
Securing Automotive Software Supply Chains

Marina Moore
New York University

marinamoore@nyu.edu

Aditya Sirish A Yelgundhalli
New York University
aditya.sirish@nyu.edu

Justin Cappos
New York University

jcappos@nyu.edu

Abstract—Software supply chain attacks are a major concern
and need to be addressed by every organization, including
automakers. While there are many effective technologies in both
the software delivery and broader software supply chain security
space, combining these technologies presents challenges specific
to automotive applications. We explore the trust boundaries
between the software supply chain and software delivery systems
to determine where verification of software supply chain metadata
should occur, how to establish a root of trust, and how supply
chain policy can be distributed. Using this exploration, we design
Scudo, a secure combination of software over the air and software
supply chain security technologies. We show that adding full
verification of software supply chain metadata on-vehicle is not
only inefficient, but is also largely unnecessary for security with
multiple points of repository-side verification.

In addition, this paper describes a secure instantiation of
Scudo, which integrates Uptane, a state of the art software
update security solution, and in-toto, a comprehensive supply
chain security framework. A practical deployment has shown
that Scudo provides robust software supply chain protections.
The client side power and processing costs are negligible, with
the updated metadata comprising 0.504% of the total update
transmission. The client side verification adds 0.21 seconds to the
total update flow. This demonstrates that Scudo is easy to deploy
in ways that can efficiently and effectively catch software supply
chain attacks.

I. INTRODUCTION

There has been a massive increase in software supply
chain attacks recently [3], [21], [7], [32]. These attacks target
the software development process and missing validation of
artifacts used in this process. In response to these attacks,
President Biden issued an Executive Order that requires the
use of supply chain metadata [1]. Other nations are also de-
veloping regulations to reduce such supply chain threats [25].
In addition to government regulations, several technologies
have been proposed to address this threat. These technologies
each solve pieces of the broader software supply chain security
problem [30], [20], [8], [33], [24], [35], [38]. Such measures
provide the devices installing software added assurance that the
software was correctly made. After the software is made, there
are several technologies that allow secure software over-the-
air (SOTA) to update or distribute software on a vehicle [34],
[14], [37], [15], [12], [36], [19].

However, the combination of software supply chain tech-

nologies with SOTA technologies has not been explored, and
combining them in a way that maintains their security proper-
ties and is efficient has some added complexity. Specifically,
there is no existing solution for secure distribution of the
software supply chain root of trust (or why the software
supply chain security system is trusted), dissemination of
security policy (often from multiple supply chain vendors),
all while reconciling limited storage and runtime capabilities
of automobile Electronic Control Units (ECUs).

First, the root of trust for a secure software supply chain
system needs to be securely distributed to vehicles. Software
supply chain systems and SOTA systems each have a root of
trust that is used in verification. While using one root of trust to
distribute the other simplifies verification, it introduces a risk
that the distribution of the root of trust could be compromised.
This is especially true if the root of trust uses online keys,
which are more likely to be compromised.

In addition to the roots of trust, software supply chain
policy also needs to be distributed to verifiers. This policy
needs to specify which actors were supposed to perform which
actions in the supply chain, so that this information can be
used in verification. As automotive supply chains are complex
with many suppliers contributing to a single update, this
policy may involve verification of supplier-sourced updates.
Also, there may be different policy to verify depending on
where the verification occurs. For example, verification later
in the process could additionally validate that previous verifiers
signed off on the update. It is also vital to securely establish
which actors are allowed to define different policies. All of
this policy needs to be created by a trusted party and securely
distributed to the verifier to prevent tampering.

Finally, the verification of metadata required by software
supply chain security solutions requires additional storage and
runtime on-device. For many automotive ECUs, this makes
use of these technologies impossible on devices with limited
capabilities.

In this work, we model the automotive software supply
chain, from the production of the software all the way through
its distribution. We enumerate the actors involved in each part
of this pipeline, and we describe the capabilities they must be
granted for the tasks they are responsible for.

We present Scudo, an abstract framework that builds on
this model to describe how software supply chain technologies
can be securely composed with automotive SOTA technologies
taking into account the unique constraints faced by automotive
software and hardware. Scudo proposes utilizing secure SOTA
systems to perform much of the software supply chain verifi-
cation, transmitting cryptographically verifiable attestations to

Symposium on Vehicles Security and Privacy (VehicleSec) 2024
26 February 2024, San Diego, CA, USA
ISBN 979-8-9894372-7-6
https://dx.doi.org/10.14722/vehiclesec.2024.23015
www.ndss-symposium.org



the vehicle to guarantee the verification occurred. By perform-
ing this verification in three, isolated environments, we achieve
the same compromise-resilience as on-vehicle software supply
chain verification while minimizing the on-vehicle overhead.
We further define security properties needed to distribute the
supply chain root of trust and policy via the SOTA system
including the use of offline keys, protection from rollback
attacks, and a system of delegation. These properties ensure
both compromise resilience and per-image, up-to-date policy.
Scudo also describes how the various actors that make up the
supply chain must be classified, and the trust boundaries each
actor is responsible for.

Finally, we describe a practical implementation of Scudo
that uses Uptane [37], [14], [15], [18], a popular secure
SOTA system, and in-toto [35], [10], a software supply chain
security framework. We collaborated with Toradex, an Internet
of Things company, to evaluate this implementation of Scudo.
Toradex manufactures embedded devices that are deployed in
key applications such as medical devices, industrial human
machine interfaces, and gateways. The company also develops
Torizon, an OS platform, for their boards that customers use
to deploy their applications. As Toradex were prior adopters
of Uptane, we were also able to determine if Scudo can
be integrated into existing systems. We believe this model
also applies well to automotive use cases, with ECUs having
similar capabilities to the Toradex embedded devices. We used
the metadata captured by Scudo when building Torizon to
measure the overhead imposed by Scudo in comparison with
just using Uptane. We found that with Scudo, the updated
metadata retrieved by a device comprises 0.504% of the total
transmission as the change in metadata size is dwarfed by
the size of the image itself. Scudo also adds extra verification
steps at various points in the repository. Each of these checks
incurs a one-time cost of an average of 1.33s per image.
On the vehicle itself, Scudo adds limited verification that
ensures the repository side verifiers all approved the image.
This verification has an overhead of 0.21s. These findings
demonstrate the practicality of Scudo.

In summary, our contributions are:

• We analyze the challenges of combining SOTA tech-
nologies with software supply chain security technolo-
gies in the automotive domain.

• We introduce Scudo, a secure system for combining
a SOTA system with a software supply chain secu-
rity system by taking advantages of specific security
properties of each.

• We implement Scudo using Uptane and in-toto, and
evaluate this implementation with Toradex, determin-
ing that Scudo provides a manageable overhead on-
vehicle while achieving the security of end-to-end
software supply chain verification.

II. UNDERSTANDING SOFTWARE SUPPLY CHAIN
SECURITY

To better understand how to secure the software supply
chain, this section discusses the common components used and
then discusses issues that arise when composing them. To keep
this section general, the components and their properties are
described in an abstract manner.

A. Software Supply Chain Security systems

A software supply chain is a collection of systems, devices,
and people which produce a final software product [22]. Any
defense mechanism that protects a software supply chain, thus,
encompasses the supply chain itself as well as the people
responsible for defining the security policies for the defense
mechanism. This allows us to derive, broadly speaking, two
groups of actors for the production of automotive software:
software supply chain owners who are responsible for defin-
ing security policies (and therefore the root of trust for the soft-
ware supply chain security technology), and software supply
chain functionaries who perform the necessary operations to
produce the software, such as testing and building.

As each software supply chain functionary performs oper-
ations, they record verifiable metadata about these steps and
who performed them. This metadata can capture information
about the build process [30], [20], [8], [35], dependencies [35],
[33], [24], version control information [35], [30], and other
holistic information [35] about the software supply chain. All
of this metadata is then used to ensure that the policy set by
software supply chain owners was followed.

Verification of software supply chain metadata varies
greatly by system. Today, in most cases, the information
gathered is not independently verifiable by external parties
except to verify that the software supply chain system has
signed to indicate it is correct [30], [8], [33], [24]. However,
systems do exist which enforce policies over the generated
supply chain security metadata [35], and others are adding
this functionality now [30], [31].

As a result, there are a few key properties to consider with
software supply chain security systems:

1) root of trust. How should the root of trust, i.e. the
mechanism used to establish trust for the software
supply chain system, for the software supply chain
security technology be managed? Should it be burnt
into the system at manufacture time or established
by the SOTA system? The root of trust defines the
trusted keys and policy for the software supply chain
system, and so a compromised or mis-distributed root
of trust can negate the security of the system.

2) trusted components and actors. Which software sup-
ply chain functionaries are trusted and for what
aspects of security? Are the keys associated with
these systems or actors able to be better secured than
they were in a pure SOTA setup? Is the impact of a
compromise lessened in some way?

3) verification. Where should software supply chain
verification be performed and how does this impact
security and efficiency? For efficiency, is it possible
to avoid transmitting some information to vehicles
while retaining security?

The answers to these questions are paramount to under-
standing what composition of SOTA and software supply chain
technologies makes sense.

B. SOTA systems

After a software artifact is produced, it must be distributed
securely to consumers. Software Over the Air (SOTA) systems

2



deliver software updates to vehicles [34], [15], [37], [14],
[18], [12], [19]. Their goal is to allow a manufacturer to
securely update vehicles in the field, without requiring that
they be returned to a dealership. In the automotive context, the
consumers are one or more ECUs on a vehicle. Each software
artifact is stored in a repository, from which it is distributed
to automobiles. Like before, this allows us to derive groups
of actors who handle the distribution of software: reposi-
tory owners who are ultimately responsible for the software
repository, artifact uploaders who upload built artifacts to
the repository, and repository directors who dictate which
software artifacts must be distributed to specific vehicles.

Note that some of these groups may overlap in their
personnel or systems. For example, a software supply chain
functionary, having built some piece of software, is typically
tasked with uploading it to the software repository, meaning
they also serve as an artifact uploader.

SOTA systems often have the following properties:

1) root of trust. ECUs which work with a SOTA system
typically have a root of trust loaded into them at
manufacture time that corresponds to the repository
owners [12], [15]. All trust in the system derives from
these keys and so their security is paramount.

2) key management. The SOTA system in many cases
includes mechanisms to rotate and revoke keys for
both repository directors and artifact uploaders [15].
This is essential to make a system resilient against
attacks long term and to make key management
feasible and secure.

3) update ingestion. The system has a means to deter-
mine the validity of an update and decide whether it
should be provided to ECUs. This is an opportunity
for verification that is typically done via a signature
on either an update or the update’s metadata.

4) update selection. The repository director (typically
a manufacturer) decides which update should be
applied to a specific ECU in a vehicle. This is another
opportunity for update verification.

An attacker who is able to influence or attack any of these
steps can cause substantial harm in practice.

C. Vehicle

Finally, the last actor involved in this chain from the
production of software to its consumption is the vehicle itself.
The vehicle’s ECU(s) must fetch and install new software when
directed to do so by the repository directors. The vehicle is
responsible for SOTA verification, and in some cases may be
expected to perform software supply chain verification. It is
important to note that most vehicle ECUs have limited memory
and processing capabilities, and anything sent to an ECU over-
the-air may travel over a cellular network or other bandwidth-
constrained network. Due to these realities, efficient on-device
performance is critical.

III. THREAT MODEL

We consider the following actors in our system:

• Software supply chain functionaries: The entities
performing, and attesting to, each step in the software

supply chain. Some functionaries who also submit the
software for ingestion at the end of the supply chain
will act as artifact uploaders.

• Software supply chain owners: The entity setting
policy for the software supply chain including which
steps should be performed and which functionaries
should perform them.

• Artifact uploaders: The entity that uploads software
to a repository.

• Software update repository: The repository that
contains software updates to be sent to the vehicle.

• Software repository owners: The entity establishing
the software repository that distributes artifacts to
vehicles.

• Software repository director: The entity determining
which software updates should be sent to each vehicle
and ECU.

• SOTA gateway: The gateway that sends updates and
metadata to the vehicle over the air.

• Software supply chain root of trust: The root of trust
for the software supply chain that indicates software
supply chain owners. This root of trust must be
provided to supply chain verifiers in a secure manner.
The keys used to sign the root of trust are typically
stored offline and used rarely to minimize the chances
of compromise.

• Software update root of trust: The root of trust for
the software update system that indicates the trusted
software update repository and director. This root of
trust is included on device ECUs at manufacture time
and is managed by the software repository owners. As
with the software supply chain root of trust, the keys
used to sign this root of trust are stored offline and
used rarely to minimize the chances of compromise.

• Vehicle ECUs: The devices that will receive and
verify software updates.

We assume that an attacker can do the following:

• Compromise one or more keys including keys on the
software update repository or keys controlled by the
supply chain functionaries, supply chain owners, or
software update director.

• Compromise one or more supply chain functionaries.

• Compromise the software update repository, the soft-
ware update director, or the SOTA gateway (but not
all three).

The following are out of scope:

• Complete compromise of software update system’s
root of trust, which is backed by multiple, offline keys.

• Compromise of any ECU on the vehicle before the
software update, including with physical access.

In this environment, we aim to ensure the integrity of
the supply chain producing an artifact and the installation of

3



the intended software update. This means that all steps in
the software supply chain were performed as described by
the software supply chain owners, and the correct update is
installed on the vehicle as described by the software update
director. As different elements of the system are compromised,
our goal is a graceful degradation of security properties.

IV. SCUDO: COMPOSING SOTA AND SOFTWARE SUPPLY
CHAIN TECHNOLOGIES

We present a sketch of our design, Scudo, that addresses the
threat model in section III. This section first explores a simple
combination of SOTA and software supply chain security
technologies, then examines how Scudo is an improvement.
Some of these improvements may require different properties
of the SOTA and software supply chain technology systems
which are being utilized. The key insight behind our design is
that a sufficiently robust SOTA system can perform verification
of software supply chain metadata at multiple points, then
send proof of this verification to the vehicle. This reduces the
overhead on the vehicle while still performing all verification.
Later, we will present a concrete architecture for this design
in section V.

A. Software supply chain root of trust

How should the root of trust for the software supply chain
security technology be managed? Should it be burnt into the
system at manufacture time or established by the SOTA system?

The simple way to set up the root of trust for the software
supply chain security technology is to burn the root of trust
into the automobile ECU at manufacture time. During regular
operations, the ECU receives updates and supply chain infor-
mation, which is verified against the root of trust. However,
this technique has disadvantages. Key rotation is a necessary
and important hygiene practice for reasons including later dis-
coveries of weak key generation [5], algorithm weakness [11],
accidental key exposure [9], or things like the emergence of
quantum algorithms for cracking existing systems. Given the
long lifespan of vehicles, some occurrence of this type is fairly
likely and needs to be part of an organization’s plan. The ability
to rotate even the root of trust’s keys also furthers compromise
resilience, or the ability to recover from a compromise of even
the software supply chain system’s root of trust keys.

The alternative is to use a secure SOTA system to distribute
the root of trust. Here, a secure SOTA system is one that
has strong protections in update selection (avoiding rollback
attacks where the SOTA system presents an older version
of an artifact in place of the latest) [29], [16], a system of
delegation [17], and the ability to manage its own root of trust.
We observe that distributing the supply chain security system’s
root of trust is fundamentally an artifact distribution problem
as the root of trust is another artifact sent to the vehicle. The
SOTA system is designed expressly for that, as opposed to the
supply chain security system, thus we assign this responsibility
to the SOTA system.

Scudo selects a compromise resilient SOTA system and
combines the roots of trust for the SOTA and software supply
chain systems. The SOTA system can use the (offline) SOTA
root of trust to delegate to the supply chain root of trust.
Therefore, the security of the supply chain root of trust is

equivalent to that of the SOTA root of trust, which can update
the delegation if the supply chain root of trust in the event of
a compromise.

In addition to the compromise resilience properties, Scudo
requires the SOTA system to be deployed with offline keys for
the root of trust. An offline key such as a hardware token, will
not be compromised if the repository is compromised. This
allows for secure recovery if any other element of the system
is compromised. A SOTA system that uses an online root of
trust should not be used to distribute a software supply chain
root of trust as such keys are more likely to be compromised.

B. Verification

Where should software supply chain verification be per-
formed and how does this impact security and efficiency? For
efficiency, is it possible to avoid transmitting some of this
information to vehicles while retaining security?

There are many places where one could validate the soft-
ware supply chain metadata. This includes before ingestion to
the SOTA system, before selecting the update to be installed
on a vehicle, before transmitting the update to a vehicle,
on the vehicle ECU which receives the transmission, and on
the vehicle ECU which the update is destined for. A natural
question is how different choices for the verification location
impact the security and efficiency of the system.

One key point to note is that for a single update one could
decide to perform verification in all of these locations. There
is no harm (at least from a security standpoint) to verifying
the same metadata in multiple places. However, each point of
verification adds a performance cost. So, where is it sensible
to verify metadata, in what cases, and why?

The obvious point of verification is the vehicle, as it
is ultimately the consumer of the software. This has the
benefit of full end-to-end verification. However, secure SOTA
systems [37] have previously found that verification on the
vehicle is not viable given resource constraints, and they have
had to settle for reduced verification workflows without all the
same guarantees.

Scudo mitigates the resource constraint issue by a com-
bination of two features that allow most software supply
chain verification to move off device with minimal impact on
security. First, Scudo adds software supply chain verification
at multiple, disparate points at the repository, similar to the
strategy proposed by the Reproducible Builds project [28].
Each verifier must be hosted on a distinct server to ensure
that the compromise of one does not result in the compromise
of the others. Second, Scudo captures evidence of all of these
verifications, known as verification summaries, which are then
sent to the automobile. The summaries are signed by the
verifier and attest that verification happened at each point on
the repository without imposing the full resource overhead
of the software supply chain security metadata on-vehicle.
In this way, Scudo ensures end-to-end verification with the
caveat that it relies on there being at least one honest verifier
at the repository. As long as this one honest verifier exists,
this strategy is equivalent to doing software supply chain
verification on-vehicle.

4



While these factors help with the resource constraint issue,
they also enable additional checks that ensure verifiers are
behaving correctly. In addition to verifying the full software
supply chain metadata for an artifact, each repository-side
verifier can also validate the verification summaries of the
verifiers that come before it. Thus, a verifier can detect other
misbehaving verifiers early.

But, how many points of verification are sufficient to ensure
that the software supply chain policy was met? To avoid a
single point of failure (i.e., a solitary verifier), Scudo requires
at least two distinct verifiers at the repository. Obviously, the
more distinct verifiers there are, the more secure the system is.
Scudo does not pick a specific number, but instead the design
adds verification at several logical points: at update ingestion
into the SOTA system, at update selection by the software
repository director, and at update distribution by the SOTA
gateway. Any additional verifiers only strengthen Scudo’s
compromise resilience, but each verifier adds complexity and
cost both at the repository and on the vehicle (as it must
validate more verification summaries).

In summary, out of the box, Scudo ensures that the
supply chain security metadata is verified at three points at
the repository. Each of these verifiers generate authenticated
summaries of the verification. In addition to the image itself,
the vehicle receives all of the verification summaries, which
are validated by the vehicle’s policy to verify the result of
repository-side verification. This vastly reduces the metadata
sent to the vehicle, while still ensuring end-to-end verification.

C. Software supply chain policy

Who defines policy for the software supply chain? Is this
policy the same for all verifiers? How is policy distributed?

Software supply chain security technologies require ver-
ification, and this verification must follow a specific policy.
This policy could define software supply chain functionaries,
what these steps these functionaries should perform, where
they must be performed, and even ensure that artifacts are not
altered between steps.

However, this policy can be very complex, especially
in an automotive environment with multiple vendors, each
responsible for some steps in the supply chain. A tier 1 supplier
for a particular ECU may create a software update for that
ECU, which is verified by the manufacturer before being
transmitted to the vehicle alongside other updates. This tier
1 supplier may even have their own sub-suppliers (tier 2, etc),
each with a different software supply chain. The policies for
each supplier need to be vetted and combined into a single,
comprehensive policy that can be checked at verification time.

Further, as Scudo has multiple points of verification, we
need to support distinct policies for each verifier. This is
because each verifier is responsible for verifying the software
supply chain security metadata and the integrity of the verifiers
that come before it. Thus, the policy that will be verified is
unique to both the supply chain for a particular image, and the
point at which verification occurs. This also enables specifying
policies that may only need to be applied at a particular verifier,
without affecting the others.

All of these factors complicate the distribution of policy.
Any malicious alterations to the policy has implications for the
effectiveness of the supply chain security technology. Thus, the
secure distribution of policy is paramount.

In Scudo, we use delegation from the SOTA system to tie
different policies to specific images for each point of veri-
fication. Software supply chain owners must define different
policies for each of the SOTA points of verification, and
vehicle verification for each image. So, in a deployment of
Scudo with the three repository-side verifiers detailed above,
the supply chain owner defines a policy for each of those
verifiers. In addition, the owner creates a policy for the vehicle
that consumes the summary of each of the repository-side
verifiers. These policies and summaries are associated with
the image using the SOTA system’s delegations.

D. Summary

In summary, Scudo combines a secure SOTA system and
a software supply chain security system while balancing the
unique constraints of the automotive ecosystem. First, Scudo
recognizes the problem of distributing the root of trust for
the supply chain security system is fundamentally that of
software distribution, and leverages a secure SOTA system
as a solution. Next, it allows for more efficient on-vehicle
verification by requiring multiple repository-side points of
verification, and enforcing this requirement on the vehicle.
Finally, Scudo leverages the delegation capability of secure
SOTA systems to manage multiple vendor and verifier specific
policies for a single image.

V. IMPLEMENTING SCUDO

In this section, we describe the architecture of a real
world implementation of Scudo. We discuss our selection of
a secure SOTA system and software supply chain security
system. We then describe how this implementation achieves
the design of Scudo described in section IV. Figure 1 presents
the architecture of this Scudo implementation. The analysis of
Scudo’s security (Section VI) and overhead (Section VIII) are
deferred to later in the paper.

A. Components

For a real world implementation of Scudo, we selected
the Uptane Standard [14], a widely deployed robust SOTA
system, and in-toto [35], a state of the art comprehensive
software supply chain security technology that is part of many
other popular frameworks like SLSA [30] and Sigstore [20].
Parts of these technologies that are relevant to their integration
are discussed briefly here but for brevity, detailed information
about the projects are left to the project documentation [14],
[37], [18], [35], [10]. Implementation of Scudo is not limited
to these technologies, but can be done with any system that has
the properties discussed in section IV. Some other technologies
are discussed in section IX. These technologies were selected
for our implementation based on their current adoption and
security properties.

5



Fig. 1. An overview of Scudo’s design. Scudo stores in-toto metadata on the Image repository using secure roles for the in-toto root of trust, layouts, and
attestations. Scudo then introduces Image and Director verifiers that perform in-toto verification before images are ingested by the repositories. Then, in-toto
verification is performed before metadata is sent from the Image repository to a vehicle by the SOTA Gateway. Finally, the vehicle performs verification of the
summary attestations from each of the previous verifiers. The components that store or verify in-toto metadata are identified using its logo, a link in a chain.

1) Uptane: Uptane is a well established SOTA system used
in automotive and Internet-of-Things (IoT) contexts that has
a few key properties. Uptane asserts that a specific image is
trusted to be installed on an ECU via the use of a type of
signed metadata called targets metadata. This provides a means
to attest to update ingestion and also that an update has been
selected. However, to provide better compromise resilience,
update ingestion and update selection are provided by different
repositories, the Image repository and Director repository,
respectively. Update ingestion from artifact uploaders is done
using a key that is kept offline (not stored on a server) to
minimize the damage potential in the event of a compromise.
Both the Image and Directory repository have offline root keys
that form their root of trust. These separate repositories will
form two of our points of verification in Scudo.

Note also, that targets metadata is flexible and can be
annotated to indicate further information or restrictions about
an image. This may include what models of ECUs an image
can be installed on, what other keys should be trusted to
provide information about an image through delegation, where
a specific image must be installed, and so on. This feature,
especially the use of targeted delegation, will be used by Scudo
to specify the in-toto root of trust and policy for a specific
image.

Highly relevant to Scudo’s security properties is the fact
that Uptane provides strong timeliness and rollback protec-
tion [16], due to the way in which roles in Uptane sign
metadata. Every time a vehicle checks to see if new updates
exist, it receives metadata that makes a future attacker unable
to convince ECUs to trust older images or metadata than what
exists on the repository at this point. The mechanism by which
this works are unchanged in Scudo and so interested readers

should read the Uptane paper for details [14].

2) in-toto: in-toto [35] is a software supply chain security
framework with a few security properties which are relevant
to Scudo. To specify the sets of steps which should occur
when making software, in-toto uses a metadata file called a
layout. The “root layout” corresponds to the primary supply
chain policy file and is also the supply chain root of trust as
it is issued and signed by the software supply chain owners.
The layout specifies policy about which entities are authorized
to perform an step, what their corresponding keys are, and
how this step relates to other steps (for example if the output
from one step should be the input to another). For each step,
one or more authorized software supply chain functionaries
create and sign in-toto attestations that record attributes about
the step such as the artifacts used and the environment where
the step was executed. Finally, any party can use an in-
toto layout and the corresponding attestations to validate the
steps were correctly followed by the appropriate parties. Even
in the case of a compromise or malicious interference, in-
toto provides strong resilience and assurance properties. This
is all unchanged from the typical use, implementation, and
deployment of in-toto [35].

3) Implementing our model using in-toto and Uptane: The
model of the software supply chain and distribution processes
can be implemented using in-toto and Uptane. We discuss
how the concepts discussed above can be applied to these
technologies.

in-toto perceives the software supply chain as a series of
steps to be performed by one or more actors. This aligns with
the software supply chain functionaries role. in-toto also
defines a policy known as a “layout”, that must be issued by
the software supply chain owners.

6



The mapping of the repository-side actors declared in sec-
tion II map less cleanly to Uptane in comparison to in-toto. For
starters, Uptane defines two separate repositories that together
handle the tasks assigned to each group of actors. Each has a
collection of repository owners who are ultimately trusted for
that repository. They are the holders of the repository’s root
keys. The SOTA root of trust consists of both sets of root keys.
Artifact uploaders are those that can upload an artifact to the
repositories. Typically, this overlaps with a software supply
chain functionary. Uptane defines two repositories precisely to
direct software updates. The repository director role is backed
by the “director” repository. This repository chooses specific
updates for each vehicle.

B. Establishing the root of trust and policy for in-toto using
Uptane

Scudo uses Uptane’s targets metadata to specify the root of
trust and policy for in-toto. This is done by having the image
signer role, which previously handled image ingestion, addi-
tionally track in-toto attestation information. It also involves
the creation of a new Uptane targets role, the layout signer,
which specifies the root of trust and the in-toto layout, i.e.
supply chain policy, for the images. Each of these are described
in more detail now.

Layout signer role. The layout signer role, managed by the
software supply chain owners, establishes in-toto’s layout and
root of trust. The layout and the root of trust, which includes
one or more signing keys, are recorded as artifacts in the image
repository. Further, the role associates each layout with its root
of trust and ties the layout to particular images and ECUs. For
example, in Figure 1, the foo in-toto layout can be specified to
all foo-* images. Similarly, the foo root of trust is specified
there and associated with the foo in-toto layout. Therefore, a
verifier uses the layout signer role to identify the correct layout
to use for an image and the layout’s root of trust.

The layout signing key is only used when a layout or its
root of trust changes. Given the importance of this role and
its infrequent use, in practice this role’s key is protected using
measures like requiring a threshold of multiple physically held
cryptographic keys stored in separate geographic locations.

Image signer role. The image signer role, on the other
hand, is used whenever an image is ingested to sign metadata
about the image and attach in-toto attestation information. As
such, it is controlled by the artifact uploaders. This role from
Uptane is adapted so that in addition to this role’s metadata
listing every image in the repository, it now also lists their in-
toto attestations and associates the image with its attestations.
A verifier which has the correct layout and root of trust from
the layout role can then use the image signer role’s attestations
and image to verify an image. in-toto attestations are stored
in the namespace of the image they apply to, so that verifiers
always receive the correct attestations, and not some from older
versions of the image. The in-toto attestations for an image also
identify the image they apply to by its hash, as the image is
recorded in the attestations as the final product of the supply
chain. These factors prevent a mix-and-match attack [29] on
the in-toto attestations that uses some current, and other out-
of-date attestations.

This role, while much more frequently used than the layout
role, is also important to protect because it gatekeeps when
ingestion of an image may occur. Thus in practice, its keys
are protected using measures like storing them offline using
hardware keys which are only plugged in when needed.

C. Verifying in-toto metadata at the repository

In Uptane, we have two repositories, the Image and Direc-
tor. In addition, there is typically a gateway component that
transmits the software artifact to the target automobiles. In
order to achieve the multiple points of verification discussed
in section IV, we perform verification of software supply chain
security policy conformance at each of these points in the
distribution pipeline. Further, each successive verifier is ex-
pected to verify the summary verification of each predecessor
as well. Thus, each verifier has a unique policy defined in a
layout signed by the layout signer role, and verifies in-toto
attestations as well as previous verifications for the image. As
discussed in section IV, using three points of prevents a single
point of failure while reducing cost and complexity.

All together, this means that Scudo adds in-toto verification
at three points: at image ingestion (Image repository), image
selection (Director repository), and at update time (SOTA
Gateway). Section VI explores the implications and properties
of performing verification at these phases. The Image reposi-
tory verifier only signs updated Uptane metadata if the in-toto
verification is successful using a layout specifically written for
the Image verifier and root of trust previously established in the
layout signer role. In doing so, the verifier generates a signed
summary of verification which it associates with the image
in the repository’s Uptane metadata. The Director repository
performs in-toto verification using the layout corresponding to
the Director verifier and root of trust from the layout signer
role. This layout requires the Director to veryify the Image
repository verifier’s summary in addition to verifying all the
software supply chain metadata. The Director repository also
generates a summary of verification, which is recorded only
in the Director repository’s Uptane metadata, associated with
the image. The SOTA Gateway performs in-toto verification
when an update is sent to automobile ECUs. Like the Director
repository, the SOTA gateway uses the corresponding layout
which indicates that it will check that prior verifiers (both
the Image and Director repositories) validated the image by
verifying their summary verifications in addition to performing
a full check of the artifact’s in-toto metadata.

D. Verifying supply chain integrity at the vehicle

In place of the full supply chain metadata, Scudo dispatches
three verification summaries to the vehicle along with the
image to install and SOTA metadata. The supply chain owner
signs an in-toto layout indicating a policy that the vehicle must
verify these three summaries. This policy is bootstrapped much
like the repository-side policies, using Uptane’s delegations.

Specifically, the vehicle checks that the summaries were
created for the artifact being installed. Further, it also veri-
fies that each of the repository-side verifiers performed full
verification, which is indicated by their signatures on the
corresponding summaries. Thus, the vehicle is able to verify
the validity of the artifact being installed without shouldering
the overhead of performing full verification.

7



VI. SECURITY ANALYSIS

This section examines the security properties of Scudo by
studying the implications of a compromise of each actor, as
allowed by our threat model. We assume that software supply
chain policies are reasonably secure and check the input and
output of each step to detect tampering.

We consider a compromise of each actor to analyze the
security impact in the context of our threat model. In order
of impact, this is how each actor can influence the software
supply chain and its verification. Recall that our goal is to
install the software update indicated by the software update
director, with all steps described by the supply chain policy
manager occurring.

A. Repository owners

First, the most important role is the repository owners.
For Uptane, this may be two distinct groups: the root of trust
for the Image repository and the root of trust for the Director
repository. If these repository owners are compromised, they
could replace the root of trust for the software supply chain,
or direct vehicles to install the incorrect images. Such a
compromise would require compromising a threshold of offline
keys, and is unlikely to occur in practice. A complete root of
trust compromise is out of scope in our threat model.

B. Software supply chain owners

On the software supply chain side, the software supply
chain owners can weaken policies by distributing weak lay-
outs. This role is critical with a lot of responsibility, and it is
hard to stop misbehavior. After such an attack, in-toto’s root
of trust needs to be revoked and rotated by Uptane’s root of
trust. Then, new layouts must be issued that are signed with
new, securely stored keys. The layout signer role at the Image
repository is updated to revoke the old layouts and root of
trust entirely in favor of the new ones. Note that if multiple
layouts exist for different versions of some image, all of these
layouts must be re-issued using the new in-toto root of trust.
Here, we see the value of using a secure SOTA system like
Uptane to bootstrap in-toto’s root of trust. The use of a weaker
SOTA system that results in in-toto’s root of trust being flashed
into ECUs requires every vehicle to be independently updated,
not just those affected by a malicious image. Scudo’s use of
Uptane allows for recovery when the compromise is detected.
Also note that a compromise of in-toto’s root of trust means
compromising a threshold of keys that are stored securely,
much like the keys used for other secure roles at the repository.
Such a compromise is unlikely.

C. Software supply chain functionaries

Next, the software supply chain functionaries can impact
the software that is produced and / or the metadata generated
for the software build. However, it may be possible to detect
this misbehavior with the right software supply chain policies.
For example, if a policy requires that the output of one step
matches the input to another, any changes at that stage would
be detected. Further, supply chain functionaries are defined in
the in-toto layout, and can be replaced once their compromise
has been detected by replacing the definitions in the layout.

D. Artifact uploader

An artifact uploader can tamper with the software or
metadata at upload time. Trivial instances of such tampering
ought to be detected using the software supply chain policies.
Once such tampering is detected, the artifact uploader’s key
can be revoked using the Uptane root of trust. The root
of trust does so by signing a new delegation removing the
compromised key. Rollback attack prevention mechanisms
ensure that old metadata listing the old key will not be used.

E. Verifiers

We previously described verifiers at the Image repository,
Directory repository, and the SOTA gateway. Each of these
perform full in-toto verification of all attestations as well
as validate the signatures from prior verifiers. To understand
how a verifier can misbehave, we consider the following
cases. First, a buggy artifact upload process may bypass the
verifier altogether, meaning a verification summary does not
exist. This is caught by all subsequent repository-side verifiers
and the vehicle. Second, a malicious verifier may sign an
invalid verification summary claiming in-toto verification was
successful even when it was not. This is again detected by other
repository-side verifiers (though not the vehicle) as they also
perform full in-toto verification for an image. When in-toto
verification fails at one verifier and a successful verification
summary from another verifier is observed, it is clear one of
the verifiers is misbehaving. Our threat model assumes that
some, but not all, verifiers can be compromised. As long as one
verifier remains uncompromised, any attack can be detected by
this uncompromised verifier. Malicious verifiers can misbehave
in other ways such as performing a denial of service attack,
but these are general problems for the image ingestion and
distribution process and not unique to Scudo. As such, we do
not discuss them.

VII. COLLABORATION WITH TORADEX

Scudo adds software supply chain security verification to
Uptane at several points. A natural question is how the addition
of in-toto impacts security and performance. The answer is
highly dependent on how in-toto’s policy is configured and
attestations are generated. So, to answer this, we collaborated
with Toradex to generate in-toto metadata for Torizon images,
which could be verified against the corresponding in-toto
layout.

Torizon is built using Yocto Project [39] tools like Bit-
Bake [2] and OpenEmbedded Core [23]. We generated in-toto
attestations recording the sources used to build an image, the
build configuration, the external dependencies, and finally the
build process itself that uses all of these artifacts. These at-
testations are verified using an in-toto layout with strong rules
governing which artifacts each step could manipulate and the
types of manipulations allowed. For example, the dependency
fetch step is only allowed to write to certain directories in the
builder where dependency artifacts are stored. This step is not
allowed to make changes to the build cache. The layout is also
configured to detect unauthorized modifications to artifacts
between two steps. For example, it validates that all the
artifacts used during the final build step are identical to those
recorded during the source, configuration, and dependency
fetch steps.

8



Configuration Uptane in-toto Total Proportion
Uptane only 297.65 KiB 0 297.65 KiB 0.155%

Scudo 958.76 KiB 6 KiB 964.76 KiB 0.504%

TABLE I. WE COMPARE THE METADATA OVERHEAD ON VEHICLE OF
SCUDO AND UPTANE. THE PROPORTION INDICATES THE METADATA

OVERHEAD COMPARED TO OUR REFERENCE IMAGE. UPTANE INCLUDES
THE METADATA FROM BOTH THE IMAGE AND DIRECTOR REPOSITORIES.

SCUDO’S UPTANE METADATA SEES A MINOR INCREASE DUE TO
ASSOCIATING EACH IMAGE WITH ITS ATTESTATIONS. THE IN-TOTO
METADATA INCLUDES THE SUMMARY ATTESTATIONS AND VEHICLE

LAYOUT.

All of these checks performed by in-toto are not part of a
standard Uptane deployment. Note that Scudo cannot guaran-
tee all these checks are performed as they must be declared
for each supply chain in the in-toto layout. However, Scudo
enables performing these checks, and thus can be leveraged to
achieve a security posture that is a clear improvement over a
standard Uptane deployment, while also ensuring the security
of in-toto’s root of trust keys and layouts.

Toradex’s existing use of Uptane protects them from repos-
itory compromises. By integrating in-toto via Scudo, Toradex
extend their software supply chain security to cover the build
pipeline, to ensure an image is built using the right set of
inputs, enforce the integrity of the build steps, and to verify
that cached artifacts are not tampered with. Over time, the
in-toto policy can be updated to include protections against
compromise of the version control system [4], [27] and to in-
corporate security mechanisms like Reproducible Builds [28],
[13] to protect against a build server compromise [6]. For now,
the in-toto layout described above presents a sane, security
forward position, ahead of industry trends.

VIII. METADATA OVERHEAD

To evaluate Scudo’s metadata overhead, we used data gath-
ered from Toradex’s deployment. All performance numbers
were gathered using a computer with an Intel i7-1185G7 pro-
cessor and 32GB of RAM as a representative of a repository-
side verifier. For ECU verification, we measured the runtime
overhead on a Toradex Colibri iMX7D v1.1B board. Addi-
tionally, we use release 5.7.0 of Torizon as a reference image.
This image has a compressed size of 186.90 MiB. Finally,
the Toradex Uptane metadata lists 204 images, each of which
is associated with seven in-toto attestations. It is likely that
Toradex’s frequent release cycle results in a greater number
of total images on the repository than typical automotive
deployments, so this represents an upper bound for Uptane
metadata size. Also, while the Uptane metadata evaluated here
lists each attestation for an image as an independent artifact,
this could be optimized to use a single entry for a compressed
archive of all attestations. Note that all runtime numbers are
the average of 10 runs.

A. What proportion of transmitted data is the in-toto and
Uptane metadata?

To answer this question, we first calculated the compressed
size of Uptane metadata alone, which Toradex had deployed
prior to adopting Scudo. As Table I shows, the metadata makes
up about 0.155% of the total transmission (i.e., the metadata
and the image itself). Then, we updated the Uptane metadata
to include in-toto for all 204 images. This includes in-toto’s

Verifier Average Runtime (s)
Image Repository 1.34

Director Repository 1.33
SOTA Gateway 1.32

TABLE II. OVERHEAD IMPOSED BY IN-TOTO VERIFICATION AT EACH
REPOSITORY SIDE VERIFIER. ALL NUMBERS ARE AN AVERAGE OF 10

VERIFICATION RUNS PERFORMED ON AN INTEL CORE I7-1185G7
MACHINE WITH 32 GB OF RAM.

layout, root of trust, and attestations for all images. We found
that the Uptane metadata and summary in-toto verification
with Scudo makes up 0.504% of the total transmission to
end devices. On the repository, we see a larger increase in
the Uptane metadata from 297.65 KiB to 958.76 KiB in
addition to 41.437 MiB of in-toto metadata. Note that while
the total metadata sent to these verifiers is larger, this cost
is only paid once for each image as the result of in-toto
verification is cached. Table I also shows the contribution of
in-toto and Uptane metadata to the overall increase in each
of these scenarios. Significantly, we see that Scudo has a
negligible impact on the data transmitted to end devices. A
device fetching an update from the repository with 204 images
fetches about 649.11 KiB extra, with the metadata comprising
0.504% of the total transmission size. The impact is even
smaller in repositories with fewer images, and can be further
reduced by using a single entry for all image attestations as
described above. However, as the overhead is already quite
trivial, this optimization was omitted in this deployment.

B. What is the runtime overhead of in-toto verification?

The time taken to perform in-toto verification for a single
image at three verifiers at the repository is about 3.99s in
total, as shown in Table II. The Image and Director reposi-
tory verifiers perform this verification during image ingestion,
meaning the overhead is not imposed on the image distribution
to devices. The SOTA gateway verifier takes about 1.32s for
its verification, which happens when the image is sent to the
device. However, for any one image, this verification can be
cached by the verifier to minimize the overhead. Therefore,
we find that in-toto verification during the image ingestion,
image selection, and update processes does not add significant
overhead.

We also measured the runtime overhead of performing
in-toto verification of the summary attestations on Toradex’s
embedded device. The verification takes 0.21s per image, on
hardware representative of an automobile ECU. To confirm the
infeasibility of full in-toto verification on device, we repeated
the repository side verification on the Toradex device, and we
found that this took an average of 37.23s. The amount of
metadata transmitted is also far higher, equivalent to what is
used by the repository side verifiers. This is clearly impractical
and demonstrates the benefit of using Scudo.

IX. RELATED WORK

We examine other work on software supply chain security
for automobiles.

We first discuss the problem of securing the delivery of
artifacts from a repository to vehicles. Scudo is designed to
work with Uptane, the widely deployed solution addressing

9



the delivery problem. An alternative approach to Uptane as a
firmware over-the-air system is described by Mbakoyiannis et
al [19]. The research team focus on in-vehicle implementation
aspects not previously delineated by Uptane to propose a
prototype system. Their system does not address real world
deployability of software supply chain security solutions as
Scudo does. Plappert et al [26] also create an on-vehicle design
for software updates, using TPMs as a trust anchor in a way
that is compatible with Uptane and other automotive software
supply chain standards.

Several other research teams have also proposed software
supply chain solutions for the automotive sector. Kent et.
al. [12] propose a PKI Infrastructure Scheme for verifying soft-
ware updates that allows ECUs to verify signatures from both
suppliers and OEMs. UniSUF [34], developed by Strandberg
et al., securely encapsulates multiple signing and encryption
keys and all data needed for a complete software update into
one single file. The authors claim that this Vehicle Unique
Update Package (VUUP) can provide updates using a number
of delivery systems. Metadata for these software supply chain
solutions could be distributed by a SOTA system using Scudo.

X. CONCLUSION AND FUTURE WORK

This paper examines the practicalities and pitfalls of de-
ploying software supply chain security solutions in the auto-
motive space. Although combining SOTA and software supply
chain security systems may seem straightforward, our analysis
has shown there are many potential issues that may arise if
this is not carefully done.

To show an exemplar of this process, this paper presents
Scudo, a solution that integrates Uptane and in-toto. Scudo
carefully considers how to establish a root trust for in-toto
through Uptane metadata in a way that provides security and
flexibility. Scudo also demonstrates that software supply chain
verification may actually be quite done efficiently and that only
a negligible amount of added information needs to be sent to
vehicles. Scudo’s design is shown to make it more resilient
and adaptable than Uptane or in-toto alone.

Finally, our collaboration with Toradex demonstrates that
using Scudo is efficient in practice and practical for existing
Uptane users. Scudo adds a one-time cost of about 4 seconds
across all repository verifiers, and is able to eliminate the need
for costly on-device verification through the use of multiple
repository verifiers. Scudo also imposes a minimal metadata
overhead that comprises 0.504% of the data devices need
to fetch during an update and a per-image verification time
overhead of 0.21 seconds.

Future work could build on the work described here to
assess how in-toto can be configured so as to reduce the
overhead at repositories. While attestations can be optimized
in several ways, we must carefully study their impact on
the security guarantees as some optimizations may result in
weaker policies. In addition, research could study how Scudo’s
properties change with the constraints in other deployments
such as the cloud and open source community repositories.

XI. ACKNOWLEDGEMENTS

We would like to thank Toradex for their support in this
work, especially Brandon Shibley, Jon Oster, and Samuel

Bissig. In addition, we are grateful to Lois Anne DeLong and
Trishank Karthik Kuppusamy for their help and feedback on
Scudo.

This material is based upon work supported by the National
Science Foundation under Grant No. 2054692. Any opinions,
findings, conclusions, or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
those of the NSF. This work was also supported by a GAANN
Fellowship awarded by the US Department of Education under
grant P200A210096.

REFERENCES

[1] J. R. Biden, “Executive order on improving the nation’s cybersecurity,”
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/
05/12/executive-order-on-improving-the-nations-cybersecurity/, 2021.

[2] “BitBake,” https://docs.yoctoproject.org/bitbake.html.
[3] “CNCF: Catalog of supply chain compromises,” https://github.com/

cncf/tag-security/tree/main/supply-chain-security/compromises.
[4] Codecov, “Bash uploader security update,” https://about.codecov.io/

security-update/, 2021.
[5] “Dsa-1571-1 openssl – predictable random number generator,” ”https:

//www.debian.org/security/2008/dsa-1571”, 2008.
[6] FireEye, “Highly evasive attacker leverages solarwinds supply chain

to compromise multiple global victims with SUNBURST backdoor,”
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-
leverages-solarwinds-supply-chain-compromises-with-sunburst-
backdoor.html, 2020.

[7] D. Geer, B. Tozer, and J. S. Meyers, “For good measure: Counting
broken links: A quant’s view of software supply chain security,” in
USENIX; Login:, Vol. 45, no. 4, 2020.

[8] Grafeas Authors, “Grafeas,” https://grafeas.io/.
[9] M. Hanley, “We updated our rsa ssh host key,” ”https://github.blog/

2023-03-23-we-updated-our-rsa-ssh-host-key/”.
[10] “in-toto specification,” https://github.com/in-toto/docs/blob/master/in-

toto-spec.md.
[11] Infosecurity Magazine, “Flame attackers used cryptographic colli-

sion attack,” https://www.infosecurity-magazine.com/news/more-from-
microsoft-flame-attackers-used/, 2012.

[12] D. Kent, B. Cheng, and J. Siegel, “Assuring Vehicle Update Integrity
Using Asymmetric Public Key Infrastructure (PKI) and Public Key
Cryptography (PKC),” SAE International Journal of Transportation
Cybersecurity and Privacy, vol. 2, 08 2020.

[13] kpcyrd, “Rebuilderd,” https://github.com/kpcyrd/rebuilderd.
[14] T. Kuppusamy, A. Brown, S. Awwad, D. McCoy, R. Bielawski, C. Mott,

S. Lauzon, A. Weimerskirch, and J. Cappos, “Uptane: Securing Soft-
ware Updates for Automobiles,” Escar Europe, vol. 14, 2016.

[15] T. Kuppusamy, L. DeLong, and J. Cappos, “Securing software updates
for automotives using uptane,” Usenix login, vol. 42, pp. 63–67, 2017.

[16] T. K. Kuppusamy, V. Diaz, and J. Cappos, “Mercury: Bandwidth-
effective prevention of rollback attacks against community repositories,”
in Proceedings of the 2017 USENIX Conference on Usenix Annual Tech-
nical Conference, ser. USENIX ATC ’17. USA: USENIX Association,
2017, p. 673–688.

[17] T. K. Kuppusamy, S. Torres-Arias, V. Diaz, and J. Cappos, “Diplomat:
Using delegations to protect community repositories,” in 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
16). Santa Clara, CA: USENIX Association, Mar. 2016, pp. 567–
581. [Online]. Available: https://www.usenix.org/conference/nsdi16/
technical-sessions/presentation/kuppusamy

[18] Kuppusamy, Trishank and DeLong, Lois and Cappos, Justin, “Uptane:
Security and Customizability of Software Updates for Vehicles,” IEEE
Vehicular Technology Magazine, 02 2018.

[19] D. Mbakoyiannis, O. Tomoutzoglou, and G. Kornaros, “Secure
over-the-air firmware updating for automotive electronic control units,”
in Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, ser. SAC ’19. New York, NY, USA: Association

10

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://docs.yoctoproject.org/bitbake.html
https://github.com/cncf/tag-security/tree/main/supply-chain-security/compromises
https://github.com/cncf/tag-security/tree/main/supply-chain-security/compromises
https://about.codecov.io/security-update/
https://about.codecov.io/security-update/
https://www.debian.org/security/2008/dsa-1571
https://www.debian.org/security/2008/dsa-1571
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://grafeas.io/
https://github.blog/2023-03-23-we-updated-our-rsa-ssh-host-key/
https://github.blog/2023-03-23-we-updated-our-rsa-ssh-host-key/
https://github.com/in-toto/docs/blob/master/in-toto-spec.md
https://github.com/in-toto/docs/blob/master/in-toto-spec.md
https://www.infosecurity-magazine.com/news/more-from-microsoft-flame-attackers-used/
https://www.infosecurity-magazine.com/news/more-from-microsoft-flame-attackers-used/
https://github.com/kpcyrd/rebuilderd
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/kuppusamy
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/kuppusamy


for Computing Machinery, 2019, pp. 174–181. [Online]. Available:
https://doi.org/10.1145/3297280.3297299

[20] Z. Newman, J. S. Meyers, and S. Torres-Arias, “Sigstore: Software
signing for everybody,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’22.
New York, NY, USA: Association for Computing Machinery, 2022,
p. 2353–2367. [Online]. Available: https://doi.org/10.1145/3548606.
3560596

[21] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife
collection: A review of open source software supply chain attacks,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2020, pp. 23–43.

[22] C. Okafor, T. R. Schorlemmer, S. Torres-Arias, and J. C. Davis,
“SoK: Analysis of Software Supply Chain Security by Establishing
Secure Design Properties,” in Proceedings of the 2022 ACM Workshop
on Software Supply Chain Offensive Research and Ecosystem
Defenses, ser. SCORED’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 15–24. [Online]. Available:
https://doi.org/10.1145/3560835.3564556

[23] OpenEmbedded, “Openembedded core,” https://www.openembedded.
org/wiki/OpenEmbedded-Core.

[24] OWASP Foundation, “CycloneDx,” https://cyclonedx.org/, 2021.
[25] E. Parliament, “Eu cyber-resilience act,” https://www.europarl.europa.

eu/RegData/etudes/BRIE/2022/739259/EPRS BRI(2022)739259 EN.
pdf.

[26] C. Plappert and A. Fuchs, “Secure and lightweight ecu attestations for
resilient over-the-air updates in connected vehicles,” in Proceedings
of the 39th Annual Computer Security Applications Conference, ser.
ACSAC ’23. New York, NY, USA: Association for Computing
Machinery, 2023, p. 283–297. [Online]. Available: https://doi.org/10.
1145/3627106.3627202

[27] N. Popov, “Changes to git commit workflow,” https://news-web.php.net/
php.internals/113838, 2021.

[28] “Reproducible builds,” https://reproducible-builds.org/.
[29] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine, “Survivable

key compromise in software update systems,” in Proceedings of the 17th
ACM conference on Computer and communications security. ACM,
2010, pp. 61–72.

[30] “Supply chain levels for software artifacts,” https://slsa.dev/.
[31] “SLSA Verifier,” https://github.com/slsa-framework/slsa-verifier.
[32] Sonatype, “State of the software supply chain,” https://www.sonatype.

com/resources/2023-software-supply-chain-report, 2022.
[33] SPDX Workgroup, “The Software Package Data Exchange,” https://

spdx.dev/, The Linux Foundation, Tech. Rep., 2021.
[34] K. Strandberg, D. K. Oka, and T. Olovsson, “Unisuf: a unified software

update framework for vehicles utilizing isolation techniques and trusted
execution environments,” in 19th escar Europe : The World’s Lead-
ing Automotive Cyber Security Conference (Konferenzveröffentlichung),
2021.

[35] S. Torres-Arias, H. Afzali, T. K. Kuppusamy, R. Curtmola, and
J. Cappos, “in-toto: Providing farm-to-table guarantees for bits and
bytes,” in 28th USENIX Security Symposium (USENIX Security
19). Santa Clara, CA: USENIX Association, Aug. 2019, pp.
1393–1410. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/torres-arias

[36] UNECE-29, “Concerning the adoption of harmonized technical united
nations regulations for wheeled vehicles, equipment and parts which
can be fitted and/or be used on wheeled vehicles and the conditions
for reciprocal recognition of approvals granted on the basis of these
united nations regulations, addendum 155 – UN regulation no. 156,”
https://unece.org/sites/default/files/2021-03/R156e.pdf.

[37] Uptane Community, “Uptane series 2.0.0,” Joint Development
Foundation Projects, LLC, Standard, 2022. [Online]. Available:
https://uptane.github.io/papers/uptane-standard.2.0.0.html

[38] D. Waltermire, “Software Identification (SWID) Tagging,” https://
csrc.nist.gov/projects/Software-Identification-SWID, NIST, Tech. Rep.,
2022.

[39] “Yocto Project,” https://www.yoctoproject.org/.

11

https://doi.org/10.1145/3297280.3297299
https://doi.org/10.1145/3548606.3560596
https://doi.org/10.1145/3548606.3560596
https://doi.org/10.1145/3560835.3564556
https://www.openembedded.org/wiki/ OpenEmbedded-Core
https://www.openembedded.org/wiki/ OpenEmbedded-Core
https://cyclonedx.org/
https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/739259/EPRS_BRI(2022)739259_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/739259/EPRS_BRI(2022)739259_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/739259/EPRS_BRI(2022)739259_EN.pdf
https://doi.org/10.1145/3627106.3627202
https://doi.org/10.1145/3627106.3627202
https://news-web.php.net/php.internals/113838
https://news-web.php.net/php.internals/113838
https://reproducible-builds.org/
https://slsa.dev/
https://github.com/slsa-framework/slsa-verifier
https://www.sonatype.com/resources/2023-software-supply-chain-report
https://www.sonatype.com/resources/2023-software-supply-chain-report
https://spdx.dev/
https://spdx.dev/
https://www.usenix.org/conference/usenixsecurity19/presentation/torres-arias
https://www.usenix.org/conference/usenixsecurity19/presentation/torres-arias
https://unece.org/sites/default/files/2021-03/R156e.pdf
https://uptane.github.io/papers/uptane-standard.2.0.0.html
https://csrc.nist.gov/projects/Software-Identification-SWID
https://csrc.nist.gov/projects/Software-Identification-SWID
https://www.yoctoproject.org/

	Introduction
	Understanding Software Supply Chain Security
	Software Supply Chain Security systems
	SOTA systems
	Vehicle

	Threat Model
	Scudo: Composing SOTA and Software Supply Chain Technologies
	Software supply chain root of trust
	Verification
	Software supply chain policy
	Summary

	Implementing Scudo
	Components
	Uptane
	in-toto
	Implementing our model using in-toto and Uptane

	Establishing the root of trust and policy for in-toto using Uptane
	Verifying in-toto metadata at the repository
	Verifying supply chain integrity at the vehicle

	Security Analysis
	Repository owners
	Software supply chain owners
	Software supply chain functionaries
	Artifact uploader
	Verifiers

	Collaboration with Toradex
	Metadata Overhead
	What proportion of transmitted data is the in-toto and Uptane metadata?
	What is the runtime overhead of in-toto verification?

	Related Work
	Conclusion and Future Work
	Acknowledgements
	References

