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Abstract—Integrity of sensor measurement is crucial for
safe and reliable autonomous driving, and researchers are
actively studying physical-world injection attacks against light
detection and ranging (LiDAR). Conventional work focused
on object/obstacle detectors, and its impact on LiDAR-based
simultaneous localization and mapping (SLAM) has been an
open research problem. Addressing the issue, we evaluate the
robustness of a scan-matching SLAM algorithm in the simulation
environment based on the attacker capability characterized by
indoor and outdoor physical experiments. Our attack is based on
Sato et al.’s asynchronous random spoofing attack that penetrates
randomization countermeasures in modern LiDARs. The attack
is effective with fake points injected behind the victim vehicle
and potentially evades detection-based countermeasures working
within the range of object detectors. We discover that mapping
is susceptible toward the z-axis, the direction perpendicular to
the ground, because feature points are scarce either in the sky
or on the road. The attack results in significant changes in the
map, such as a downhill converted into an uphill. The false map
induces errors to the self-position estimation on the x-y plane
in each frame, which accumulates over time. In our experiment,
after making laser injection for 5 meters (i.e. 1 second), the victim
SLAM’s self-position begins and continues to diverge from the
reality, resulting in the 5m shift to the right after running 125
meters. The false map and self-position significantly affect the
motion planning algorithm, too; the planned trajectory changes
by 3◦ with which the victim vehicle will enter the opposite lane
after running 35 meters. Finally, we discuss possible mitigations
against the proposed attack.

I. INTRODUCTION

Since autonomous vehicles (AVs) recognize the world using
multiple sensors and make critical decisions, the integrity of
sensor measurement is essential for safe AV driving. Conse-
quently, signal injection attacks that compromise the integrity
of sensor measurement in the physical domain have become
an active research area in the last few years.

Localization and mapping are crucial components of AV
motion planning. Dynamically updating the map is important
to keep track of the constantly changing world, and light
detection and ranging (LiDAR) that measures 3D point cloud
is commonly used for the purpose. The global positioning

Fig. 1. Overview of the proposed random spoofing attack on LiDAR-Based
SLAM. An attacker on the roadside induces random fake points in the victim
LiDAR with asynchronous laser illumination. The victim SLAM build a wrong
3D map with the fake points, which results in a wrong trajectory plan. The
victim car plans a trajectory that goes across a lane over 35 meters with our
1-second laser-injection experiment.

system (GPS) and the inertial measurement unit (IMU) are
common for localization (i.e., odometry), but they are not
always available; IMUs suffer from error accumulation and
GPS are unreliable when tall buildings block a line of sight
to the satellite in an urban area. To address the problem,
researchers are studying the method for achieving localization
using a LiDAR only, which is called LiDAR-based simultane-
ous localization and mapping (SLAM) [1]–[4]. Scan matching
is a common LiDAR-based SLAM and achieves localization
using a relative displacement vector obtained by comparing
successive LiDAR frames [4]. The vector is then matched with
a 3D map using feature points, such as a contour or surface,
to update the map.

Meanwhile, researchers are studying signal injection at-
tacks that manipulate sensor measurement in the physical
domain [5], and there are several attacks on LiDARs [6]–[8].
LiDARs typically use time-of-flight (ToF) for distance mea-
surement; they send a laser pulse toward the target, measure
the time delay until receiving an echo, and translate it into a
distance. Exploiting this principle, the attacker sends fake laser
pulses that a victim LiDAR recognizes as genuine echoes,
thereby adding fake 3D points in the scene. In particular,
some previous attacks exploited the predictable pulse timing
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to inject a fake object with an arbitrary shape [9] or even
remove the existing points [10]. More recent LiDARs have
countermeasures, such as timing randomization, that make
pulse timing unpredictable, efficiently thwarting such a precise
injection [11]. Sato et al. took another approach of injecting
many random points, i.e., random spoofing, and showed that
it is sufficient to attack machine learning models [11]. Mean-
while, those conventional LiDAR attacks focused on object
detection, and its impact on SLAM has been an open research
problem.

A. Research Question

We study the impact of random spoofing attack on
scan-matching SLAM algorithms. Failure in either local-
ization or mapping can have serious consequences, such
as making a dangerous maneuver or inappropriate acceler-
ation/deceleration. Meanwhile, scan-matching SLAM algo-
rithms may have inherent robustness against attacks because
they can reject random fake points during the match. There-
fore, we tackle the following research questions in this paper:
(i) Can an attacker manipulate the scan-matching SLAM algo-
rithms with random spoofing? (ii) If yes, what the implications
of such attacks on AV motion planning?

B. Contributions

We approach the research questions through a series of real-
world experiments and simulations. This paper provides the
following key contributions.

1) Characterization of attacker capability (Section IV):
We begin by characterizing the attacker capability on random
spoofing with a series of real-world experiments. In the indoor
moving-target experiment, we can inject 100 points/frame
while tracking a target vehicle moving at 1 m/s from 5 meters
away. We also conduct an outdoor long-range experiment to
characterize the number of fake points over distance, showing
that random spoofing succeeds from 40 meters away, but the
number of fake points decreases exponentially with distance.

2) Impact on mapping (Section V): The feasibility of the
attack is verified in the MATLAB/Simulink platform that
simulates an AV driving in the urban area with an attacker with
the capability characterized by the indoor and outdoor physical
experiments. We discover that the mapping is susceptible to
attack toward the z-axis, the vertical direction perpendicular
to the ground. Unlike the remaining x- and y-axes, the z-
axis has few features that the scan matching algorithm can
rely on because there are few points in the sky and the
points on the road are removed with preprocessing. Laser
injection successfully changes the map by 5◦ along the z-axis,
converting a downhill into an uphill.

3) Impact on motion planning (Section VI): We further
evaluate the impact of laser injection on localization and
motion planning. The false map causes a small error in the
estimation of x-y plane self-position in each frame, which
accumulates over time. As a result, the victim SLAM’s self-
position shifts by 5 meters to the right over 125 meters
after getting laser injection for 5 meters. A motion planning

algorithm (the plannerPRT motion planner in the MATLAB
Navigation toolbox) is also affected by the false map and self-
position, and the planned trajectory changes by 3◦ with laser
injection; the victim vehicle will enter the opposite lane after
running 35 meters with this angle.

4) Defense (Section VII): Finally, we discuss possible mit-
igations while highlighting the limitations of the proposed
attack. We suggest that sensor fusion, extended anomaly detec-
tion, and hardware defenses can be effective countermeasures.

II. PRELIMINARIES

A. Sensors in Autonomous Vehicle

Automated driving refers to the use of a control system
to perform safety driving evaluations previously performed
by human drivers. Autonomous driving is classified into five
levels by human intervention. Levels 1 and 2 are foot-free and
hands-free driving and are categorized as driver assistance.
Levels 3 and Level 4 are eye-free and driver-free driving and
cover automated driving under specific conditions. Level 5
is fully automated driving [12]. AVs recognize surrounding
conditions using multiple sensors, including LiDAR, camera,
radar, GPS, and IMU. Sensor-based tasks include object de-
tection, trajectory planning, localization, and mapping. The
integrity of sensor data is essential for autonomous driving
safety.

B. LiDAR-based perception

LiDAR measures objects in the 3D environment as a
collection of dots called point cloud. LiDARs typically use
ToF, which emits a laser pulse and measures the time until
receiving reflected light, i.e. echoes. Velodyne VLP-16 [13] is
a popular ToF LiDAR used in previous works. VLP-16 has a
mechanically spinning head that scans the scene for 360◦ and
100 meters. The head covers the vertical angle of ±15◦ using
16 stack of lasers. VLP-16 emits a series of pulses periodically
as it rotates, and this predictability of pulse timing has been
exploited in the previous works [6], [8], [14], [15]. More recent
LiDARs have countermeasures, such as timing randomization,
that make the pulse timing unpredictable for attackers [16].

C. Previous Attacks on LiDARs

Petit et al. demonstrated the first signal injection attack on
LiDAR that injects a fake replica of a genuine object with
a relay attack in 2015 [6]. Then Shin et al. improved the
attack to inject fake points instead of a replica in 2017 [7].
Then, many researchers followed this direction and proposed
several attacks and evaluated their impacts on later-stage
applications [8], [17], [18].

One research direction is to control fake points more pre-
cisely. In particular, PLA-LiDAR [9] injected arbitrary-shaped
point cloud by carefully scheduling the injection timing.
Meanwhile, Physical Removal Attack (PRA) removes part of
the genuine point cloud by injecting fake points within the
minimum operational threshold of a target LiDAR [10].

These precise attacks assume predictable pulse timing and
are no longer possible with LiDARs with unpredictable pulse
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timing [16]. The attacker can still inject fake points, but
the coordinates of the points becomes uncontrollable without
synchronization. In this paper, we call this type of injection
random spoofing. Sato et al. discovered that such random
spoofing efficiently breaks object classifiers and proposed
High-Frequency Removal (HFR) that injects many random
points [11].

Another line of research is an adversarial example [19]
against a 3D point cloud classification model [20], [21]. An
adversary can manipulate the point cloud to add, delete, or
move points in the whitebox setting because an adversary can
compute adversarial point clouds against the autonomous vehi-
cle’s 3D point cloud classifier [8]. Additionally, the adversary
can create a 3D object that is recognized as an adversarial
point cloud [14], [22].

D. SLAM: Simultaneous Localization and Mapping

SLAM updates a map in real time and projects its own
position on the map. Real-time mapping and localization are
crucial for keeping track of the constantly changing world
and for motion planning. GPS and IMU can be used for
localization but are not always available. For example, GPS
needs to see GPS satellites in the sky, which can be blocked
by tall buildings or a ceiling [23]. We can keep track of the
position by accumulating the information from an IMU, but
it suffers from error accumulation and becomes increasingly
unreliable over time [24], and a GPS is necessary to compen-
sate for the accumulation of errors [25], [26]. For example,
even a highly accurate IMU has an error of about 2 meters
in 30 seconds [26]. Such a multisensor fusion has non-trivial
requirements on synchronization and calibration and cannot
satisfy certain real-time requirements [27]. Consequently, re-
searchers are seeking localization exclusively using LiDAR,
i.e, with LiDAR-based SLAM [27].

Scan matching is commonly used for LiDAR-based SLAM
that achieves localization using a relative displacement vector
obtained by comparing successive LiDAR frames [28]. In the
following, we explain the SLAM algorithm [28] used in this
paper. It is an algorithm that performs registration of point
clouds and map generation using those point clouds, and is
used in the MATLAB environment targeted in this paper.

This SLAM uses point cloud registration and map genera-
tion to reconstruct 3D scenes and create road maps for location
estimation. Point-cloud registration is the process of aligning
two or more 3D point clouds of the same scene into a common
coordinate system.

The workflow for map generation and location estimation
is executed according to the following steps.

1) Point cloud preprocessing: To prepare the point cloud
for registration, it is down-sampled to remove unnecessary
features and noise.

2) Point cloud registration: Each point cloud is registered
against the previous point cloud. This is the process of
accumulating registration estimates across consecutive frames.
These registrations are used in odometry. Using odometry

alone can cause a drift between measured and ground-truth
attitudes.

3) Loop detection: Loop closure detection is used to mini-
mize drift. Loop closure detection is the process of identifying
the sensor’s return to a previously accessed position, forming
a loop in the sensor’s trajectory.

4) Drift correction: The detected loops are used to min-
imize drift by optimizing the attitude graph. Attitude graph
optimization is the incremental construction of the attitude
graph by adding nodes and edges, and optimizing the attitude
graph once sufficient loops are found. Optimization of the
posture graph yields an optimized set of absolute postures.

5) Map assembly: The point cloud map is assembled
by aligning the registered point clouds using the optimized
absolute posture. Such a pre-built point cloud map can be
used for position estimation, the process of locating vehicles
in the map.

6) Position estimation: Based on the assembled map, the
vehicle’s attitude is determined.

III. THREAT MODEL

A. Attack Scenario

The attacker is motivated to induce false information by
injecting a laser into the SLAM that works in the target
vehicle. The attacker targets SLAM to avoid detection-based
countermeasures working within the range of object detection;
as we will show later, SLAM is affected by fake points on
the behind of the car, which are irrelevant for common object
detectors. The attacker’s ultimate goal is to let the victim make
wrong decisions, such as dangerous maneuvers or inappropri-
ate acceleration/deceleration, through false localization and/or
mapping.

B. Target

The victim vehicle is fully autonomous using sensor data
based on international standards [29], [30]. The target vehicle
uses LiDAR-based scan-matching SLAM to achieve mapping
and localization, which is then used for autonomous driving
decisions, including motion planning. We further assume that
the target vehicle relies on LiDAR SLAM for localization
possibly because the vehicle is in the region where neither
IMU nor GPS is available, as discussed in Section II-D.

C. Attacker Capability

The attacker is at a distance from the victim, for example,
on the side of the road, but has a line of sight to the victim
and can continuously illuminate the target with a laser. This
can be achieved with a turret that has the ability to track the
victim’s LiDAR. The attacker has information about the target
vehicle and knows the specification of the LiDAR, including
its position and wavelength. This can be easily accomplished
by studying publicly available data sheets or purchasing the
same model. These conditions are similar to those of previous
works [17].

We restrict the attacker’s capability to random spoofing
only. This represents the case where the victim LiDAR has
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Fig. 2. The setup for indoor evaluation. (Top) A diagram of the entire setup.
(Left bottom) The victim LiDAR mounted on an UGV. (Right bottom) The
laser, optics, and camera mounted on a pan-tilt turret for aiming.

a countermeasure [11], e.g., the timing of the laser pulse is
unpredictable because of timing randomization, as discussed
in Section II. We will verify the attacker’s capability regarding
the number of fake points with experiments in Section IV.
Furthermore, we assume that the target LiDAR has a detection-
based countermeasure with respect to object detection [31],
and random spoofing is limited to the region outside object
detection; otherwise, the attack is detected.

IV. CHARACTERIZATION OF RANDOM SPOOFING

We begin by characterizing the attacker capability on attack-
ing moving targets from long distances with two real-world
experiments to fill the gaps in the previous work [11]. The first
indoor experiment verifies the feasibility of random spoofing,
similar to HFR, on the moving target with motion tracking.
The second outdoor experiment characterizes the number of
injected points over long distances, i.e., up to 40 meters in
contrast to the previous work limited to 15 meters.

A. Indoor Experiments with Tracking

The first experiment verifies the asynchronous random
spoofing attack while tracking a moving target.

1) Setup: Fig. 2 shows the diagram and pictures of our
indoor setup. The victim LiDAR (VLP-16 from Velodyne [13])
is mounted on an unmanned ground vehicle (UGV; Jackal
UGV from Clearpath Robotics [32]) that moves at ∼0.1 m/s
during the experiments1. The spoofer comprises the optical
and tracking systems. The spoofer uses a 903 nm infrared
laser diode (SPL PL90 from OSRAM [33]) and a 15mm lens

1UGV’s speed is limited to meet our safety standard.

Fig. 3. View from the motion tracker during the moving-target tracking
experiment. (Left) Image from the camera capturing the LiDAR on UGV.
(Right top) Color histogram used for target detection. (Right bottom) Back
projection showing the detected object.

(LA1540 - N-BK7 from Thorlabs [34]) to make a collimated
laser beam, assembled on an optical breadboard. We use a
laser driver (PCO-7114-50-4 from Directed Energy Inc. [35])
to generate laser pulses from the laser diode. Its operating
voltage is 60 volts to satisfy our facility’s safety criteria. The
pulse repetition frequency is 1 MHz, following the previous
study [14]2.

We use a turret (PhantomX XL430 Robot Turret IL-PXT-X
from Trossen Robotics [36]) to aim and track the laser beam
at the target LiDAR. A computer running Ubuntu 16.04 [37]
and ROS Kinetic [38] controls the turret using images from
the camera (C920 from Logitech [39]). It detects LiDAR in
camera images with the Camshift method [40] that uses color.
Then, it moves the turret to keep the target LiDAR in the
center of the camera image. Fig. 3 shows the images from
the ROS program that reliably detect and follow the LiDAR
because its color is significant from the background colors.

2) Result: The setup successfully injects fake points while
the target is moving, as shown in Fig. 4. The attack angle
is narrower than the conventional work [6] because we use a
collimated (cf. focusing) beam for a successful attack over a
long distance, which results in a weak light intensity at the
target. The results show that the attacker can continuously
inject fake points even when the laser injection angle changes
as the target moves, confirming the previous LiDAR attack
with tracking [10].

B. Outdoor Experiment for Characterizing Distances.

Our attack assumes consistent laser illumination over a
certain period of time. The attacker-victim distance can change
during the attack and affect the number of fake points. We
characterize this relationship between distance and the number
of fake points with an outdoor experiment.

1) Model: We assume that the laser power attenuates
exponentially with distance r. In the range of a few tens of
meters, the light can be approximated as an ideal collimated

2The largest number of points are injected at 1 MHz in a preliminary
experiment, confirming the result in the previous works [11].
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Fig. 4. LiDAR view during the indoor moving-target experiment in two
different moments ((top) and (bottom)). The square object on the center is
our laboratory room. The fake points distribute on a narrow cone toward the
direction of the injected laser beam, as a result of random spoofing.

light, wherein scattering by atmospheric particles dominates
the attenuation. Consequently, the light intensity decreases
exponentially with distance, following the Lambert-Beer law
with atmospheric transmittance as a coefficient. We further
assume that the number of fake points is proportional to the
laser power. Then, the number of injected points is modeled
as

P (r) = P0 · e−ar , (1)

wherein P0 and a are the initial the attenuation factors,
respectively. We are going to verify the model and determine
the constants P0 and a with the following experiment.

2) Setup: We evaluate the number of injected points over
a long distance using the setup in Fig. 5 where the LiDAR
and the attack device are placed on the tables. We count the
number of fake points while changing the distance between
the spoofer and the LiDAR for 5, 10, 20, and 40 meters.
Fig. 6 shows a 3D point cloud under laser injection, and the
fake points are indicated with a white ellipse. Knowing the
positions of the spoofer and LiDAR, we count the number
of points distributed between the spoofer and the LiDAR. We
repeat the counting 10 times for each distance to get the mean
and standard deviation.

Fig. 5. Setup for outdoor evaluation. The LiDAR and the laser turret are
placed on optics are placed on the tables. used. The distance between the
LiDAR and the attack device is separated from each other while the distance
is measured with a laser rangefinder. In this experiment, the change in the
number of point cloud injections during the experiment was measured.

Fig. 6. LiDAR view during the outdoor long-range experiment with laser
injection from 10 meters. The injected point cloud is highlighted with the
ellipse.

3) Result: The graph in Fig. 7 summarizes the experimental
results, showing the relationship between the number of fake
points (vertical axis) and the distance (horizontal axis). The
model in Eq. (1) greatly described the results, as shown
with the fitted curve in Fig. 7, confirming that the number
of injected points decreases exponentially with distance. The
initial and attenuation factors are P0 = 66.7 and a = −0.063
in the fitted curve, which are used in our simulation.
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Fig. 7. Relationship between the distance and the number of fake points,
based on measurements from outdoor experiments. The gray line is the fitted
model with Eq. 1 (P0 = 66.7 and a = 0.063). The number of injected points
decreases exponentially with distance.

TABLE I
PARAMETERS FOR THE MATLAB/SIMULINK LIDAR MODEL

CONFIGURED FOR VELODYNE VLP-16.

Parameter Values used simulation

Vertical field of view 30◦
Vertical resolution 0.2◦
Horizontal field of view 360◦
Horizontal resolution 0.3◦
Detection Range 100 m
Range resolution 0.01 m

V. IMPACT ON MAPPING

We evaluate the impact of random spoofing on localization
and mapping with a series of simulations.

A. Simulation Environment

Our evaluation platform is MATLAB/Simulink with the
Navigation toolbox [41] that provides the target SLAM algo-
rithm, motion planning, and sensor models. The LiDAR model
in the Navigation toolbox has six configurable parameters, and
we determine the values based on VLP-16’s specification [13],
as shown in Table I. The LiDAR model rotates 15 times per
second and captures 1,200 points per rotation. The vertical res-
olution is 16. GPS is not available and the victim vehicle relies
on the LiDAR for localization, as discussed in Section III-B.

The target is Point Cloud SLAM [28] in the Navigation
toolbox based on a scan matching algorithm. Its processing
pipeline comprises six steps, as shown in Fig. 8. Each step
performs the following operations:

• Downsample the point cloud to remove unwanted features
and noise.

• Register the point cloud.
• Perform loop closure detection to minimize drift.
• Use the detected loops to minimize drift through pose

graph optimization.

Fig. 8. Processing pipeline of the target LiDAR SLAM [28]. It uses point
cloud registration and map generation to reconstruct 3D scenes and create
road maps for location estimation. Point cloud registration is the process of
aligning two or more 3D point clouds of the same scene into a common
coordinate system.

Fig. 9. The range of the LiDAR object detector. Within this range, if objects
are detected that interferes with driving, the automated vehicle will safely
stop.

• Assemble a point cloud map by aligning the registered
point clouds using their optimized absolute poses.

• Find the pose of the vehicle based on the assembled map.

We assume that the MATLAB LiDAR object detector in
the LiDAR Toolbox [42] covers ±22.5◦, as shown in Fig. 9.
We inject fake points outside of this object detection region
to evade a detection-based countermeasure, as discussed in
Section III-C.

The victim car drives at 11.1 m/s along the road toward
the x direction in the urban area in Fig. 10 built with Unreal
Engine 4 [43] [23]. An attacker injects fake points from a
sidewalk at (X,Y ) = (0, 5). To model random spoofing attack,
we generate random values on the line between the victim and
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Fig. 10. The urban area scene used during simulation. The victim car travels
along the road toward X direction. The attacker is on the sidewalk and inject a
laser beam to the victim vehicle from behind. The red dotted line immediately
after the start of the run is an obstacle.

Fig. 11. View from the object detector during random spoofing attack. The
object detector does not respond to the the fake points injected on the backside
because they are out of the range. The fake point cloud on this figure is
the points in the space enclosed by the Bounding box at the rear of the
car.Automatic control by object detection is performed in the blue area (vision
field of view) in the upper right graph. On the other hand, SLAM uses 360-
degree point cloud data, which is the measurement area of LiDAR.

the attacker and put them in the pointCloud data structure.
Fig. 11 shows a 3D scene with injected fake points.

The attacker injects fake points behind the victim to avoid
the detection-based countermeasure. The attacker starts fake
point injection when the victim car is at X = 10 and continues
to inject fake points for the next ∆ meters. Here, we examine
different duration of attack, i.e., ∆ ∈ {5, 10, 20, 40}. Finally,
we evaluate the map generated by the SLAM algorithm when
the car reaches X = 160 meters.

B. Baseline Measurement without Laser Injection

Fig. 12 shows a SLAM map in the benign case without laser
injection projected to the x-y and x-z planes. The blue lines
represent the self-position recognized by the SLAM algorithm.
The x-y plane is the bird’s eye view showing the boundary
between the buildings and the roads, while the x-z plane is its
side view. There is a downhill for 0 < X < 100 with the slope
angle of 5◦ (5m elevation over the 100 meters). The road then
changes to uphill for 100 < X < 160 with a slope angle of
5◦ (3m elevation over 60 meters).

Fig. 12. SLAM map in the benign case without laser injection projected to
the x-y and x-z planes. (Top) the x-y plane corresponding to the bird’s-eye
view showing the boundaries between the buildings and the roads. (Bottom)
the x-z plane is a side view where the z-axis is perpendicular to the ground.
There is a downhill from X = 0 to 100 and an uphill from X = 100 to
160. The blue lines represent the transition of self-position. The SLAM map
contains building outlines, gradients and self-positions.

C. Laser Injection without Attenuation

We first consider an ideal attack with no laser attenuation.
Figs. 13 show the same projected SLAM maps with attack
durations ∆ = 5, 10, 20, and 40 meters. Although the x-
y plane is mostly unaffected, the attack causes significant
changes in the x-z plane. In all the cases, the the x-z plane
shows uphill for 0 < X < 160, unlike the benign case in
Fig. 12. The impact on the map becomes more significant as
attack duration increases, and the map with ∆ = 40 has the
strongest distortion from the benign case.

The results can be explained as follows. The x-y plane is
robust against fake points because there are many landmarks
and features that the scan matching algorithm can rely on. It is
not the case with the x-z plane, because there are few points
in the sky and the ground components are down sampled. As
a result, the scan matching algorithm fails to correct the errors
induced by laser injection, which accumulate over time.
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Fig. 13. These figures are cross sections of the attacked SLAM map in the x-y and x-z planes.From left to right, they correspond to attacks at ∆ = 5, 10,
20, and 40 meters.

D. Laser Injection with Attenuation

We repeat the previous experiment considering the laser
attenuation modeled in Eq. (1) and the concrete parameters
(P0 = 66.7 and a = 0.063) characterized in Section IV-B.
Specifically, attenuation was added to the transformation of
random spoofing points in the simulation. The greater the
distance between the attacker and the LiDAR, the greater the
attenuation.

Fig. 14 shows the the x-z projection of the SLAM maps
for the attack durations ∆ = 5, 10, 20, and 40 meters, and
the attack still succeeds by changing the slope. The changes
toward the z-axis is relatively small compared with the previ-
ous results in Fig. 13, but this is reasonable considering the
reduced number of fake points as a result of laser attenuation.

Laser injection has a significant effect on the z-axis. In the
benign case, the road is 5◦ downhill for 0 < X < 100 and
changes to 5◦ uphill for 100 < X < 160, as discussed in
Section V-B. A long duration of attack has more impacts on
the SLAM map. In the result with ∆ = 5, for example, the
road is mostly flat. In the result with ∆ = 40, on the other
hand, the road becomes uphill with a slope angle of 5◦ for
0 < X < 160. Changes in the slope angle can affect AV
driving decisions, as we will evaluate in the next section.

The results also show that the impact of the attack lasts for
a while. In our evaluation, we inject fake points for 10 < X <
10+∆, and the SLAM maps in Fig. 14 are obtained when the
car is at X = 160. This means that the benign measurements
in 10 + ∆ < X < 160 are insufficient to correct the changed
maps.

VI. IMPACTS ON LOCALIZATION AND MOTION PLANNING

The results in the previous section show that the attacker
can effectively change the SLAM map on the z-axis by
laser injection, and we evaluate its impact on localization and
motion planning.

We extend the simulation setup in Section V-A with motion
planning. The target motion planner is plannerPRT [44]

in the MATLAB Navigation toolbox [41] that makes geo-
metric planning based on the rapidly-exploring random tree
(RRT) [45], which generates search trees in steps using random
samples from a particular state space. plannerPRT receives
a map and generates a trajectory as a motion plan.

We compare the trajectories generated from the SLAM maps
with and without laser injection. We evaluate the most rigorous
case with the minimum attack duration ∆ = 5 meters; we
place a spoofer at X = 0 and inject a laser while the victim car
is in 25 < X < 30. The motion planner generates trajectories
for X > 160 using the SLAM maps obtained when the target
vehicle is at X = 160.

Fig. 15 shows the localization and motion plan with and
without attack in the x-y plane. Solid lines are benign cases;
the blue solid line (X < 160) is the self-position deduced from
the SLAM algorithm, and the cyan solid line (X > 160) is
the trajectory generated by the motion planner. Dashed lines
represent the attack cases; the red dashed line (X < 160)
is the self-position and the magenta dashed line (X > 160)
is the trajectory. Fig. 15 shows that the attack significantly
affects the self-position in the x-y plane, although the impact
on mapping is limited to the z-axis (see Fig. 14).

The attack effect on localization is not immediate, and the
self-positions (the blue and red lines) begin to split after the
injection has finished at X = 35. This result suggests that the
false map causes a small error in the self-position estimation
in each frame, which accumulates over time. As a result, the
false self-position that target SLAM recognizes exceeds the
lane around X = 100, and the self-position is shifted by 5
meters in the Y direction at X = 160.

The false map and self-position force the motion planner
to make a wrong trajectory for X > 160, as shown with
the cyan and magenta lines in Fig. 15. The vehicle direction
changes by 3◦ towards the opposite lane as a result of the laser
injection; the victim vehicle will enter the opposite lane after
running 35 meters with this motion plan, which can cause a
serious traffic accident. Note that the target motion planner
does not recognize a white line as an object in making a
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Fig. 14. This is the result of an attack simulation incorporating real-world constraints. The x-z planes of the SLAM maps generated when the attack sections
are 5 m, 10 m, 20 m, and 40 m, respectively. The impact of the attack is smaller than before incorporating the constraints, but the attack is successful to the
extent that a downhill is mistaken for an uphill.

trajectory, which is one reason behind the above bad decision.
Meanwhile, considering a white line can cause another serious
problem when the victim tries to keep a lane using a false self-
position that continues to deviate from the reality.

VII. DEFENSES

We discuss possible defenses and mitigations, which also
highlights the limitations of the proposed attack.

A. Using secondary sensors

Using secondary sensors that are unaffected by lasers is
a promising countermeasure approach. GPS and IMU are
popular and already deployed in the field, but are not always
available, as discussed in Section II-D. Another candidate is
a tilt sensor that measures the slope angle, which is also
common in vehicles. Since the proposed attack mainly targets
the z-axis, the 1-dimensional tilt sensor is sufficient to detect
anomalies or compensate for errors. Visual SLAM algorithms
using cameras can be an alternative solution. Since cameras
have their own weaknesses [46], combining a LiDAR with
cameras can improve the robustness as a system.

B. 360◦ anomaly detection.

Anomaly detection is a common countermeasure approach
considered in previous attacks on LiDAR-based object detec-
tion [22]. Detecting random spoofing is relatively easy be-
cause the injected points are uncontrollable and distinguishing
random points from benign objects is straightforward. Our
attack potentially evades anomaly detection regarding object
detectors by injecting fake points outside the range of an object
detector, e.g., behind the victim vehicle. In other words, the
proposed attack will be detectable by conventional anomaly
detectors by extending its coverage to 360◦.

C. Hardware defenses

Making the LiDAR hardware robust against laser injection
attacks will also solve the SLAM problems. Methods to change
the internal structure of the sensor include filtering [46], and
pulse randomization. In particular, some hardware counter-
measures are effective against random spoofing attacks [11].

VIII. CONCLUSION AND FUTURE WORK

This paper studies the impact of the laser injection attack
on LiDAR-based SLAM. By considering a target LiDAR-
based with defenses, we make a random spoofing attack
that penetrates the timing randomization countermeasure out-
side the range of LiDAR-based object detectors in which a
detection-based countermeasure is likely in place. Based on the
properties of random spoofing attack characterized by indoor
and outdoor physical experiments, we evaluate the robustness
of LiDAR-based SLAM in the simulation environment. The
z-axis in mapping, the vertical direction perpendicular to the
ground, is susceptible to random spoofing because of poor
existing features; there are few points in the sky and the
points on the road are removed with preprocessing. As a
result, the map is significantly affected towards the z-axis,
e.g., converting a downhill into an uphill.

The false map causes a small error in the estimation of self-
position in the x-y plane in each frame, which accumulates
over time, which is sufficient to shift the recognized self-
position by 5 meters to the right over 160 meters. The false
map and self-position significantly affect the motion planning
algorithm, and the planned trajectory changes by 3◦ at the
160m position, and the victim vehicle will enter the opposite
lane after running 35 meters with this angle. These impacts
on localization and motion planning can cause a serious traffic
accident. Finally, we discuss possible mitigations, including
sensor fusion, extended anomaly detection, and hardware
defenses.

Several important questions are open for future research.
Understanding the causality of the vulnerabilities discovered in
the SLAM algorithm is necessary to build more robust SLAM
algorithms. Our evaluation is limited to a particular scene, and
verifying the attack in the other settings, including a flat area
with no slope, is important to evaluate the robustness of the
attack. Finally, a real-world (cf. simulation-based) end-to-end
evaluation is necessary to figure out the practical impact of
the attack.
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