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Nataša Trkulja
Ulm University, Institute of

Distributed Systems
natasa.trkulja@uni-ulm.de

Anderson Ramon Ferraz de Lucena
DENSO AUTOMOTIVE Deutschland GmbH

a.ferraz@eu.denso.com

Alexander Kiening
DENSO AUTOMOTIVE Deutschland GmbH

a.kiening@eu.denso.com

Ana Petrovska
Huawei Technologies

ana.petrovska@huawei.com

Frank Kargl
Ulm University, Institute of

Distributed Systems
frank.kargl@uni-ulm.de

Abstract—Future vehicles will run safety-critical applications
that rely on data from entities within and outside the vehicle.
Malicious manipulation of this data can lead to safety incidents.
In our work, we propose a Trust Assessment Framework (TAF)
that allows a component in a vehicle to assess whether it can
trust the provided data. Based on a logic framework called
Subjective Logic, the TAF determines a trust opinion for all
components involved in processing or forwarding a data item.
One particular challenge in this approach is the appropriate
quantification of trust. To this end, we propose to derive trust
opinions for electronic control units (ECUs) in an in-vehicle
network based on the security controls implemented in the ECU,
such as secure boot. We apply a Threat Analysis and Risk
Assessment (TARA) to assess security controls at design time and
use run time information to calculate associated trust opinions.
The feasibility of the proposed concept is showcased using an
in-vehicle application with two different scenarios. Based on the
initial results presented in this paper, we see an indication that a
trust assessment based on quantifying security controls represents
a reasonable approach to provide trust opinions for a TAF.

I. INTRODUCTION

Future vehicles will use data from various sensors within the
vehicle, such as a global navigation satellite system (GNSS)
sensor or from neighboring vehicles via Vehicle-to-Vehicle
communication. An application running in a vehicle and using
its position from local sensors and the positions of surrounding
vehicles is cooperative adaptive cruise control (CACC). CACC
uses this data to decide whether the ego vehicle should accel-
erate or decelerate. If the input data of the CACC application
is compromised, safety-critical incidents can occur [9].

Modern vehicles are complex networks of electronic control
units (ECUs), which creates complex information flows. How-
ever, having complex information flows inside vehicles and
even more complex ones in cooperative systems makes this
data vulnerable to tampering by malicious entities. In today’s

systems, there exist already many mechanisms to detect and
protect against compromised components or data items, e.g.,
an intrusion detection system. These mechanisms often work
independently of each other in different components and can
not detect a full range of attacks. Furthermore, even when
the detection mechanisms detect malicious activities, it is
challenging to assess in which degree this impacts the integrity
of the components or data items and what appropriate reaction
strategies should be. In the worst case, the system or appli-
cation could be shut down due to the detection of malicious
activities, even thought this is not necessary. Modelling the
trust dependencies between components involved in the data
flow of a data item taking into account all existing detection
and protection mechanisms in these components can help to
assess the trustworthiness of the data item in a better way
than is done today. We therefore suggest to implement a trust
assessment framework (TAF) inside vehicles to enable this
assessment. This framework will be built on top of Subjective
Logic and subjective trust networks. The TAF assesses the
trustworthiness of all ECUs in the data flow chain of a data
item to decide whether this data item is trustworthy w.r.t. its
integrity not being compromised [16].

A core element, but also an open research question, is
how to collect and quantify evidence on trustworthiness. One
source can be knowledge about the existence of security con-
trols to protect integrity of data, e.g., the integrity protection of
data on a vehicle bus with MACsec. Depending on the security
controls implemented in the ECU, there is a different risk of
the ECU being compromised. Therefore, security controls are
a mandatory source to assess the trustworthiness of an ECU.
Knowledge about the applied security controls can come from
Threat Analysis and Risk Assessments (TARA), which are
conducted anyway at design time for an ISO 21434-compliant
vehicle design, as well as from additional run time checks.
This paper investigates how such data can be leveraged by a
TAF to assess trustworthiness of an ECU and, based on that,
the trustworthiness of received input data.

Problem: Knowledge about applied security controls in an
ECU can be used to assess the trustworthiness of that ECU.
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For this purpose, a quantification mechanism is necessary that
takes evidence about applied security controls into account.

Solution: We use a TARA to assess security controls
relevant to an ECU to protect the integrity of a data item. The
TARA-based information created at design time and additional
validation checks on the security controls conducted at run
time are used to assess the trustworthiness of an ECU.

Contribution: We describe an approach to quantify trust-
worthiness of an ECU based on the applied security controls.
Furthermore, we showcase the feasibility of this approach for
an in-vehicle application in two different scenarios.

II. RELATED WORK

There are numerous security mechanisms for in-vehicle
networks. MACsec [4], for example, is a security protocol
providing confidentiality and integrity for in-vehicle networks.
TLS provides end-to-end encryption in in-vehicle networks for
applications running in two different ECUs [18]. A hardware
security module (HSM) integrated into an ECU can manage
and store cryptographic keys and execute cryptographic func-
tions without the application having access to the keys [2].
Secure boot can be used for in-vehicle operating systems,
which checks the integrity of the software components relevant
to the boot process [12]. Control-flow integrity can be used to
protect applications. This is a run time operational assurance
mechanism that detects operations modified by an attacker [3].

The aforementioned, but also further security controls can
be taken into account for trust assessment in in-vehicle net-
works. There exist already works on trust assessment in the
V2X domain. For example, Garlichs et al. [8] propose a
trust assessment for vehicle platooning. They create a trust
opinion on a vehicle by comparing the actual behavior of
the sender with the information received from the sender.
Based on the trust of the host vehicle on its predecessor in
the platoon, the host vehicle adjusts its safety distance. Van
der Heijden et al. [17] and Diezel et al. [6] used Subjective
Logic to fuse the output of several misbehavior detectors of
a misbehavior detection system. In this way, they were able
to integrate an arbitrary number of misbehavior detectors into
their system to enhance detection accuracy. Müller et al. [14]
also used Subjective Logic to create trust opinions based on
the output of misbehavior detectors. Here, consistency checks
of received messages are used to detect inconsistent messages.
If inconsistent messages are detected, the trust opinions of the
corresponding nodes are adjusted.

In addition to the V2X domain, there are further prior
efforts in various domains that have utilized logic and formal,
mathematical frameworks for the purpose of trust computation.
Firoozi et al. [7] propose two novel in-network data processing
schemes based on Subjective Logic for trust management us-
ing reputation based systems in distributed wireless sensor net-
works. Their aim was building a technique that can eliminate
or reduce the redundant information in the large volumes of
sensed data in the present-day wireless sensor networks, which
in return reduces resource consumption. Similarly, Renubala
and Dhanalakshmi in [15], propose a fuzzy logic-based trust

evaluation approach in order to obtain secured routing in
wireless networks. The authors argue that the existing trust-
aware routing protocols use long-established cryptographic
techniques that no longer suffice in tackling serious security
problems in the state of the practice. Lastly, Akhuseyinoglu
et al. [1] present a trust management framework that au-
tomatically computes the trust of “things” as part of IoT
services. Their solution uses Multi-Attribute Decision Making
and Subjective Logic to take into account the uncertainties in
the trust values.

As presented from the previous works, trust assessment
based on the Subjective Logic Framework has already proven
its potential, especially in conjunction with misbehavior de-
tection and reputation based systems. However, many other
possible sources of trust evidence have not yet been explored.
Therefore, in this paper, we analyze a further source of trust
evidence - the security controls implemented in the system.

III. BACKGROUND

As our approach derives trust evidence from a TARA for
trust assessment, we first introduce some basics.

A. Threat Analysis and Risk Assessment (TARA)

The ISO 21434 standard contains a method to identify and
assess threats and risks of electronic systems in road vehicles,
called TARA. In Figure 1, we provide an overview of the
TARA modules [10]. The item definition (1) includes, among
others, the description of the function and the operational en-
vironment of the analyzed item. Based on the item definition,
assets are identified (2) that could lead to a damage scenario
if a cybersecurity property gets compromised. For each asset,
threat scenarios are determined (3) that would threaten the
cybersecurity properties of the asset. For each threat scenario
and corresponding damage scenario, the impact is rated (4).
In addition, the steps to realize a threat scenario (5) and the
attack feasibility (6) to conduct these steps are identified. For
each threat scenario, a risk is determined (7), and a risk value
is calculated based on the determined feasibility and impact
of the threat scenario. Finally, a decision is made on the
treatment of the identified risks (8) [10]. For the significant
risks that require treatment, security goals are defined (9),
which are concept-level cybersecurity requirements. Based on
that, suitable security controls are determined (10). Note that
(9) and (10) are not part of the TARA process. The derived
security controls are integrated into the item definition. Then,
a second iteration of the TARA can be conducted to analyze
whether the foreseen security controls reduce the risk levels.
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Fig. 1. High-level overview of the TARA process, updated from [13].
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B. Subjective Logic

Subjective Logic (SL) is a mathematical logical reasoning
framework [11] that can consider the degree of uncertainty of
propositions. This uncertainty is represented in SL as part of
a subjective opinion.

a) Binomial Subjective Opinion: A subjective opinion
ωA
X indicates that the proposition to which the opinion applies

is X , and the agent who holds the opinion is A. In this
paper, we are using binomial subjective opinions where the
propositions can, for example, only be true or false. These
opinions are defined as ωA

x = (bAX , dAX , uA
X , aAX), where bAX is

the belief mass, dAX is the disbelief mass, uA
X is the uncertainty

mass, and aAX is the base rate. Here, the following equation
holds: bAX +dAX +uA

X = 1. Such a binomial subjective opinion
is referred to as a trust opinion in the remainder of the paper.

b) Subjective Trust Networks: The SL framework intro-
duces the concept of subjective trust networks (STN). An
STN is a directed graph that represents trust relationships
from agents via other agents to target entities, where each
trust relationship is expressed as a trust opinion [11]. We
show a simple STN on the left side of Figure 2. An STN
with additional metadata necessary for the trust assessment is
referred to as a Trust Model in the remainder of the paper [16].

SL knows several operators useful for evaluating an STN. In
this paper, however, we restrict ourselves to the use of the trust
discounting operator [11]. Trust discounting is the process of
deriving trust from transitive trust paths. An example of this
is shown on the right-hand side of Figure 2, where the trust
opinions ωA

B and ωB
X are discounted to ω

[A;B]
X .

A B X
𝜔!" 𝜔#! A X

𝜔#
[";!]

= 𝜔!" ⨂𝜔#!

Fig. 2. Subjective trust network (left) and discounted trust opinion (right).

IV. RUNNING EXAMPLE

This section introduces a running example based on which
the trust assessment is illustrated. Figure 3 shows an in-vehicle
network. All components in this network are ECUs that can
create or process data. The figure also shows the data flow of
the position data from the GNSS ECU to the vehicle computer
(VC). We assume that a CACC application is running in the
VC that wants to assess the trustworthiness of the position
data originally provided by the GNSS ECU but forwarded
by multiple intermediary entities. Throughout the rest of the
paper, we will refer to the position data just as position.

Vehicle 
Computer

Zonal 
Controller 1

GNSS

Lidar

Zonal 
Controller 2

Acceler-
ation

Camera

Fig. 3. In-vehicle network with the data-flow of position data.

Based on the in-vehicle network, a Trust Model can be
derived. In the Trust Model, all data items, i.e., the position and

the ECUs creating and forwarding the position, are represented
as nodes. As shown in Figure 4, the Trust Model has three trust
relationships in the trust chain (ωV C

ZC1, ωZC1
GNSS , and ωGNSS

Pos ).
We assign a trust opinion ω to each trust relationship as
part of the Trust Model. In this paper, we focus on how the
vehicle computer (VC) can form a trust opinion on the zonal
controller 1 (ZC1) by using knowledge about security controls
implemented in ZC1. The same approach could be used for
the other trust relationships between ECU nodes in the Trust
Model. However, for trust relationships involving data items,
other sources of evidence are necessary.

Pos
𝜔!"#$" 𝜔%&''!"# 𝜔()*%&''

Vehicle 
Computer

Zonal 
Controller 1 GNSS

𝜔()*$"

Fig. 4. Trust Model derived from the in-vehicle network.

To assess the trustworthiness from the VC to the ZC1, the
VC analyzes design time and run time information about the
security controls in ZC1 to calculate the trust opinion ωV C

ZC1.
This opinion refers to the proposition that the integrity of the
position forwarded by ZC1 was not compromised in ZC1. The
final goal is to create the opinion ωV C

Pos that the VC has on the
position even though the VC does not observe the position
directly (i.e., it does not have a direct relationship with the
position). This is done by discounting the calculated opinions
on the three trust relationships in the trust chain (ωV C

Pos =
ωV C
ZC1 ⊗ ωZC1

GNSS ⊗ ωGNSS
Pos ). ωV C

Pos is then compared with a
threshold value to determine if the position is trusted.

V. ASSESSING TRUST BASED ON SECURITY CONTROLS

Depending on the security controls implemented in the
ECU, there is a different level of risk of the ECU or the data
provided by this ECU being compromised, as security controls
can prevent but also detect malicious activities. Therefore,
security controls are an essential source of evidence to assess
the trustworthiness of an ECU. For this purpose, we describe
an approach to quantify trust based on the implemented
security controls, which is summarized in Figure 5. In this
approach, the system knowledge is used at design time to
determine the risk levels in the ECU. Based on these risk levels
and the evidence collected at run time about implemented
controls, the trust opinion for the ECU is calculated. The single
steps of this approach are described in the following.

A. Security Control and Risk Level Determination (Step 1)

In the first step of our approach, a TARA is conducted
at design time for the ECU for which the trust opinion
is determined, ZC1 in our example. All components within
ZC1 that process the position and transmit it to the VC are
relevant assets analyzed by the TARA. As we focus here on
the integrity of the position, the relevant assets are analyzed
regarding the integrity property. For the relevant assets, risks
are derived. The ISO 21434 standard proposes risk levels
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Fig. 5. Overview of the trust assessment approach based on the output of the TARA.

between one and five [10], while we use levels between zero
and four in this paper as this simplifies further calculations.

Based on the identified risks, security controls are deter-
mined and integrated into the item definition (see steps (1), (9),
and (10) in Figure 1). We distinguish here between controls
whose existence is only known from design time because they
can not be validated during run time (design time controls)
and controls that can be validated during run time (run time
controls). For run time controls, evidence is collected from
the ECU, which is assessed based on these security controls.
This could, for example, be realized with Direct Anonymous
Attestation with Attributes (DAA-A) [5]. However, the details
are out of scope of this paper. We assume that positive or
negative evidence can be provided. Positive evidence shows
that the control is active and in a valid state, i.e., it has been
configured correctly, is working as expected, and has not been
compromised. Negative evidence shows that a security control
is not active or is not in a valid state.

The integration of security controls and the analysis of risk
levels will be done in two steps. In the first step, only design
time controls are added to the item definition. These controls
are either selected in the TARA process based on the identified
risks or are already present in the ECU, as ECUs usually
already have some controls implemented in their default setup.
Based on all selected design time controls, one TARA iteration
is conducted, and a risk level is calculated for each risk.

In the second step, run time controls are analyzed. If a run
time control is selected in the TARA process, this control is
added to the item definition, and a further TARA iteration is
done to determine the risk level when this control is applied.
Furthermore, a TARA iteration is conducted for each run time
control that is already included in the default setup of the ECU.
If these security controls have an impact on the risk levels of
the identified risks, these controls are also included in the list
of relevant security controls and will be validated during run
time. In each TARA iteration, only the design time controls
and the currently analyzed run time control are included in
the item definition. Thus, each run time control is analyzed in
isolation to determine its effect.

Running Example: Table I shows the identified risks (rows)
and the corresponding security controls (columns). The first
column represents the first step, in which the design time
controls are taken into account. The other columns represent
the run time controls. These security controls are described in
Section II. The values in the table are the corresponding risk
levels. The last row shows the sum of all risk levels for the

case that the respective control is implemented. We note that
no actual TARA was conducted to create the table but that
the risks and corresponding risk levels are just examples for
illustration purposes.

TABLE I
RISKS AND RISK LEVELS FOR THE TRUST RELATIONSHIP TO ZC1.

Risk

Original Risk

MACsec: C1

Secure Boot: C2

C.-F. Integrity: C3

TLS: C4

HSM: C5

R1 (Compromised Application) 3 2 1 0 2 3

R2 (Compromised OS) 3 2 1 3 2 3

R3 (MitM external comm.) 4 1 4 4 1 4

R4 (Compromise Network Firmware) 2 1 2 2 1 2

R5 (MitM internal comm.) 1 1 1 1 0 1

R6 (Impersonation attack) 4 2 4 4 2 1

R7 (Physical attack on RAM) 1 1 1 1 1 1

Total Risk 18 10 14 15 9 15

B. Weight Calculation (Step 2)

To assess the trustworthiness of an ECU based on security
controls, in the second step the importance of the run time
controls is assessed. For this purpose, weights are assigned
to each control. These weights are values between zero and
one and are used to determine how much the trust opinion
will be adjusted depending on the run time evidence provided
for this control. The weight for each security control is
determined in three steps: First, the risk levels of all identified
risks are summed up when only the design time controls are
applied. Second, the associated risk levels of all identified risks
are summed up when the corresponding run time control is
applied. Third, a weight is calculated based on the difference
between these two values. Depending on how many risks
the corresponding run time control affects and how much
the risk levels are reduced, the more the control protects
the system against identified risks. Thus, the more the risk
levels in all risks are reduced, the higher is the weight for
the control. Equation 1 shows the calculation of the weights.
Here C represents the set of all security controls. The variable
sumRisksCx is the sum of all risk levels associated with the
implementation of Cx, e.g., sumRisksC1 is the sum of risk
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levels if security control one is applied. sumRisks∅ is the
sum of risk levels if no security controls are applied.

WCx
=

sumRisks∅−sumRisksCX∑|C|
N=1(sumRisks∅−sumRisksCN

)
(1)

Running Example: The weight calculation for the security
control MACsec and the weights for the other controls are
shown below.

WC1
=

18− 10

(18− 10) + (18− 14) + · · ·
=

8

8 + 4 + 3 + 9 + 3
= 0.30

WC2
= 0.15 , WC3

= 0.11 , WC4
= 0.33 , WC5

= 0.11

C. Design Time Trust Opinion Calculation (Step 3)

Based on the design time information (DTI), i.e., the deter-
mined risk levels and the relevant run time controls, ωDTI is
calculated. This opinion is used as a starting point for trust
assessment based on run time information and represents the
minimal belief and minimal disbelief in the system based on
DTI. This trust opinion is necessary because even if all design
time and run time controls are applied, there is still a remaining
risk and therefore a non-zero disbelief in the system. On the
other hand, the risk levels are already low in some systems
because the design time controls already reduce the risks.
So even if no positive evidence for the run time controls is
provided during run time, there could still be a belief in the
system. These two aspects are reflected in ωDTI .

a) DTI-based belief: The DTI-based belief represents the
minimum belief in the system. For this purpose, a worst-case
analysis is conducted by calculating the maximum possible
disbelief dmax. We assume full knowledge about all controls
(none of the run time controls are applied) so that the uncer-
tainty is zero. As belief, disbelief, and uncertainty add up to
one, the DTI-based belief can be calculated with Equation 2.

To calculate dmax, the risk levels are analyzed when only
the design time controls are applied, as this is known from
design time, and all run time controls provide negative evi-
dence. Here, a combination of the maximum and the average
risk levels of all risks is used. Using only the maximum risk
level has the disadvantage that risks with a high risk level
have a high impact on dmax. This is problematic, as very few
high level risks do not represent the security situation of the
overall system. Therefore, the highest risk level should only
impact dmax in a limited way. However, using only the average
risk levels is also problematic. If there are many risks with a
low risk level, this will result in a low average risk level and
a low dmax value, even though there are several risks with
a high risk level. Therefore, we combine both approaches.
Based on the maximum risk level, the first dmax value is
calculated. For example, when the maximum risk level is 4,
this results in dmax = 0.75, as the dmax value is set to increase
in 0.25 steps (see Equation 3). Then, a second dmax value
is calculated, which increases linearly with the average risk
level. For example, if the average risk level is 2, the second
dmax value will be 0.5, as the average risk level is divided by
the scaling factor maxRisk = 4. From these two values, the
maximum value is selected.

b) DTI-based disbelief: The DTI-based disbelief repre-
sents the minimum disbelief in the system. For this purpose,
a best-case analysis is conducted. Here, the risk levels are
analyzed for the case that the design time controls are applied
and positive evidence was provided for all run time controls.
The approach is the same as for the calculation of the
maximum disbelief, with the difference that here the risk levels
are taken into account for the case that all run time controls
are applied. This approach is represented in Equation 4.

Based on bDTI and dDTI , the DTI-based uncertainty uDTI

is calculated as shown in Equation 5.

bDTI = 1− dmax (2)

dmax = max{0.25× (maxRiskNoControls − 1),

avgRiskNoControls/maxRisk}
(3)

dDTI = max{0.25× (maxRiskAllControls − 1),

avgRiskAllControls/maxRisk}
(4)

uDTI = 1− bDTI − dDTI (5)

Running Example: Based on the Equations 2, 3, 4, and
5, ωDTI can be calculated. Using the risk values in Table I
results in dmax = 0.75 and thus in bDTI = 0.25. Furthermore,
dDTI = 0.18 and uDTI = 0.57 can be calculated based on
the risk values. Based on ωDTI and run time evidence, ωV C

ZC1

is calculated. If negative evidence is provided for all run time
controls, there is still a belief of 0.25, but a disbelief of 0.57
will be added to dDTI . If positive evidence is provided for all
controls, the disbelief is still 0.18, while 0.57 belief is added.
This approach is described in more detail in the following.

D. Trust Opinion Calculation (Step 4 + 5)

The relevant run time controls, the weights for each control,
and ωDTI are determined at design time and stored in the Trust
Model so that the TAF can access them at run time.

Based on ωDTI and depending on if positive or negative
evidence is received for a control, either the belief or disbelief
will be increased, and the uncertainty will be decreased by
the same amount. How much the belief or disbelief will be
increased depends on the specified weight of the control and
uDTI (see Equation 6). uDTI is used in this equation as this
is the uncertainty of the ECU, which is reduced with received
evidence and thus knowledge about the ECU. For disbelief
and uncertainty, the same equation is used as for the belief, as
the value for these three attributes is the same. If no evidence
is provided for a security control, e.g., because it could not
be provided within the time requirements, neither belief nor
disbelief will change. This results in a higher uncertainty for
the final trust opinion as uDTI has a high uncertainty.

∆bCx = ∆dCx = ∆uCx = WCx × uDTI (6)

Running Example: We assume that positive evidence was
provided for almost all run time controls. Negative evidence
was provided for control-flow integrity (C3) as this control
is not used in the corresponding application. Furthermore, no
evidence was provided for HSM (C5), so that we do not know
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if it is in a valid state. Based on the DTI-based trust opinion
and the calculated weights, we can derive the trust opinion
wV C

ZC1. The amount of belief/disbelief added by each control
is calculated with Equation 6 and is ∆bC1

= ∆uC1
= 0.17,

∆bC2
= ∆uC2

= 0.09, ∆dC3
= ∆uC3

= 0.06, and
∆bC4

= ∆uC4
= 0.19. The calculation of ωV C

ZC1 is visualized
in Figure 6 resulting in the opinion ωV C

ZC1 = (0.7, 0.24, 0.06).

ωstart

ωDTI

b(1)

u(1)

b(0)

d(1)

Design Time Inform.

d(0)

u(0)

C1: MACsec
C2: Secure Boot
C3: C.-F. Integrity
C4: TLS

ωC1

ωC2

ωC3

ω!"#$"

Fig. 6. Calculation of a trust opinion based on implemented security controls.

VI. PRELIMINARY DEMONSTRATION

To demonstrate the feasibility of our approach, we show
that the TAF derives a correct decision on whether the
received position is trustworthy based on the trust opinion
ωV C
ZC1 calculated with our approach. For this purpose, the

trust opinion ωV C
ZC1 is calculated for two scenarios: 1) sce-

nario where positive evidence is provided for most foreseen
run time controls in ZC1 and 2) scenario where negative
evidence is provided for many run time controls in ZC1.
For the other trust relationships in the running example, we
assume fixed trust opinions: ωZC1

GNSS = (0.9, 0.05, 0.05) and
ωGNSS
Pos = (1.0, 0.0, 0.0). For all trust opinions, a base rate is

assigned, i.e., the prior probability for a proposition in absence
of evidence. The base rate can, for example, be derived from
past observations and adjusted during run time [11]. We set the
base rate to a = 0.1 as we argue that the VC has only few past
observations on ZC1, e.g., because the CACC application and
thus the communication with ZC1 has only recently started.

Based on these three opinions, the TAF running in the
VC can calculate via the trust discounting operator the trust
opinion it has on the provided position (see ωV C

Pos in Figure
4). ωV C

Pos is compared with a threshold value to decide if the
position is trusted. The calculation of this threshold is out of
scope of this work. We set it to th = 0.6 for this paper.

a) Trustworthy Scenario: The first scenario and the cal-
culation of ωV C

ZC1 were already described in Section V-D. The
trust opinion from the VC to the position can be calculated
based on the three trust opinions in the trust chain.

ωV C
Pos = ωV C

ZC1 ⊗ ωZC1
GNSS ⊗ ωGNSS

Pos = (0.64, 0.0, 0.36)

Based on the projected probability provided by SL [11] and
the base rate a = 0.1, we can calculate a probabilistic value

out of ωV C
Pos, which is pV C

Pos = bV C
Pos + a × uV C

Pos = 0.68. This
value is compared with th = 0.6. As pV C

Pos is greater than th,
the position is considered trustworthy. Since positive evidence
has been provided for many foreseen run time controls, many
risks are mitigated. Thus, the risk that the position provided by
ZC1 is compromised appears to be low. Therefore, the position
provided by ZC1 is trusted.

b) Untrustworthy Scenario: In the second scenario, pos-
itive evidence was provided for MACsec. Negative evidence
was provided for secure boot, control-flow integrity, and HSM.
Furthermore, there is no evidence for TLS. Based on the pro-
vided evidence, the opinion ωV C

ZC1 = (0.42, 0.39, 0.19) is de-
rived. Using trust discounting results in ωV C

Pos = (0.4, 0.0, 0.6)
and the projected probability pV C

Pos = 0.46. As pV C
Pos is smaller

than th, the position is not considered trustworthy. Since
negative evidence has been provided for many foreseen run
time controls, many risks are not mitigated. Thus, the risk that
the position provided by ZC1 is compromised appears to be
high. Therefore, the position provided by ZC1 is not trusted.

VII. EMERGING RESEARCH DIRECTIONS

In this paper, we focus on one source of trust evidence
that uses design time information provided by a TARA and
run time information of security controls to calculate a trust
opinion for a trust relationship of a Trust Model. However,
in our proposed TAF, further sources of trust evidence could
be used to calculate a trust opinion for a trust relationship.
This could lead to more accurate trust opinions as more
evidence is used for the trust assessment. Such sources of trust
evidence can be all security processes and mechanisms, e.g.,
misbehavior detection systems, intrusion detection systems or
spoofing detection systems. For each source of trust evidence,
an approach is necessary that interprets and analyzes this
evidence and calculates a trust opinion based on it. The trust
opinions calculated based on the single sources of trust evi-
dence are then fused together by a fusion operator resulting in
the final trust opinion for the corresponding trust relationship.
Such fusion operators are provided by the Subjective Logic
Framework [11]. An overview of this approach is shown in
Figure 7.

Fusion Engine

SL Opinion 
Calculation 1

SL Opinion 
Calculation 2

ω1 ω2 ω3

ωTrust-Relationship

SL Opinion 
Calculation 3

Source of Trust 
Evidence 1

Source of Trust 
Evidence 2

Source of Trust 
Evidence 3

Fig. 7. Calculation of a trust opinion based on several sources of trust
evidence.

Although the described sources of trust evidence and our
solution for dynamically assessing trust that we propose as
part of this paper are mainly tailored for the automotive
domain, in theory we aim to build a generalizable TAF that
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can ideally be extended to use cases and application scenarios
from other domains. Examples for further domains are other
cyber-physical systems (e.g., robots), IoT, data security (e.g.,
Usage Control), networking domain (e.g., trusted path routing
and 6G), and many more.

VIII. DISCUSSION

Due to the ongoing nature of our presented work, there
are open aspects and limitations that will be discussed in this
section and elaborated on in future work. As described above,
the design time controls are taken into account to calculate
ωDTI . Here, it is assumed that the design time controls are
implemented and active in the ECU. However, as this can not
be validated for these controls during run time, this should be
reflected in the uncertainty of the final trust opinion. Thus, an
approach is necessary to quantify the uncertainty caused by
the lack of run time validation of design time controls.

To determine the weights for the run time controls, we
use a TARA to analyze each run time control individually.
However, in some situations, security controls when used in
combination might have a higher combined impact than their
individual contribution. Therefore, a potential solution would
be to conduct a TARA not only for each security control
individually, but also for combinations of security controls. In
this way, weights for combinations of security controls could
be tailored to this fact.

Another aspect is that some security controls can detect
attacks. Thus, they can provide output during run time that
they have detected malicious activities. An example of this is
control-flow integrity. This output can also be taken into ac-
count to assess trustworthiness. However, a separate approach
is probably required for this purpose. Even malicious activities
detected by one security control could lead to the case of full
disbelief because the output of the control makes it very likely
that the system or data item has been compromised.

IX. CONCLUSION

This paper describes an approach that uses applied security
controls as a source of evidence for a Trust Assessment
Framework (TAF). With this approach, the trustworthiness of
an electronic control unit (ECU) in an in-vehicle network is
assessed in the form of a trust opinion. For this purpose,
the Threat Analysis and Risk Assessment (TARA) is used at
design time to derive the foreseen security controls that should
be implemented in the ECU and the impact of these controls
on the identified risks. During run time, it is analyzed which
of the foreseen run time controls are in a valid state. Based
on this design time and run time information, a trust opinion
is calculated for the corresponding ECU. The trust opinion of
the ECU and the trust opinions of the other entities involved
in the data flow of a data item are then used to decide whether
the data item is trusted or not.

Based on the initial results presented in this paper, we see
an indication that our trust quantification approach based on
applied security controls represents a reasonable approach to
provide trust opinions for a TAF. Therefore, the described

approach and the open questions will be analyzed in future
works in the context of in-vehicle networks, but also beyond,
e.g., in V2X networks where a vehicle wants to assess the
trustworthiness of an external entity, such as another vehicle
or a road side unit.
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