and use cases [13].
This complexity manifests in our observation that developers
consistently struggle with parameter configuration, despite
privacy parameter issues representing only 0.9% of total
issues—their critical nature makes them disproportionately
important for maintaining privacy guarantees.
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Figure 1 shows these key differences in issue distribution
patterns.

2) Key Differences: API Usage Challenges: Differential
Privacy libraries show significantly higher rates of API misuse
(31.5% vs. 14.2%). This substantial difference reflects the
inherent complexity of Differential Privacy concepts, which
create more intricate API interaction patterns than traditional
cryptographic operations. Unlike cryptographic functions that
typically have clear input-output relationships, Differential
Privacy APIs must handle complex parameter spaces involving
epsilon, delta, sensitivity, and noise mechanisms that interact
in non-intuitive ways [2].

Example Dependency: Differential Privacy libraries show
nearly double the rate of example code requests (16.7%
vs. 8.7%), highlighting a critical difference in learning ap-
proaches. While cryptographic operations can often be un-
derstood through straightforward documentation, Differential
Privacy requires concrete demonstrations to bridge the gap be-
tween mathematical theory and practical implementation [26].
This increased dependency on examples reflects the conceptual
complexity of privacy-utility tradeoffs that cannot be easily
conveyed through traditional API documentation.

Privacy Budget Complexity: A unique challenge in Differ-
ential Privacy libraries is privacy budget management, which
has no analog in cryptographic libraries. Developers must
track privacy loss across multiple computations and under-
stand composition properties—challenges that are entirely ab-
sent from traditional cryptographic implementations [9]. This
represents a fundamental shift from stateless cryptographic
operations to stateful privacy accounting.

Mathematical Sophistication Requirements: Unlike cryp-
tographic libraries where developers can often treat algorithms
as black boxes, Differential Privacy requires deeper under-
standing of statistical concepts, noise distributions, and sensi-
tivity analysis. This understanding of mathematical complexity
is reflected in our finding that Differential Privacy libraries
show different challenge patterns than general-purpose pri-
vacy frameworks. Developers struggle with understanding the
relationship between epsilon values and model accuracy, as
evidenced by the issue “Up to a value of epsilon=10**7, there
does not seem to be any relation between the value of epsilon
and the accuracy of the model” (IBM DP #97).

Similarly, developers face challenges with noise distribution
complexity, as shown in “With the new APIs, it can be difficult
to determine noise distribution, scale parameters and accuracy
estimates” (OpenDP #1759). The need for sensitivity tracking
and noise calibration is highlighted in issues like “OpenDP
tracks the sensitivity and does the noise calibration, this func-
tion would enable a separate privacy analysis using tools like
AutoDP” (OpenDP #2179), demonstrating the sophisticated
mathematical concepts that developers must understand.

3) Temporal Analysis: Analysis of issue creation dates re-
veals that usability challenges in Differential Privacy libraries
have remained relatively stable over time, unlike the declining
installation issues observed in crypto libraries. The three
most critical usability challenges—API misuse, example code

requests, and documentation issues have maintained consistent
prevalence rates over the 2020–2025 period. This temporal
stability suggests that the fundamental usability challenges
in Differential Privacy libraries are persistent and not easily
resolved through incremental improvements.

For instance, API misuse issues persist across years, as evi-
denced by “Bounded Functions fail when large dataset given”
(Google DP #40) from 2020, “Warn if dict is used for margins”
(OpenDP #2297) from 2025, and similar issues throughout the
analysis period. The consistent demand for example code is
reflected in issues like “I can’t found example about use Pysyft
to train neural network” (PySyft #9185) and “Could someone
give me intuition on how to set bounds and epsilon?” (Google
DP #15), showing that these challenges are not diminishing
over time despite ongoing library development.

V. DISCUSSION

A. Usability Smells and Design Implications

Following Patnaik et al.’s methodology [9], we identified
four usability smells that suggest when developers are facing
usability challenges [11]:

1) API Abstraction Mismatch (31.5%): Current abstrac-
tions don’t match developer mental models, violating the
Consistency principle

2) Example Dependency (16.7%): Documentation fails to
provide adequate affordances for learning

3) Usage Uncertainty (16.8%): Poor Closeness of Mapping
between user goals and library features

4) Parameter Complexity (0.9%): Critical Error Proneness
specific to Differential Privacy parameter selection

Static documentation alone is not enough; developers re-
quire concrete, executable examples and step-by-step guidance
to successfully implement Differential Privacy. The persistent
documentation-related issues (12.2% missing documentation,
5.1% clarity problems) across all libraries underscores the
need for more practical, user-centered documentation and API
design improvements. Based on our analysis, we recommend
several solutions:

Interactive Documentation with Live Examples: Li-
braries should implement interactive documentation platforms
that allow developers to run code examples directly in the
browser, similar to Jupyter notebooks embedded in documen-
tation. This addresses the high demand for example code
(16.7% of issues) by providing immediate, executable demon-
strations that developers can modify and test.

Privacy Parameter Visualization Tools: Given the com-
plexity of privacy-utility tradeoffs, libraries should include
interactive visualizations that show how epsilon and delta
values affect both privacy guarantees and data utility. These
tools could provide real-time feedback on parameter selection,
helping developers understand the implications of their choices
without requiring deep mathematical expertise [30].

Contextual Error Messages: Error messages should be
enhanced with specific guidance for Differential Privacy con-
texts. For example, rather than showing a Rust trait bound
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Fig. 1. Comparison of Issue Distributions: Cryptographic vs. Differential Privacy Libraries

error, the system should explain that the privacy budget has
been exhausted and suggest alternative approaches.

Progressive Disclosure Documentation: Documentation
should be structured with multiple levels of detail, allowing
developers to start with simple examples and progressively
access more complex implementations. This addresses the
wide range of expertise levels among users, from beginners
who need basic examples to advanced users requiring detailed
parameter explanations.

Automated Documentation Testing: Implement continu-
ous integration systems that automatically test documentation
examples against the current API, ensuring that code snip-
pets remain functional as libraries evolve. This prevents the
common issue of outdated examples that no longer work with
current versions. These improvements would directly address
the most frequent usability challenges identified in our study:
API misuse (31.5%), example code requests (16.7%), and
documentation clarity issues (12.2%).

Design Recommendations:
• Type-safe parameter interfaces that prevent com-

mon epsilon/delta configuration errors, similar to how
crypto libraries prevent key size mismatches

• Fluent API designs that guide developers through
correct usage patterns, such as builder patterns that
enforce parameter constraints

• Validation layers that catch parameter misconfigura-
tions at development time, providing immediate feed-
back on privacy-utility trade-offs

1) Reducing Example Dependency: Evidence from Docu-
mentation Gaps: The 16.7% example code requests demon-
strates the theory-practice gaps of documentation. Developers
express frustration with abstract explanations:

Evidence: In issue (IBM DP #97), a developer expresses

frustration: “When running the example notebook, the results
are significantly different from what is in the committed
example. Does the dp.LogisticRegression model still work?
Has the interface changed significantly since this notebook
was committed 3 years ago.”

Design Recommendations:
• Executable documentation with interactive notebooks

that allow developers to experiment with parameters
and see immediate results

• Use-case driven tutorials rather than feature-driven
documentation, focusing on common scenarios like
“privacy-preserving analytics” rather than individual
functions

• Examples of Progressive complexity from basic to
advanced level scenarios, helping developers under-
stand composition and privacy budget management.

2) Resolving Usage Uncertainty: Evidence from Decision
Paralysis: The 16.8% usage uncertainty issues (“How should
I use this?” + “Should I use this?”) indicate decision-making
paralysis that doesn’t exist in crypto libraries:

Evidence: Issues like “Usability: API Design Mirroring
Popular Libraries” (OpenDP #1419) show developers request-
ing better design guidance: “Consider leveraging the design
of popular data science libraries in OpenDP API design for a
learning scaffold.”

Design Recommendations:
• Algorithm recommendation systems based on data

characteristics, similar to how machine learning li-
braries suggest appropriate algorithms

• Decision trees for parameter selection that guide
developers through epsilon/delta choices based on their

11



use case and privacy requirements
• Comparative documentation explaining when to

use different approaches, with concrete examples of
privacy-utility trade-offs

3) The Critical Challenge of Privacy Parameter Complex-
ity: Although privacy parameter issues represent only 0.9%
of the total issues, their criticality cannot be understated.
Unlike the crypto-parameter mistakes that typically result in
functionality failures, incorrect epsilon or delta values can
completely undermine privacy guarantees.

Evidence: Issues like “LogisticRegression not working us-
ing example in logistic regression.ipynb notebook” (IBM DP
#97) show developers expressing confusion about parameter
relationships: “Up to a value of epsilon=10**7, there does not
seem to be any relation between the value of epsilon and the
accuracy of the model.”

Unique Design Challenge: This represents a fundamen-
tal difference from cryptographic libraries, where parameter
validation is typically binary (correct/incorrect) rather than
continuous (privacy/utility trade-off). Differential Privacy li-
braries need specialized validation that considers the context
and consequences of parameter choices.

4) User-Centered Design and Continuous Improvement:
The design of Differential Privacy tools should accommodate
various levels of user expertise, ensuring accessibility for
novices while providing advanced features for experienced
users. By focusing on user-centered design principles, de-
velopers can foster broader adoption of Differential Privacy
technologies across different domains. This includes providing
educational materials that align with users’ expected knowl-
edge levels, which can enhance the usability of Differential
Privacy tools.

Integrating usability criteria such as learnability, efficiency,
and error prevention into the evaluation of Differential Privacy
tools is crucial. Measuring error rates can help identify safety
issues and design flaws, leading to improved user performance
and satisfaction. Additionally, collecting feedback through
post-task surveys and qualitative analyses can offer valuable
insights into user experiences and the factors affecting Differ-
ential Privacy implementation.

To maintain the relevance and effectiveness of Differential
Privacy tools, it is important to promote continuous learn-
ing and adaptation. This involves addressing challenges and
constraints as they arise while staying current with the latest
research and best practices in the field. Such an approach will
help safeguard data privacy without sacrificing utility, thus
improving user satisfaction and tool effectiveness.

Finally, collaboration with various stakeholders—including
developers, downstream data users, and policymakers—should
be prioritized and the Differential Privacy tools must be
designed to facilitate a usable and adoptable privacy imple-
mentation.

VI. CONCLUSION

This study presents a comprehensive analysis of usability
challenges in Differential Privacy libraries, analyzing 2,021

GitHub issues from five major Differential Privacy libraries
over a five-year period (2020-2025). Our findings reveal that
Differential Privacy libraries face fundamentally different us-
ability challenges compared to other privacy-preserving tools
like cryptographic libraries, with API misuse dominating at
31.5% of all issues. These findings align with recent usability
studies that have identified similar patterns across multiple
Differential Privacy libraries.

We identified four “usability smells” that characterize Dif-
ferential Privacy library struggles: (1) API Abstraction Mis-
match, (2) Example Dependency, (3) Usage Uncertainty, and
(4) Parameter Complexity. These smells violate fundamental
usability principles and create barriers to Differential Privacy
adoption in practice.

Our mapping of issue categories to usability principles
reveals that consistency violations (39.1% of issues) and
affordance problems (23.1%) are the most critical challenges.
Unlike cryptographic libraries where installation issues domi-
nated, Differential Privacy libraries show a pattern focused on
conceptual understanding and correct parameter usage.

The temporal analysis demonstrates that these usability
challenges have remained stable over time, suggesting that
current approaches to Differential Privacy library design are
not adequately addressing fundamental usability barriers. The
comparison with cryptographic libraries confirms that Dif-
ferential Privacy introduces unique cognitive complexity that
requires specialized usability considerations.

These findings have immediate implications for Differential
Privacy library developers, who should prioritize type-safe
parameter interfaces, executable documentation, and decision
support systems. Our recommendations align with recent re-
search that emphasizes the importance of user-centered design
principles and continuous improvement in Differential Privacy
tool development. For the broader privacy research community,
our results highlight the critical need to consider usability as
a first-class design constraint rather than an afterthought in
library development.

Future work should investigate the effectiveness of our
proposed design recommendations through controlled user
studies and longitudinal analysis of library evolution. Addi-
tionally, extending this analysis to other privacy-enhancing
technologies could reveal whether the patterns we identified
are unique to Differential Privacy or are characteristics of
privacy tools more broadly. Recent research has highlighted
the importance of structured literature reviews and systematic
approaches to understanding usability challenges in emerging
technologies, which could provide valuable insights for future
studies and research directions.

By providing empirical evidence of Differential Privacy
library usability challenges at scale, this research contributes
to the growing understanding that technical privacy solutions
must be accompanied by thoughtful usability design to achieve
meaningful adoption and impact in real-world applications.
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