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Abstract—Advances in quantum computing increasingly
threaten the security and privacy of data protected by current
cryptosystems, particularly those relying on public-key cryptog-
raphy. In response, the international cybersecurity community
has prioritized the implementation of Post-Quantum Cryptog-
raphy (PQC), a new cryptographic standard designed to resist
quantum attacks while operating on classical computers. The Na-
tional Institute of Standards and Technology (NIST) has already
standardized several PQC algorithms and plans to deprecate
classical asymmetric schemes, such as RSA and ECDSA, by 2035.
Despite this urgency, PQC adoption remains slow, often due to
limited developer expertise. Application Programming Interfaces
(APIs) are intended to bridge this gap, yet prior research on
classical security APIs demonstrates that poor usability of cryp-
tographic APIs can lead developers to introduce vulnerabilities
during implementation of the applications, a risk amplified by
the novelty and complexity of PQC. To date, the usability of
PQC APIs has not been systematically studied. This research
presents an empirical evaluation of the usability of the PQC APIs,
observing how developers interact with APIs and documentation
during software development tasks. The study identifies cognitive
factors that influence the developer’s performance when working
with PQC primitives with minimal onboarding. The findings
highlight opportunities across the PQC ecosystem to improve
developer-facing guidance, terminology alignment, and workflow
examples to better support non-specialists.

I. INTRODUCTION

Quantum computing (QC) presents a paradigm shift in
computational power, most notably in its ability to solve
cryptographic problems that are computationally infeasible for
classical machines [1]. Central to this advantage is Shor’s
algorithm [2], [3], which poses a direct threat to widely used
public-key encryption standards like Rivest-Shamir-Adleman
(RSA) [4], [5]. To understand the magnitude of this threat,
one can compare a classical supercomputer to a burglar who
attempts to crack a lock by checking one number at a time–a

process that could take billions of years for 2048-bit encryp-
tion. In contrast, a quantum computer takes advantage of the
principles of quantum mechanics to evaluate vast combinations
simultaneously, theoretically picking the same lock in a matter
of hours [6].

This danger has moved beyond abstract theory, as active
research continues to reduce the resources required to mount
such attacks. For example, recent optimizations of windowed
arithmetic circuits have reduced the total gate count for fac-
toring by approximately 3.4% [7]. Although this may seem
small, it certainly lowers the barrier to practical quantum
cryptanalysis, indicating that widely deployed algorithms will
eventually become vulnerable [8].

The implications of this vulnerability extend far beyond
digital data theft; they introduce serious physical risks. If
encryption is broken, attackers could bypass security protocols
in Operational Technology (OT) and National Critical Infras-
tructure. In a practical scenario, this capability would allow
adversaries to manipulate valve controls in water treatment
facilities, trigger shutdowns in national energy grids, disrupt
railway transportation networks, or sabotage manufacturing
production lines [9].

Compounding this physical risk is the immediate strategic
threat known as “Harvest Now, Decrypt Later” (HNDL) [10],
[11]. Even before a fully capable quantum computer exists,
attackers are already intercepting and storing large volumes of
encrypted traffic from critical infrastructure systems such as
water, energy, healthcare, transportation, and manufacturing,
with the explicit intention of decrypting it retrospectively
once quantum capabilities mature. For example, an adversary
monitoring encrypted telemetry from a national power grid
can archive operational logs and configuration updates that
are currently protected by classical public-key cryptography.
When a cryptographically capable quantum computer emerges,
the attacker could decrypt the stored data, reconstruct the state
of the system, and uncover structural weaknesses. Thus, the
impact of HNDL attacks materializes not during interception
but when future decryption becomes technically possible.

In response to these emerging threats, the National Insti-
tute of Standards and Technology (NIST) initiated its Post-
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Quantum Cryptography (PQC) effort in 2016, calling for the
development of quantum-resistant classical algorithms. By
2025, this process had produced five standardized schemes
[12]. In addition, NIST’s PQC transition plan [13] specifies a
phased deprecation schedule for vulnerable algorithms such as
RSA and the Elliptic Curve Diffie-Hellman, including a prohi-
bition on their use after 2035. Beyond the NIST transition plan,
several international initiatives further underscore the urgency
of migrating to post-quantum cryptography, including the
European Union’s coordinated implementation roadmap[14],
which outlines a phased, cross-sector transition strategy and
highlights the practical challenges of deploying PQC in real-
world software systems.

Substantial work has also been undertaken to facilitate
migration to PQC. This includes a systematic literature review
on migration to PQC by Näther et al. [15], studies on network
adoption rates [16], and the creation of PQC libraries for
developers such as PQClean [17] and Liboqs [18]. However,
while PQC research has made substantial strides in algorithmic
performance and protocol integration, limited research has
investigated whether general software developers can correctly
and securely implement these algorithms without security
knowledge or cryptographic expertise.

Previous studies demonstrate that the usability of crypto-
graphic libraries has a major influence on the security out-
comes of applications [19], [20], [21]. When documentation is
poor or APIs are unintuitive, developers are prone to misusing
standard tools like Secure Sockets Layer (SSL), authentication
mechanisms, and symmetric-key encryption. These usability
issues often result in misuse in the application, such as the
use of unsafe default settings or incorrect parameter configu-
ration in classical cryptographic algorithms. To address these
issues, Green [22] and Schmüser [23] have emphasized the
importance of human-centered cryptography. However, at the
time of writing, no study has empirically analyzed the usability
of PQC APIs from a developer experience perspective.

Consequently, there is an urgent need for a systematic exam-
ination of the usability of the PQC API. Enhancing usability is
critical for minimizing implementation errors of applications
and promoting secure software development practices.

To address this gap, this research employed a moder-
ated remote usability testing protocol facilitated via video
conferencing software (specifically, Microsoft Teams). This
format allowed participants to operate within their natural
development environments while sharing their screens for real-
time observation. Using the Cognitive Dimensions Framework
(CDF) [24], [25] as an analytical lens, the study evaluated the
interaction patterns of a diverse group of developers. The study
compared two accessible APIs that represent distinct architec-
tural models. Participants were tasked with implementing PQC
algorithms in a simulated client-server environment, followed
by a mixed-methods analysis to isolate the root causes of
usability friction.

This study examines the behavior of non-specialized de-
velopers and the experience of implementation under min-
imal manual intervention. It does not evaluate the security

guarantees, cryptographic correctness, operational posture, or
maturity of the deployment of the APIs examined. All findings
relate solely to the experience of the developers and the
usability of the APIs under experimental conditions.

Specifically, this study seeks to explore key aspects of
developer interaction with Post-Quantum Cryptography APIs
by addressing the following research questions:

RQ1: What common misuses and usability barriers do devel-
opers encounter when utilizing PQC APIs?

RQ2: How do the integration challenges differ between
endpoint-based PQC APIs and local library PQC API?

RQ3: What usability and guidance improvements are needed to
support secure implementation?

The rest of the paper is outlined as follows: Section II, “Lit-
erature Review”, where we analyze previous studies relevant to
our research questions. Section III, “Research Methodology”
details our data collection and analysis methods. Section IV,
“Results”, where findings are presented with the aid of graphs
and tables. Section V, “Discussion and Evaluation”, which
interprets and discusses the findings. In the concluding Section
VII, “Conclusion”, we summarize the insights gained from
the experiment and suggest ways they could enhance future
research.

II. LITERATURE REVIEW

This literature review first establishes the urgent need to
migrate to PQC. Then it examines the challenges involved in
this migration and identifies the stakeholders responsible for
addressing them. Then, the review investigates how usability
and documentation problems in PQC APIs can lead to inse-
cure implementation behavior during application development.
Finally, it explores the evaluation methodologies employed in
related work to identify these issues and improve API design,
including documentation, code examples, abstraction, and the
inputs and outputs of functions.

A. Importance of migrating to PQC

Information security is entering a period of major change
because a powerful quantum computer could break the clas-
sical encryption systems that protect today’s digital world.
Specifically, Shor’s algorithm [2], [3], a quantum comput-
ing algorithm, is theoretically capable of solving integer
factorization and discrete logarithm problems in polynomial
time. This capability would render the most widely used
public-key cryptography algorithms, such as Elliptic Curve
Diffie-Hellman (ECDH), Elliptic Curve Menezes-Qu-Vanstone
(ECMQV), and Rivest-Shamir-Adleman (RSA), completely
insecure [8], [13]. Consequently, the NIST transition plan
mandates that these algorithms will be deprecated by 2030
and fully disallowed after 2035 [13].

This threat is made more urgent by HNDL attacks, where
encrypted data are harvested today to be decrypted by a future
quantum computer [10], [11]. This is no longer a purely
theoretical concern, as active research is consistently reducing
the practical resource requirements for such an attack. For
instance, recent optimizations of the windowed arithmetic
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circuits required for Shor’s algorithm [2], [3] have been shown
to reduce the total gate count for factoring by up to 3.4%,
incrementally lowering the barrier to a practical attack on gate-
based quantum computers [7].

To mitigate this threat, the NIST standardization of algo-
rithms like ML-KEM (FIPS 203)[26] introduces a paradigm
shift based on the ‘KEM/DEM’ framework [27], [28]. In this
hybrid approach, the KEM asymmetrically derives a shared
secret, which is then utilized by a Data Encryption Mechanism
(DEM) for symmetric message encryption. Consequently, the
integration of these primitives shifts the burden from under-
standing mathematical theory to mastering practical software
implementation [29].

According to Näther et al. [15], this migration involves four
key phases: diagnosis, planning, execution, and maintenance.
While various roles such as Migration Managers and Security
Experts are involved, the software developer emerges as the
pivotal figure, holding primary responsibility for the critical
execution and maintenance phases.

However, the central role of the developer is complicated
by the intersection of limited domain expertise and the in-
herent complexity of the PQC algorithms themselves [15].
Implementing PQC is a non-trivial task; as detailed in NIST
guidelines SP.800.227 and FIPS 203 [30], [26], a secure
implementation must account for numerous sophisticated fac-
tors. These include managing secure handshake protocols,
ensuring cryptographically secure random key generation, han-
dling lattice set problems, and preventing side-channel attacks.
Although addressing these factors is essential for compliance,
this increased complexity often negatively impacts usability
[31]. This tension between robust security and API usability
remains an open research problem [32], [33], creating sub-
stantial friction for developers tasked with securing the next
generation of digital systems.

B. Usability Issues of Security API

Historically, cryptographic APIs that exhibit limited usabil-
ity have demonstrated substantial vulnerability to misuse by
developers, resulting in major security flaws in applications
[19], [20], [21]. This underlines the urgent requirement for
empirical evaluation of the developer experience with emerg-
ing PQC APIs. Without usability evaluation, there will be risks
of repeating past mistakes, where poor usability undermines
the very security the migration aims to provide [34], [35], [36],
[37], [38].

Although the mathematical integrity of the new PQC stan-
dards is critical, history has demonstrated that mathematical
security alone is insufficient to ensure real-world security [39],
[40]. The cryptographic community has repeatedly learned this
lesson from the failures of the classical cryptography API
[39]. The major vulnerabilities, such as the “Heartbleed” bug
in OpenSSL [40] or the Apple “goto fail” vulnerability [39],
were not failures of the cryptographic algorithms themselves,
but rather API implementation failures caused by developer
error, complex code, and poor documentation [39].

Research in the usable security domain has consistently
demonstrated that if an API is difficult to use, developers
will make critical security errors in applications [22], [20],
[21]. Developers, who are often not security experts, may
misconfigure parameters, mishandle sensitive data like secret
keys, or fail to implement necessary procedures such as error
handling or signature verification [22].

However, these issues do not emerge as isolated single
incidents; rather, they reflect recurring and well-documented
misuse patterns. Frequent errors include the selection of in-
appropriate parameters, such as insecure modes such as ECB
[41], [42] and improper key handling practices, including hard-
coding secrets or relying on unsafe default configurations [20].
Developers also commonly omit essential security steps, such
as certificate verification [43], [19]. For example, confusion
and ambiguity in API usage have contributed to the widespread
disabling of SSL / TLS verification in mobile applications.
These failures often arise from inadequate documentation, the
absence of robust secure-by-example guidance, an increased
cognitive burden during implementation, and a reliance on
insecure code snippets found through online forums and
repositories [22], [44], [38], [45].

As the cryptography field advances toward PQC, these
established misuse patterns pose even more risks. PQC in-
troduces additional complexity that may further strain de-
veloper comprehension, including large key sizes, a novel
key exchange model, inconsistent terminology, and the need
for crypto-agility [46]. The need to implement secure hybrid
schemes that combine classic encryption with PQC also intro-
duces new risks of broken mechanisms or incorrect encapsu-
lation logic [47], [48].

Furthermore, existing research highlights how even well-
designed algorithms can fail in practice [22], [24], most
usability studies have focused on traditional libraries like
OpenSSL [49], BouncyCastle [50], and various Java or Python
APIs [51], [20]. This situation creates a critical research gap,
as there has been little to no empirical evaluation of post-
quantum-specific APIs. Therefore, this research aims to fill
this gap by applying established usability evaluation methods
to PQC APIs to identify usability issues that could lead to
security vulnerabilities in applications.

C. Related Work

Research into the usability of cryptographic APIs has
evolved from casual observation to structured and empirical
evaluation. Acar et al. [20] conducted a landmark quantita-
tive study involving 256 Python developers to compare five
libraries (PyCrypto, M2Crypto, cryptography.io, Keyczar and
PyNaCl). Their methodology combined a controlled experi-
ment with functional analysis, revealing a complex relationship
between API design and security. Although comprehensive
documentation facilitated functional correctness, it often led to
insecure implementations, whereas overly simple APIs caused
functional failures. Crucially, their demographic analysis noted
that general programming familiarity did not correlate with
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security success; rather, specific security knowledge was the
determining factor.

Complementing this quantitative approach, Wijayarathna
and Arachchilage argue that identifying the root causes of
insecure utilization of API requires qualitative depth. Through
systematic literature reviews [52], [24], they evaluated var-
ious methodologies–including heuristic evaluations and API
walkthrough–and concluded that empirical user studies are
essential to reveal real-world developer experiences (DevX).
To standardize this analysis, they adapted Clarke’s CDF [37],
expanding it from 12 to 15 dimensions to specifically address
security contexts [53].

Applying this adapted CDF methodology, Wijayarathna
and Arachchilage further investigated specific usability flaws
across multiple environments. In their evaluation of the Boun-
cyCastle API, they utilized the think-aloud protocol to iden-
tify that low-level parameters in the SCrypt.generate()
method confused non-experts [50]. Similarly, their assessment
of the Google Authentication API revealed that misleading
abstraction levels forced developers to rely on insecure third-
party code snippets [21]. Furthermore, their study of the Java
Secure Socket Extension (JSSE) API linked low penetrability
and uninformative error messages to vulnerable TLS imple-
mentations [51]. These studies collectively demonstrate that
when secure APIs are difficult to learn, developers inevitably
revert to simpler, less secure alternatives.

In the domain of PQC, usability challenges are compounded
by new cryptographic primitives. Zeier et al. [54] addressed
the complexity of stateful hash-based signature schemes (e.g.,
XMSS) by proposing “EasySigner”, a crypto-agile API de-
signed to abstract state management. Although their user study
demonstrated high functional success, it highlighted a “trans-
parency paradox”: the effective abstraction left participants
unaware that they were using a stateful scheme. This lack
of awareness poses a risk, as developers might inadvertently
compromise keys through external actions such as virtual ma-
chine cloning, underscoring the need for evaluation methods
that assess both API usability and developer awareness.

III. RESEARCH METHODOLOGY

This research aims to identify security vulnerabilities in
applications that arise from usability issues that developers
encounter when implementing PQC algorithms. As discussed
in Section II-C, we adopted an empirical user study method-
ology based on the CDF as summarized in Fig. 1 as modi-
fied by Wijayarathna and Arachchilage [24]. This approach
was selected to facilitate a detailed analysis of PQC APIs
and to identify specific cognitive hurdles that hinder secure
implementation. Aligning with observations by Acar et al.
[20] with respect to security experience and Näther et al.’s
insights on PQC migration [15], we recruited a diverse set of
participants ranging from software engineers and developers
to IT students. This diversity allows the study to explore
how varying levels of expertise influence security-relevant
outcomes. Special emphasis is placed on developers without
specialized cybersecurity training, as they are more likely to

Fig. 1. Cognitive Dimensions Framework.

introduce implementation flaws in applications when interact-
ing with complex or insufficiently supportive PQC APIs and
libraries.

To ensure that the findings reflect real-world programming
scenarios, we employed a moderated remote usability study
design. This approach maximized ecological validity by allow-
ing participants to use their familiar Integrated Development
Environments (IDEs) and external resources, such as search
engines and AI assistants (e.g., ChatGPT1, Stack Overflow2).
This was an intentional design choice to preserve ecological
validity and to observe realistic developer–API interaction in
natural development settings. To ensure consistency across
sessions and to minimize environment-induced variability, all
participants used the same programming language, identical
task instructions, standardized skeleton code, and fixed ver-
sions of the evaluated PQC APIs. Environment requirements
and dependencies were communicated in advance and verified
at the start of each session, while live screen sharing and mod-
eration allowed immediate resolution of environment-related
issues. Consequently, observed differences are attributable to
API usability and developer behavior rather than tooling or
configuration discrepancies.

Data from pilot tests revealed that the cognitive load was
excessive for a within-subjects approach. Therefore, the study
was refined to a between-subjects model [55] where partic-
ipants engaged with only one API. This design isolated the
quantitative and qualitative analysis to a single interaction,
removing the risk of learning bias.

The core assessment tasks were designed around the practi-
cal scenario of building a secure client-server communication
protocol in compliance with NIST recommendations. Partic-
ipants were required to implement two foundational PQC
functions: a KEM, such as ML-KEM, and a DSA, such as
ML-DSA. These tasks were presented sequentially to construct
a layered security model: beginning with KEM to establish

1https://chatgpt.com/
2https://stackoverflow.com/
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confidentiality, followed by symmetric-key encryption, and
finally introducing DSA to prevent on-path attackers and
ensure end-to-end integrity in the application.

The overall study procedure is illustrated in Fig. 2. Before
data collection, the study protocol was reviewed and approved
by the university ethics committee. Following this approval,
the process went on to recruit software engineers, developers,
and IT students, who underwent a screening questionnaire
to determine eligibility. Qualified participants received an
informed consent form via email and were scheduled for a
remote session. The session started with a briefing on general
knowledge, followed by specific task guidelines( see appendix
B). The participants then executed the programming task using
the “think-aloud” protocol [56]. Once the moderator verified
the completion of the task, the session concluded with a
post-task questionnaire adapted from Wijayarathna et al. [24].
All data collected was then synthesized and mapped to the
15 Cognitive Dimensions to systematically categorize how
API design features impact developer usability and software
security.

A. Programming Language and Chosen PQC APIs

To minimize cognitive load during these tasks, the study
utilized Python, selected for its readability and popularity in
introductory programming [57]. Participants were provided
with a skeleton script containing helper functions for net-
work socket communication, allowing them to focus strictly
on the cryptographic implementation. Two PQC libraries–
the endpoint-based PQ-Sandbox [58] and the local library
QuantCrypt [59]–were selected solely based on public avail-
ability, PyPI accessibility, and completeness of public docu-
mentation. No API was selected due to institutional affiliation
or endorsement. These criteria minimized installation barriers,
serving as a methodological control to isolate usability issues
inherent in the API design rather than environmental config-
uration. The PQ-Sandbox API [58] is a research prototype
provided solely for academic evaluation. It is distinct from
any production system and is intentionally simplified for
experimentation. The API exposes only the cryptographic
functions necessary for the study and should not be interpreted
as a commercial or deployment-ready environment.

B. Task design

The task design was focused on the core functions of
the PQC algorithms, namely KEM and DSA. We follow
the NIST recommendations for secure KEM implementations
[30]. These guidelines served as the standard for task design
and implementation evaluation. Participants were given a set of
materials to complete the task: two Python scripts containing
skeleton code, API documentation, and a task instruction sheet.

The scenario placed the participant in the role of a software
engineer at a financial technology company. They were as-
signed the task of developing a secure chat application project
to prevent quantum computer attacks. The two scripts repre-
sented the server and client components of this application,
which were assumed to operate on an insecure network. The

participant’s objective was to implement the PQ-Sandbox API
and QuantCrypt API into this skeleton code to enable secure
communication between the server and client on the insecure
channel.

Task completion was measured against several goals:
• KEM: The first task required participants to use ML-

KEM to establish a shared secret between the server and
the client. The fundamental security goal was to achieve
confidentiality against a passive eavesdropper. By design,
the KEM allows both parties to agree on a secret value
without ever transmitting that secret directly across the
network, thus protecting it from being intercepted.

• Symmetric-key Encryption: In the second task, partic-
ipants were instructed to use the shared secret gener-
ated in Task 1 as a session key for a symmetric-key
encryption algorithm such as the Advanced Encryption
Standard (AES). This task demonstrates the “hybrid en-
cryption” model, where the computationally expensive
KEM is used only to establish the key, and the efficient
symmetric-key cipher is used to protect the bulk of the
application data.

• DSA for Handshake Authentication: The third task
directly addressed the on-path attackers vulnerability by
introducing ML-DSA to provide server authentication.
Participants had to modify the initial KEM handshake,
requiring the server to use its long-term private key to
sign a key component of the key exchange (such as the
KEM ciphertext it generates). By verifying this signature
with the server’s trusted public key, the client can cryp-
tographically confirm that it is communicating with the
genuine server, not an impostor. This step adds the crucial
security properties of authentication (proving the server’s
identity) and non-repudiation (providing undeniable proof
that the server participated in that specific handshake).

• DSA for Message Exchange: the final task was to
implement message integrity and mutual authentication
for the data-in-transit. Participants were asked to use ML-
DSA on both the server and the client to sign every ap-
plication message exchanged over the encrypted channel.
This ensures that no message is altered by an attacker
after it has been signed and confirms that both parties
are who they claim to be throughout the entire session.
Although Task 3 secured the handshake, it did not protect
subsequent application data from being tampered with
(even if it is encrypted).

C. Participant recruitment

Participants were recruited via posters with a QR code
linking to a page outlining the study’s objectives and tasks,
distributed through the researchers’ professional networks.
Recruitment primarily attracted university students, staff, and
professional developers from diverse sectors. Interested indi-
viduals completed a screening questionnaire assessing web
API knowledge and programming proficiency to ensure foun-
dational skills needed to prevent data noise. Eligible partici-
pants provided contact information to schedule sessions, while
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Fig. 2. Study Procedure Diagram.

ineligible individuals were not asked for further details, pro-
tecting privacy and providing a clear rationale for ineligibility.

Eligible participants then received a Participant Information
and Consent Form via email and, upon agreement, a researcher
scheduled the experimental session based on their availability.
A Microsoft Teams link confirmed the session.

D. The pilot study

Before the main study, a preliminary pilot study was
conducted with three participants. This small-scale trial was
essential to ensure that the study ran smoothly and focused on
testing the task design, rather than obtaining the final results.
This process helped us determine the practicality, estimated
duration, cost, and any unforeseen issues. These practical
insights allowed us to refine our methods and proceed with
the main study with greater confidence in our plan.

The pilot study revealed two critical challenges: technical
setup hurdles and time constraints. First, to address difficulties
with IDE configuration and data transfer, we refined the
skeleton code by providing pre-built classes and included
detailed environment requirements in the preparation email.
This allowed participants to focus on core logic rather than
troubleshooting. Second, because the average task duration ex-
ceeded 90 minutes, we assigned only one API per participant.
Additionally, if a session surpassed two hours, we explicitly
asked participants if they wished to continue. These strategies
mitigated participant fatigue and preserved the quality of our
research results.

E. Study procedure

Following the pilot study and task refinements, we con-
ducted the main usability study. The participants received a
setup guide and a short video introducing the think-aloud
method [56].

The study workflow is shown in Fig. 2. The protocol
was approved by the University Ethics Committee before data
collection began. The recruitment targeted software engineers,
developers, lecturers, and IT students. Eligible participants,
identified through a screening questionnaire, received an in-
formed consent form and were scheduled for a remote session.

Fig. 3. Key Encapsulation Mechanism and Symmetric Encryption Workflow.

Each session opened with a brief introduction to the purpose
of the study, background concepts, and task instructions.
The participants then completed a programming task while
verbalizing their thoughts using the think-aloud method [56].
After the moderator confirmed the completion of the task,
participants completed a post-task questionnaire adapted from
Wijayarathna et al. [24]. All data were then mapped to the 15
Cognitive Dimensions to evaluate how API design influences
usability and software security.

We conducted the study remotely, recording screen and
audio to capture detailed navigation and reasoning processes
often missed by surveys alone [60], [55]. Sessions began
with a briefing on KEM and DSA concepts (e.g., Fig. 3)
to ensure a common baseline before participants received the
skeleton code. Participants performed tasks using a think-aloud
protocol under passive moderation, followed by a post-study
questionnaire. We prioritized participant comfort, explicitly
allowing pauses or withdrawal at any time.

F. Evaluation of PQC Usability

The evaluation was based on the data collected, which
included performance metrics, screen recordings, transcripts of
the participants’ “thinking-aloud” verbalization, and the post-
task questionnaire. Quantitative analysis focused on perfor-
mance metrics, including task completion rate, task completion
time, and error rate of participants’ implementations. The
completion rate of the task was calculated as the percentage of
participants who completed each task. Among the participants’
implementations, the error rate was determined by counting the
number of incorrect outputs, API misuse events, and runtime
failures for each task. To compare performance differences
between the two API groups (PQ-Sandbox and QuantCrypt),
unpaired two-sample t-tests were used [61].

The qualitative data were analyzed using a thematic coding
approach guided by the CDF [25]. The first author performed
the primary coding of all qualitative materials, including think-
aloud transcripts and post-task questionnaire responses. A
second author independently reviewed the coded data and the
evolving codebook to validate interpretations and to identify
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TABLE I
PARTICIPANT DEMOGRAPHICS.

Background Category N

Software
Development
Experience (SDE)

No Experience 3
IT student (Entry Level Developer) 4
<3 years (Beginner Developer) 3
≥3 years (Expert Developer) 6

Python Experience
(PE)

No experience 0
Less than 1 Year 5
1 - 3 Years 8
3 - 5 Years 0
> 5 Years 3

Cybersecurity
Experience (CE)

No 2
Basic Knowledge 11
Expert Cybersecurity 3

potential inconsistencies. Any discrepancies were discussed
and resolved through consensus, resulting in iterative re-
finement of code definitions and thematic boundaries. This
validation process was employed to mitigate individual re-
searcher bias and to strengthen analytical rigor. To preserve
fidelity to participants’ perspectives, all quoted statements are
reported verbatim, including original grammatical errors and
typographical inconsistencies.

IV. RESULTS

A. Participant Demographics

A total of 16 participants were recruited for the study
and randomly assigned to two independent, between-subjects
groups: PQ-Sandbox (N = 8) and QuantCrypt (N = 8).
One participant in the PQ-Sandbox group did not complete
the post-task questionnaire. As summarized in Table I, the
participants possessed varying levels of technical expertise.
Regarding software development, the group included both
beginners and professionals; while 7 participants were students
or had no prior experience, the majority (9) were professional
developers, with 6 possessing over three years of experience.
Furthermore, all participants had at least some familiarity
with Python, with half of the group (N = 8) falling into
the 1–3 year experience range. In terms of knowledge in the
cybersecurity domain, the sample consisted predominantly of
individuals with basic knowledge (N = 11), while only three
identified as experts and two reported no previous qualification
or experience.

B. Task Performance

Table II summarizes the performance data from participants’
initial API interactions. Results are grouped by PQC API and
include the mean and standard deviation (in minutes), as well
as the completion rate. While most participants successfully
completed Task 1, failure rates increased for Tasks 2 and 3.
Notably, no participants were able to complete Task 4 within
the allotted time.

TABLE II
TASK PERFORMANCE TIME METRICS.

API Mean (min) SD (min) n Comp. Rate

Task 1
QuantCrypt 39.38 15.52 8 100%
PQ-Sandbox 65.38 18.02 8 100%

Task 2
QuantCrypt 41.43 6.88 7 87.5%
PQ-Sandbox 25.43 7.72 7 87.5%

Task 3
QuantCrypt 25.60 5.77 5 62.5%
PQ-Sandbox 23.25 6.02 4 50%

Task 4
QuantCrypt – – – 0%
PQ-Sandbox – – – 0%

TABLE III
PARTICIPANT FINAL CODE ANALYSIS.

API ID
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QC

P1 ✗ ✗ ✓ ✗
P2 ✗ ✗ ✗
P5 ● ● ✗ ✗ ✗ ✗
P6 ✗ ✗ ✗ ✗
P9 ✗ ✗ ✗ ✗
P11 ✗ ✗ ✗
P13 ✗ ✗ ✗ ✗
P16 ✗ ✗ ✗ ✗
Total 1 0 1 8 8 5 8

PQS

P3 ✗ ✗ ✗
P4 ● ✗ ✗ ✗
P7 ● ✗ ✗ ✗
P8 ✗ ✗ ✗
P10 ● ✗ ✗ ✗ ✗
P12 ● ✗ ✗ ✗ ✗
P14 ● ✗ ✗ ✗ ✗
P15 ● ✗ ✗ ✗
Total 2 1 3 8 8 3 8

Key: ●=Leak Found, ✓=Feature Implemented, ✗=Missing Handling/Check

To evaluate performance on Task 1, an analysis was con-
ducted to compare the average completion time (in minutes)
between the QuantCrypt and PQ-Sandbox groups. The re-
sults revealed a clear and statistically significant difference,
indicating that the QuantCrypt group was substantially faster.
Participants using QuantCrypt finished the task in an average
of 39.37 minutes, while the PQ-Sandbox group took con-
siderably longer, averaging 65.38 minutes–a difference of 26
minutes. This conclusion is supported by an unpaired t-test
(t(14) = 3.09, p = 0.0079), which shows that the probability
that this large difference occurs by random chance is very
low. Furthermore, we are 95% confident that the true average
advantage for the QuantCrypt group is between 7.97 and 44.03
minutes. Because this confidence interval does not include
zero, it confirms that the observed performance gap is a
genuine finding and not a statistical fluke.
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For Task 2, a similar unpaired t-test was used. It revealed
a difference, but with the opposite result (t(12) = 4.09, p =
0.0015). In this second task, the participant in the PQ-Sandbox
group was significantly faster, with a mean completion time of
25.43 minutes, compared to the participant in the QuantCrypt
group, who took significantly longer, a mean time of 41.43
minutes. On average, the PQ-Sandbox group took 16 minutes
less to complete the second task. The 95% confidence interval
for this difference (7.49 to 24.51 minutes) again does not
contain zero, confirming that the slower time observed in the
QuantCrypt group is statistically significant.

Finally, in the analysis on Task 3 completion time, we
found no statistically significant differences between the two
groups (t(7) = 0.596, p = 0.5700). Descriptively, the mean
time for the QuantCrypt group (N=5) was 25.60 minutes,
and the mean of the PQ-Sandbox group’s (N = 4) was
23.25 minutes. This small difference of 2.35 minutes is likely
due to random chance, a conclusion supported by the 95%
confidence interval, which ranged from -6.98 to 11.68 minutes.
As this interval contains 0, it confirms the lack of a statistically
significant difference in the implementation of ML-DSA using
both APIs.

Within this primary data set (see appendix C), Table III
details the security vulnerabilities identified in the participants’
implementations and reveals distinct error patterns of the ap-
plications between the two groups. A notable and concerning
observation was the complete absence of defensive program-
ming across all participants’ implementations. In their appli-
cations, irrespective of the library employed, every participant
failed to incorporate error handling for KEM encapsulation
or decapsulation, and none implemented explicit destruction
of unused cryptographic keys. Despite this uniform lack of
hygiene, differences emerged in the exposure to critical data
from insecure applications written by participants. Participants
using PQ-Sandbox demonstrated a higher rate of writing
insecure applications, including shared-secret exposure and
mishandling of key material. In contrast, the QuantCrypt group
resulted in fewer data exposures in their applications, with
only two leaks combined. However, this group struggled with
the implementation logic, recording five instances of incorrect
DSA verification handling in their applications compared to
three among PQ-Sandbox users.

These outcomes highlight how introducing PQC to gen-
eralist developers remains inherently challenging. In the
constrained study setting, documentation written for a
cryptography-aware audience did not fully bridge the domain-
knowledge gap, an issue mirrored across the broader PQC
ecosystem.

C. CDF Questionnaire

Table IV presents the analysis of the CDF questionnaire
results, mapping problematic dimensions to their correspond-
ing themes. Dimensions for which participants reported no
difficulties are listed but not mapped to a specific theme, as
they did not contribute to the identified usability barriers.

TABLE IV
MAPPING OF COGNITIVE DIMENSIONS PROBLEMS TO IDENTIFIED

THEMES.

Cognitive Dimension Identified Theme

The Abstraction Level API Complexity and Granularity

Learning Style Documentation Deficiencies and Learning
BarriersPenetrability

The Working Framework
Sequencing and Flow DependencyThe Work-step Unit

Premature Commitment

API Elaboration
Naming, Data Handling, and Consistency IssuesConsistency

Role Expressiveness

Domain Correspondence Importance of Prior Security Knowledge

Error Proneness
Security Dependence and Lack of Testability
GuidanceEnd-user Protection

Testability

Progressive Evaluation No Problem Found
API Viscosity No Problem Found

1) API Complexity and Granularity: Participants generally
perceived the API as complex due to its low-level granularity,
forcing them to manually combine separate cryptographic
components. A majority (71%) reported that multiple classes
were needed to implement core functionality, contradicting the
expectations of 59% who anticipated a single-class solution.
P8 (CE - Expert, SDE - Beginner) highlighted this discrepancy,
noting that they “didn’t expect that I would need to use
and integrate multiple classes” but rather assumed “a single
entry point” would handle the process. Instead, developers
had to manually assemble the KEM, Key Derivation Function
(KDF), and symmetric-key cipher. Although P8 felt that this
assembly was achievable with structured guidance, P15(SDE
- Expert) cautioned that “stitching them together... requires
careful handling” of endpoints and parameters, even if the
modular roles were clear.

This requirement for manual assembly contributed to the
consensus that the abstraction level was too low, exposing
developers to “too many nuts and bolts”. P5 (SDE - Expert)
argued that developers expect to “minimize friction by just
worrying about the relevant data” rather than navigating
internal cryptography jargon, while P1 (SDE - Expert) noted
that manual key handling differed from typical key exchange
mechanisms. Consequently, the volume of code required be-
came a major friction point. Describing the workload for
simple tasks as “unsustainable”, P5 emphasized that code is
a “liability in the long run”, and that a developer typically
expects to execute a task in “one liner or 2–3 lines max”
without managing the underlying interworking.

2) Documentation Deficiencies and Learning Barriers:
Feedback highlighted hurdles in the learning process, partic-
ularly with respect to the depth and clarity of the documen-
tation. Nearly half of the participants (44%) felt that there
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was insufficient information, with P5 noting that code samples
were often “unclear [or] misleading” and P13 (SDE - Entry
Level) finding the material unsuitable for those with “limited
experience”. This confusion was compounded by a lack of
context; although the documentation detailed isolated function
calls, it failed to illustrate the relationships between them. P2
(PE - < 1 year) criticized this approach, observing that, despite
being extensive, the documentation lacked a “clear picture
overview” of the core mechanism required to get the system
running.

The presentation style further alienated developers by re-
lying heavily on academic terminology. P5 remarked that
the “too many jargons” meant a standard developer would
struggle with half the content, leading P12 (CE - Expert) to
suggest that “visual aids and a reduction in technical security
jargon” would make the concepts more accessible. Faced
with these barriers, 63% of the participants relied on copying
code and “trial and error” to understand the API. As P8
explained, the strict sequence of operations was not initially
obvious, forcing them to derive the correct data flow by
“ensuring outputs matched expectations” rather than through
clear instruction.

3) Importance of Prior Security Knowledge: The partici-
pants overwhelmingly agreed that the existing security knowl-
edge was a critical factor in mitigating the difficulty of the API,
with 88% stating that prior experience would have facilitated
the process. This created a distinct divide in user experience
based on background. While P1 noted that the library is “hard
to use... without prior knowledge” due to the documentation
lacking a clear flow overview, those with a foundational under-
standing fared considerably better. P16 (CE - Basic) reported
that familiarity with concepts like public/private keys provided
a “clearer picture of how the encryption and key exchange
process actually works”, preventing the disorientation felt by
novices.

Specific technical competencies were often required to
bridge the gap between documentation and the task. Ex-
perienced participants like P8 cited the need for “hands-
on knowledge of ML-KEM and ML-DSA” alongside general
API integration skills. Consequently, the reliance on such
specialized domains led some to perceive a mismatch in the
intended audience. P6, identifying as a frontend developer,
argued that the API was “mainly targeted for someone who
has some experience in security”, suggesting that without this
specific context, the implementation barrier remains high for
generalist software engineers.

4) Sequencing and Flow Dependency: The API workflow
was defined by a rigid sequential structure, with 88% of
the participants reporting that the system forced them to
think ahead and prioritize specific decisions. This workflow
dictated a strict execution order–key generation → encap-
sulation / decapsulation → deriving shared secret → en-
cryption / signing–which required developers to preemptively
plan their architecture. P15 emphasized the cognitive load
of this planning, stating that success required understanding
“who generates keys, when to send the public key, and when

to encapsulate/decapsulate” before implementation. However,
this dependency chain was not immediately intuitive; 63% of
participants admitted to identifying these necessary advanced
decisions through trial and error, often struggling to determine
the correct operational order for complex components like
encapsulation and encryption.

5) Naming, Data Handling, and Consistency Issues: Par-
ticipants encountered friction with respect to ambiguous nam-
ing conventions and unclear data requirements. The use of
abbreviations like “pk”, “sk”, and “data” was criticized
as non-intuitive, with P10 (SDE - Expert) arguing that these
were “confusing” and poor conventions. Similarly, P5 felt that
method names such as “keygen” sounded unprofessional–
likening it to “pirated software”–and suggested more standard
alternatives like “generateKey()”. This lack of clarity
extended to data definition; P15 noted that functions such as
encrypt_text did not specify necessary input properties,
while P16 reported that the data types for the parameters and
the return values were generally “difficult to find”.

Beyond terminology, manual data manipulation and func-
tional consistency presented challenges. P16 highlighted a
specific hurdle where the API produced a 32-byte key while
the Krypton class required a 64-byte key, forcing them
to “look for external resources” to handle the conversion.
Users also reported initial confusion regarding the similarity
of certain functions. P2 noted that “some functions looked
similar at first because their names were not very clear”,
requiring documentation checks to distinguish them. However,
P8 offered a counterpoint, observing that while KEM and KDF
had similar goals, they were “clearly separated by role”–one
for exchange and one for shaping secrets–which helped clarify
the distinction within the workflow.

6) Security Dependence and Lack of Testability Guidance:
Participants acknowledged that security was highly dependent
on their correct implementation, yet they often lacked the
necessary guidance to verify it. A majority (80%) understood
that end-user security depended on both the API’s guarantees
and their own code, specifically regarding key handling and
sequencing. P8 articulated this distinction, noting that while
the API provided primitives like ML-KEM, the “actual se-
curity outcome” relied on the developer ensuring “correct
sequencing, validation, and correct handling of keys” during
the key exchange. However, maintaining this security was
complicated by opaque error reporting. P8 noted that most
issues, such as decapsulation failures, had to be handled at
the program level, while P5 expressed frustration that generic
error messages like CipherVerifyError provided “not
enough info as to ‘why’ ”, forcing them to “ask AI to help
debug” rather than relying on API feedback.

Despite these risks, the majority of participants (67%)
did not test the security of their applications, citing time
constraints and lack of instructional support. P2 admitted that
they skipped testing because they were “wasn’t sure how to do
it properly” and required specific examples. This uncertainty
reflected a broader gap in documentation; 57% were unsure
if testing guidance existed and 36% stated that it was absent.
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P8 criticized the lack of context regarding how the algorithms
matched “NIST PQC standards” or regulatory requirements,
while P16 noted that the documentation failed to explain the
“key exchange process and why a 64-byte symmetric key was
required”, forcing developers to rely on external sources to
validate their security posture.

V. DISCUSSION

A. RQ1: What common misuses and usability barriers do
developers encounter when utilizing PQC APIs?

The evaluation revealed recurring usability patterns that
align with previous research on classical cryptographic APIs.
These patterns highlight how introducing PQC to generalist
developers without expert onboarding or contextual guidance
creates predictable friction. The findings reflect the natural
gap between rapidly evolving PQC standards and the mental
models of developers who are encountering these primitives
for the first time.

Many participants mishandled key material, for example,
sending decapsulation keys or sharing secrets across the net-
work. These behaviors stemmed from a missing conceptual
understanding of typical KEM / DSA workflows when work-
ing without onboarding, as well as documentation gaps. In par-
ticular, many participants assumed that any value output by a
function must be transmitted, a common behavior documented
in past usability research. Clarifying examples in future doc-
umentation, especially emphasizing that shared secrets never
leave local memory, would reduce such misunderstandings.

Both APIs used established cryptographic abbreviations
such as (pk / sk). Although these are standard within the
cryptography community, several participants unfamiliar with
such conventions found them difficult to interpret. This chal-
lenge was amplified by the fact that NIST released new edu-
cational guidance, such as the Encapsulation / Decapsulation
Key terminology in SP 800-227–after the API documentation
used in this study had already been written. As a result,
the documentation and the newer NIST teaching examples
diverged slightly in terminology, leaving participants without
the contextual anchors they would normally rely on in a
production setting. This mismatch reflects the evolution of the
natural ecosystem and highlights the importance of aligning
terminology across the PQC ecosystem as standards mature.

Minor documentation inconsistencies (e.g., typos, missing
brackets) were found in both APIs. Specifically, neither API
provides comprehensive explanations of variable types or the
nature of the outputs returned by their functions. This lack
of detailed guidance limits non-specialized developers’ ability
to correctly interpret API behavior, increasing the potential
for implementation errors and reinforcing usability-related
security risks in the applications. There are also some typos,
such as incorrect variable names (see Fig. 5) or missing
brackets (see Fig. 4) in the syntax. Although these seem
like minor issues for experienced developers, for someone
who lacks experience in programming, they might not know
where the error is. Inconsistency in variable naming and error
output also became a pain point for participants, as they were

confused by changing terminology, and the error output was
not explained in the documentation.

A further observation concerned the developer’s handling of
transient key material at the application layer. Participants did
not destroy intermediate keys or ephemeral secrets, as recom-
mended in NIST SP 800-227[30]. Neither API is designed
to manage memory erasure, and Python’s memory model
does not provide built-in, high-assurance primitives to securely
erase sensitive data; object lifetime and copies are managed
by the interpreter and garbage collector, so this behavior was
not a functionality flaw or non-compliance of either API
with NIST’s guideline. However, the unfamiliarity of PQC
workflows may argue that documentation across the broader
PQC ecosystem may benefit from clearer conceptual guidance
(beyond the documentation on the functionality alone) on
application-layer key-lifecycle practices, particularly for non-
specialist developers.

The evaluation revealed testability issues in both APIs, as
most participants did not write tests for their cryptographic
applications. Although time constraints contributed to this
behavior, but unclear documentation and lack of testing ex-
amples were also factors. Participants often overlooked error-
handling mechanisms, highlighting the need for documentation
to provide explicit guidance on best practices. These findings
indicate an opportunity for the PQC ecosystem to improve sup-
port for verifying correctness when using novel cryptographic
primitives.

B. RQ2: How do the integration challenges differ between
endpoint-based PQC APIs and local library PQC API?

The results and analysis that informed the RQ2 reveal differ-
ences and clear trade-off between the QuantCrypt API and the
PQ-Sandbox API design choices. Participant performance and
perceived usability varied between the two APIs, reflecting
the distinct cognitive and operational demands imposed by
each. These variations are expected, given the fundamentally
different design principles and levels of abstraction underlying
the two APIs, which shape both the ease of use and the types
of errors developers are likely to encounter.

The QuantCrypt API provided a direct KEM implementa-
tion, but concealed several underlying complexities. A major
usability challenge emerged when participants attempted to in-
tegrate the shared secret generated by KEM with a symmetric-
key cipher. Most participants did not recognize that the KEM
output was 32 bytes and was required to process through a
KDF to produce a 64-byte key suitable for subsequent AES
encryption. This gap illustrates how low-level abstractions,
while flexible, can impose substantial cognitive overhead and
increase the risk of implementation errors in applications.

For context, ML-KEM outputs a 32-byte shared secret by
design. QuantCrypt lets developers to apply their own Key
Derivation Function (KDF) when a 64-byte key is needed for
AES or similar ciphers. In contrast, the PQ-Sandbox prototype
applies a KDF internally and returns a 64-byte symmetric key
directly. This architectural difference explains much of the
divergence in task completion times for Task 2.
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Several participants misinterpreted example snippets be-
cause they lacked context on how the example differed from
their task scenario. This reflects the limitations of the scope of
the documentation under experimental conditions. Participants
often did not know that the source of the problem was in their
initial use of a random key instead of the KEM-generated
shared secret. Resolving the issue required line-by-line back-
tracking to identify the origin of the error, increasing the
cognitive load, and could lead to further developer errors. This
confusion directly explained the reasons for the longer task
completion times observed for Task 2 among the QuantCrypt
group.

In contrast, the PQ-Sandbox API operates at a different level
of abstraction for the KEM function. It integrates the KDF step
directly within the KEM operation. As a result, the shared key
produced by the KEM was already 64 bytes and could be used
immediately for symmetric-key encryption, eliminating the
confusion observed with the QuantCrypt API. Nevertheless,
PQ-Sandbox introduced its own usability challenges, primarily
related to its endpoint-based design. Participants were required
to create custom objects or methods to access API functions
and frequently struggled with implementing authentication
headers and tokens to use the API, which proved confusing.
This initial setup overhead contributed to slower completion
times for Task 1 among PQ-Sandbox users compared to
QuantCrypt. However, once participants became familiar with
these procedures, the consistency and similarity of subsequent
function calls facilitated the implementation of ML-DSA in
Task 2, making the process more straightforward than for
QuantCrypt users.

Both APIs leave the key rotation policy to the application
layer. Developers unfamiliar with such practices may ben-
efit from higher-level documentation guidance or examples.
QuantCrypt exposed a KDF that could be leveraged to derive
multiple keys from the same shared secret. With PQ-Sandbox,
generating a new key required repeating the entire KEM pro-
cess, a time-consuming procedure that could unintentionally
lead to insecure utilizations in the application when lacking
clear documentation or examples, such as reusing keys across
multiple sessions. This design choice highlights a trade-off
between abstraction convenience and the flexibility required
for secure key management.

Furthermore, the design of the PQ-Sandbox, which priori-
tizes security and privacy, further ensures that the generated
keys are not stored on the server and are instead output directly
to the users. However, this approach leads to developers
receiving multiple keys for different purposes during the
DSA signing process, which confuses non-experts. The DSA
signing step returns a key pair in the prototype environment.
In the constrained-study setting, several participants were
unfamiliar with how signature schemes typically separate long-
term identity keys from ephemeral signing keys. Without
explicit onboarding explaining these roles, some participants
incorrectly assumed that all returned fields needed to be
transmitted. The observed misunderstandings were attributable
to gaps in participant familiarity with DSA workflows and the

limited conceptual guidance provided in the study material.

C. RQ3: What usability and guidance improvements are
needed to support secure implementation?

The research attempted to identify potential solutions to
the observed issues through the third research question. The
findings indicate that the security vulnerabilities uncovered in
participants’ implementations stem not merely from individual
developer mistakes but from structural usability obscurities
embedded within the architectures of APIs themselves. Ad-
dressing these shortcomings, therefore, requires a developer-
centric design philosophy that guides non-expert users to-
ward secure practices in the API designs and documentation.
Drawing on insights into mental models and workflows of
developers, the proposed recommendations focus on improv-
ing usability and developer performance while ensuring that
secure development practices are reinforced by default in the
applications.

1) Adopt a Secure-by-Default Design: The absence of
implemented key destruction and error handling in the ap-
plications highlights that developers cannot be expected to
understand that they need to manage such tasks manually, par-
ticularly when documentation offers no guidance or examples.
In addition, the confusion surrounding different key lengths
and the necessity of KDF usage highlights a broader need for
improved API design. One sound solution is to offer additional
high-level functions that encapsulate common cryptographic
workflows. Such an approach will reduce developer misuse
and cognitive load while still allowing experts to access low-
level primitives for advanced users who require greater control.

• Automate Key Life Cycle: To reduce the risk of secret-
key exposure in the application, we recommend that cryp-
tographic APIs manage the full key life cycle, including
timely memory cleanup. Ideally, this is achieved through
native automation, for example, binding private keys to
constructs like Python’s “with” statement so that keys
are wiped when they leave scope. If such mechanisms
cannot be built in, such as due to compliance constraints
(i.e., highly regulated environments), we recommend that
the cryptographic APIs should still guide developers by
integrating secure-memory libraries or, at a minimum,
providing clear documentation and examples that demon-
strate proper key-destruction procedures and explain their
security rationale.

• Provide High-Level, Secure-by-Default Functions:
We argue that cryptographic APIs should, by de-
fault, encapsulate complex security operations, par-
ticularly for developers without specialized cyber-
security expertise. A high-level function, such as
establish_secure_channel(), should set up the
full sequence of operations, including KEM, KDF, and
handshake authentication internally, and these different
cryptographic components should be used and assembled
following the best security practice by default. The low-
level functions should remain accessible, but explicitly
marked for expert use, and should be used with caution.

11



If such high-level functions are not built into the cryp-
tographic API, then the documentation must compensate
by providing complete, secure, and executable example
workflows that demonstrate best practices and prevent
misuse.

• Enforce Error Handling: Furthermore, cryptographic
functions should not return boolean or status codes
that developers can ignore. Failures in decapsulation
or signature verification are security-critical and should
raise explicit exceptions by default, forcing developers to
handle them properly.

2) Prioritize Developer-Centric Documentation: Docu-
mentation has consistently emerged as a central usability
barrier. It should be revised from a developer-oriented per-
spective rather than that of a security expert designing the API.
Effective documentation is essential to help developers build
secure applications while reducing the unnecessary cognitive
burden.

• Create “Flow” Documentation: The documentation
should evolve from a function-by-function reference into
a comprehensive developer guide. It should present high-
level use cases and include diagrams that illustrate the
complete client–server workflow from start to finish.
Examples should align with trusted guidelines, such as
NIST, and demonstrate correct usage, common pitfalls,
and how to apply the code in real-world applications.

• Provide Runnable, Secure-by-Default Examples: The
documentation should include complete “copy-and-paste”
examples that demonstrate the full secure workflow, for
example, KEM and DSA with correct error handling and
secure key management. Such examples serve as practical
best-practice models, a need emphasized by participants
who noted that the provided skeleton code was essential
for understanding how to proceed. These examples must
also be contextualized, reflecting realistic scenarios, such
as establishing a secure communication channel rather
than presenting isolated function calls.

• Use Clear and Standardized Terminology: APIs
and their documentation should employ intuitive, self-
explanatory, and unambiguous names for functions and
variables to improve readability and help developers
understand expected behaviors. To minimize confusion,
APIs should adopt the NIST recommended terminology,
using “encapsulation key” and “decapsulation key” in-
stead of generic “public key” and “secret key”, and avoid
unclear abbreviations such as “sk”, “pk” and “enc”,
which increase cognitive load. Recognizing that not all
developers are cybersecurity experts, these clear names
should be accompanied by explicit explanations and de-
scriptions in the documentation. Following NIST naming
conventions would standardize terminology across PQC
APIs and make them more accessible to general devel-
opers.

VI. LIMITATIONS

This study examined general developer behavior under
limited documentation and limited onboarding, reflecting a
low-support environment rather than real-world operational
deployments or cryptographic experts’ deployment. The find-
ings are based on a small sample of participants, which limits
quantitative generalizability but provides strong qualitative
insight into early-stage usability patterns. Additionally, the
study focuses on the developer experience rather than the
security, performance, or production readiness of the assessed
APIs.

VII. CONCLUSIONS

This study examined the usability of two Post-Quantum
Cryptography (PQC) APIs, QuantCrypt, a local library, and
PQ-Sandbox, an endpoint-based API, among developers with-
out deep cybersecurity expertise. Both APIs posed challenges
in integrating PQC algorithms, with design differences af-
fecting developer interaction. Usability limitations contributed
to implementation errors, showing that strong mathematical
security alone is insufficient without developer-friendly tools.

Results revealed a performance-usability trade-off, while
highlighting mismatches between API design assumptions and
developer expectations. Participants struggled with jargon-
heavy documentation, domain knowledge gaps, and abstrac-
tion challenges requiring trial-and-error assembly of crypto-
graphic components. These findings emphasize that simply
providing PQC algorithms in an API is insufficient for applica-
tion security; a developer-centric focus on usability is critical
to prevent insecure implementations of applications.

Based on these insights, we recommend that PQC API de-
signers should prioritize usability, providing secure-by-default,
high-level functions, NIST-compliant naming, and clear, illus-
trated documentation with executable examples. Future work
should involve larger studies and the development of a high-
usability PQC API addressing the failures identified here,
ensuring that cryptographic tools effectively shield developers
from the application vulnerabilities they aim to prevent.
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[42] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “”jumping through
hoops”: Why do java developers struggle with cryptography apis?” in
2016 IEEE/ACM 38th International Conference on Software Engineer-
ing (ICSE), 2016, pp. 935–946.

[43] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating ssl
certificates in non-browser software,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: Association for Computing Machinery, 2012, p.
38–49. [Online]. Available: https://doi.org/10.1145/2382196.2382204

[44] P. L. Gorski and L. Lo Iacono, “Towards the usability evaluation of
security apis,” in Clarke, Furnell (Eds.): Tenth International Symposium
on Human Aspects of Information Security & Assurance (HAISA 2016),
Frankfurt, Germany, July 19-21, 2016, 2016, pp. 252 – 265. [Online].
Available: https://www.cscan.org/?page=openaccess&eid=17&id=287

[45] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You get where you’re looking for: The impact of information sources
on code security,” in 2016 IEEE Symposium on Security and Privacy
(SP), 2016, pp. 289–305.

[46] D. Ott, C. Peikert, and other workshop participants, “Identifying research
challenges in post quantum cryptography migration and cryptographic
agility,” 2019. [Online]. Available: https://arxiv.org/abs/1909.07353

[47] E. Crockett, C. Paquin, and D. Stebila, “Prototyping post-quantum
and hybrid key exchange and authentication in tls and ssh,” IACR
Cryptol. ePrint Arch., vol. 2019, p. 858, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:198925340

[48] N. Bindel, J. Brendel, M. Fischlin, B. Goncalves, and D. Stebila, “Hybrid
key encapsulation mechanisms and authenticated key exchange,” in Post-
Quantum Cryptography, J. Ding and R. Steinwandt, Eds. Cham:
Springer International Publishing, 2019, pp. 206–226.

[49] M. Ukrop and V. Matyas, “Why johnny the developer can’t work with
public key certificates,” in Topics in Cryptology – CT-RSA 2018, N. P.
Smart, Ed. Cham: Springer International Publishing, 2018, pp. 45–64.

[50] C. Wijayarathna and N. A. G. Arachchilage, “Why johnny can’t store
passwords securely? a usability evaluation of bouncycastle password
hashing,” in Proceedings of the 22nd International Conference on
Evaluation and Assessment in Software Engineering 2018, ser. EASE
’18. New York, NY, USA: Association for Computing Machinery,
2018, p. 205–210. [Online]. Available: https://doi.org/10.1145/3210459.
3210483

[51] ——, “Why johnny can’t develop a secure application? a usability
analysis of java secure socket extension api,” Computers &
Security, vol. 80, pp. 54–73, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167404818304887

[52] ——, “A methodology to evaluate the usability of security apis,” in
2018 IEEE International Conference on Information and Automation
for Sustainability (ICIAfS), 2018, pp. 1–6.

[53] C. Wijayarathna, N. A. G. Arachchilage, and J. Slay, “A generic
cognitive dimensions questionnaire to evaluate the usability of security
apis,” in Human Aspects of Information Security, Privacy and Trust: 5th
International Conference, HAS 2017, Held as Part of HCI International
2017, Vancouver, BC, Canada, July 9-14, 2017, Proceedings. Berlin,
Heidelberg: Springer-Verlag, 2017, p. 160–173. [Online]. Available:
https://doi.org/10.1007/978-3-319-58460-7 11

[54] A. Zeier, A. Wiesmaier, and A. Heinemann, “Api usability of stateful
signature schemes,” in Advances in Information and Computer Security,
N. Attrapadung and T. Yagi, Eds. Cham: Springer International
Publishing, 2019, pp. 221–240.

[55] B. Albert, T. Tullis, and D. Tedesco, “Chapter 2 - planning the study,”
in Beyond the Usability Lab, B. Albert, T. Tullis, and D. Tedesco, Eds.
Boston: Morgan Kaufmann, 2010, pp. 17–47. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780123748928000028

[56] M. Van Someren, Y. F. Barnard, and J. A. Sandberg, The Think
Aloud Method - A Practical Guide to Modelling CognitiveProcesses.
Academic Press, 01 1994.

[57] Simon, R. Mason, T. Crick, J. H. Davenport, and E. Murphy, “Language
choice in introductory programming courses at australasian and uk
universities,” in Proceedings of the 49th ACM Technical Symposium on
Computer Science Education, ser. SIGCSE ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 852–857. [Online].
Available: https://doi.org/10.1145/3159450.3159547

[58] Exequantum, “Quickstart - exequantum docs,” https://exequantum.
gitbook.io/exequantum-docs/documentations/quickstart, 2025, accessed:
November 9, 2025.

[59] M. Aabmets, “Quantcrypt wiki,” https://github.com/aabmets/quantcrypt/
wiki, 2024, accessed: November 9, 2025.

[60] A. J. Ko, T. D. LaToza, and M. M. Burnett, “A practical guide
to controlled experiments of software engineering tools with human
participants,” Empir. Softw. Eng., vol. 20, no. 1, pp. 110–141, Feb. 2015.

[61] GraphPad Software, LLC, “T test calculator — GraphPad QuickCalcs,”
https://www.graphpad.com/quickcalcs/ttest1/, GraphPad Software, LLC,
2025, accessed: October 26, 2025.

APPENDIX A
EXAMPLE OF MISTAKE ON DOCUMENTATION

Fig. 4. Mistake on PQ-Sandbox Documentation (Source: [58]).

Fig. 5. Mistake on Quantcrypt Documentation (Source: [59]).

APPENDIX B
TASK GUIDELINES

The purpose of these tasks is to evaluate the usability issue
that might arise when developer implement Post-Quantum
Cryptography (PQC) algorithm on software using PQC APIs.
Based on the implementation of API, it is categorised by
two types of APIs: Web-based PQC API (accessed via HTTP
requests) and traditional PQC API (accessed via a local
library/package). You will be performing real-world–inspired
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programming tasks that simulate integrating PQC API into a
simple software application.

A. Introduction (2 minutes):

• “Thank you for participating in this usability test. We’re
evaluating the usability of new cryptographic algorithms,
specifically Post-Quantum Cryptography (PQC), which
includes the Key Encapsulation Mechanism (KEM) and
Digital Signature Algorithm (DSA). These algorithms are
designed to be secure against future quantum computers,
but there might be some usability issues for developers
when they implement them using an API.”

• “Your task is to implement a simplified secure commu-
nication channel between Server and Client, using these
algorithms. Please think aloud as you work, explaining
your steps and any challenges you encounter.”

• “You are free to consult documentation if needed, but
we’d like to see how intuitive the APIs are initially.
There are no right or wrong answers; we are testing the
technology, not you.”

• “Do you have any questions before we begin?”

B. Goal and Framing (2 minutes):

• “Your objective is to Integrate the PQC API into a
provided skeleton program to send a secure message
between two server and client.”

• “Imagine you are a software engineer at a mid-sized
financial technology company. Your team is preparing for
the future where traditional cryptography may no longer
be secure against quantum computers. To ensure customer
data remains protected, your manager has asked you to
prototype the use of Post-Quantum Cryptography (PQC)
algorithm on the software using PQC API. You need
to generate the shared secret (using Key Encapsulation
Mechanism) between the server and client. This shared
secret will be used as key on symmetric encryption, so
server and client will exchange information in encrypted
way.”

C. Instruction (3 minutes):

• “You will be given two python script, server.py and
client.py. you need to open these scripts on your IDE
and you need to runt the server first before running the
client”

• “You are free to use any tools that you usually use when
developing software. But please share the screen when
you are doing this and think out loud when you use this
tools”

• “While performing the tasks, you need to talk aloud
what you are thinking, so it can be recorded with screen
recording.”

• “Before starting, make sure your microphone is unmute
and choose share the whole screen. If you work using
two or more monitor please make sure what you work
only on one screen so what you read and work could be
captured on share screen.”

• “Do you have any questions?”

D. Task Explanation (1 minutes):

• “You will be given to four tasks”
• “First Key Encapsulation and Decapsulation Mechanism”
• “Second Symmetric encryption and decryption”
• “Third Digital Signature Algorithm for Handshake Au-

thentication Protocol”
• “Fourth Digital Signature Algorithm for Message Ex-

change”

E. Task 1: Key Encapsulation and Decapsulation (15-20 min-
utes):

• “Now, let’s simulate Server and Client establishing a
shared secret using ML-KEM.”

• “Your first step is to make Client generate key pairs
(Public and Private Key) for ML-KEM.”

• “Then Client will have to send client public key to the
server.”

• “Server will receive client public key and use it to
generate ciphertext and shared secret.”

• “Server will send this ciphertext to Client.”
• “Client should then use his ML-KEM private key to

decapsulate the ciphertext and recover the shared secret.”
• “Finally, please implement a check to verify that the

shared secrets generated by Server and Client are identi-
cal.”

F. Task 2: Symmetric Encryption (15-20 minutes):

• “Now, after server and Client got shared secret, this
shared secret need to be used for symmetric encryption.”

• “Then Server will have to use this key to encrypt the
message and send this message to client.”

• “Client will receive server encrypted message and decrypt
it.”

• “Show the decrypted message on client.”
• “Next Client will encrypt the message and send this

encrypted message to server.”
• “Server should decrypt the message from client and show

it on server side.”

G. Task 3: Digital Signature Algorithm and Verification for
Handshake Authentication Protocol (15-20 minutes):

• “Next, we’ll focus on authentication using ML-DSA.”
• “Now, let’s combine these pieces into a simplified secure

handshake. Imagine Client initiating a secure communi-
cation with Server.”

• “Client generates an ML-KEM key pair and sends its
public key to Server.”

• “Server then uses Client’s public key to encapsulate a
shared secret and sends the resulting ciphertext.”

• “Crucially, Server also signs the entire message its sends
to Client (which includes the ML-KEM ciphertext and
his own public key) using its ML-DSA private key.”

• “Client receives this message (ciphertext, Server Public
Key, and Server Signature). Client should verify Server’s
signature using Server public key, then if it is true client
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proceed the process to decapsulate the shared secret using
its ML-KEM private key.”

• “The goal is to have a functional handshake where Client
has a shared secret with Server and can be confident
that the message (including the encapsulated secret and
Server’s identity) came from Server.”

H. Task 4: Digital Signature Algorithm and Verification for
Message Exchange (15-20 minutes):

• “Next, we’ll focus on authentication using ML-DSA.”
• “Server has a message or document she wants to send to

Client securely. Please implement a process where Server
signs this message using its ML-DSA private key.”

• “Client should then implement a way to verify Server’s
signature using Server ML-DSA public key.”

I. Post Task Questionnaire (20-30 minutes):

• “After you finish all the task or finalized the experiment
you could scan the qr code or click the link on this task
guideline to fill the post task questionnaire.”

APPENDIX C
TASK PEFORMANCE RAW DATA

TABLE V
PARTICIPANT TASK COMPLETION TIME (MINUTES)

API ID T1 T2 T3 T4

QC

P1 23 43 – –
P2 27 38 – –
P5 40 42 31 –
P6 21 31 18 –
P9 41 42 21 –
P11 64 – – –
P13 42 40 28 –
P16 57 54 30 –

PQS

P3 82 23 – –
P4 98 – – –
P7 48 29 23 –
P8 65 32 – –
P10 46 10 29 –
P12 73 31 15 –
P14 55 30 26 –
P15 56 23 – –
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