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Abstract—Due to the cyber-physical nature of robotic vehicles,
security is especially crucial, as a compromised system not only
exposes privacy and information leakage risks, but also increases
the risk of harm in the physical world. As such, in this paper, we
explore the current vulnerability landscape of robotic vehicles
exposed to and thus remotely accessible by any party on the
public Internet. Focusing particularly on instances of the Robot
Operating System (ROS), a commonly used open-source robotic
software framework, we performed new Internet-wide scans of
the entire IPv4 address space, identifying, categorizing, and
analyzing the ROS-based systems we discovered. We further
performed the first measurement of ROS scanners in the wild
by setting up ROS honeypots, logging traffic, and analyzing the
traffic we received. We found over 190 ROS systems on average
being regularly exposed to the public Internet and discovered
new trends in the exposure of different types of robotic vehicles,
suggesting increasing concern regarding the cybersecurity of
today’s ROS-based robotic vehicle systems.

I. INTRODUCTION

The rapid development and deployment of robotic vehicles
throughout the world has necessitated the use of a program-
ming framework that developers can rely on to ease their
development life cycles. Robot Operating System (ROS) [21]
is one such framework that enables easy programming, dis-
tribution, and reuse of modules for developing robots for a
variety of purposes and has become the de facto choice of
many developers.

With the popularity of ROS for use in robotic vehicles and
the cyber-physical nature of such systems, an attack on ROS
can lead to physical damage, harm, and potentially loss of
life. Among many methods of attack, infiltrating vulnerable
ROS systems exposed to the Internet is one of the easiest
to perform while remaining immensely powerful [16]. Thus,
it is important to determine how common publicly exposed
ROS hosts are and understand the exact patterns attackers may
follow when attempting to gain control of them. DeMarinis et
al. [16] performed several scans for ROS hosts across the entire
IPv4 space and analyzed the data obtained from the scans,
including ROS topic and parameter names. These scans took
place nearly six years ago (2017 to 2018), which necessitates
revisiting this vulnerability landscape, especially considering
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the unfortunate rise of cyberattacks on robotic technologies
across countless environments including industry, transporta-
tion, and the home [14]. As discovered in our analysis of
our scan results, there is indeed a substantial increase in both
the number and variety of robotic vehicles found among ROS
instances exposed to the public.

When it comes to discovering and understanding Internet-
wide attack patterns of adversarial actors, past studies have
involved setting up intentionally exposed honeypots to attract
attackers so that researchers can investigate specific protocols
involved in such attacks, such as Secure Shell (SSH) [15], Re-
mote Desktop Protocol (RDP) [15], and Telnet [20]. However,
to our knowledge, so far there have not been any honeypot
studies performed specifically covering ROS-based systems.

To address these research gaps, we conduct a two-part
measurement study. In the first part, we conduct multiple scans
over the entire IPv4 network space to search for publicly
exposed ROS hosts, categorize their robotic system type and
characteristics, and discuss potential security implications. In
the second part, we immerse ourselves in the perspective of
ROS hosts that may fall victim to cyberattacks by developing
and deploying custom ROS honeypots. Specifically, we set
up ROS-based honeypots that log all received traffic and
analyze the packets to identify any adversarial and ROS-related
payloads. From these measurements, our key findings are:

• On average, we find that there are over 190 ROS hosts
exposed to the public Internet in each scan, which is a
nearly 60% increase compared to six years ago [16].
This substantial increase is likely attributable to a
new type of ROS device we discovered in our scans:
cleaning robots (e.g., ILIFE robot vacuum cleaners);
if we exclude them, the number of exposed ROS hosts
becomes more comparable to the prior work [16].

• Besides cleaning robots, we also observe significant
exposure of other types of robotic vehicles such as
drones and autonomous vehicles.

• We did find active ROS-targeted scanners, but so far
do not believe any of them have malicious intent. We
also captured various potentially malicious scans that
hit our honeypots but do not appear to be specifically
targeted towards ROS-based systems.

In summary, this work makes the following contributions:

• We revisit the vulnerability landscape of publicly
exposed ROS systems six years after the last reported
scans [16]. The results of our new scans show a signifi-
cant increase in the number of regularly exposed ROS
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hosts, largely attributable to the new and increasing
exposure of various types of robotic vehicles such as
cleaning robots, drones, and autonomous vehicles.

• Besides identifying exposed ROS hosts, we further
perform the first measurement of ROS scanners in the
wild by deploying custom ROS honeypots. We found
active ROS scanners and potential non-ROS-targeted
malicious scans, but have not yet seen evidence of
malicious scans specifically targeting ROS.

Code/data release. The code/data from this study are
released at our project website https://sites.google.com/v
iew/cav-sec/roboscan [12] to benefit future researchers.

II. BACKGROUND

A. Robotic Vehicles and ROS

Contrary to what its name may imply, the Robot Operating
System (ROS) [21] is not actually an operating system, but
rather an open source software framework and middleware that
facilitates the process of building robotic applications. ROS
provides a publisher-subscriber model of communication in
which nodes, or individual components of an application, send
data to topics, which provide a medium for other nodes to
receive this data [8]. Nodes can publish and subscribe to such
topics, and when a node publishes data to a particular topic,
that data will be received by every node that is subscribed
to that topic [8]. ROS currently has two major versions for
developers to use:

1) ROS 1: To manage communication between nodes,
ROS 1 [21] utilizes a master node running on port 11311 that
keeps track of all nodes in an application. A node that wishes
to subscribe to a topic sends a request to the master node
via the lightweight HTTP-based XML-RPC protocol, which in
response, provides the addresses of nodes that publish to that
topic. The original node would then send requests to those
nodes to communicate with them directly.

2) ROS 2: ROS 2 [19] takes a different approach from
ROS 1, doing away with both the master node architecture
and XML-RPC. It instead turns to a different service, the Data
Distribution Service (DDS), which acts as a middleware for
ROS 2 by providing the publish-subscribe functionality over
UDP using the Real Time Publish Subscribe protocol (RTPS).

B. Previous Works on Publicly Exposed ROS Systems

Previous works have shown that an exposed ROS appli-
cation can in fact be taken advantage of. Teixeira et al. [23]
exploited the fact that by default, ROS 1 does not provide any
encryption of the messages sent between nodes: by performing
a man-in-the-middle attack, they gained the ability to view and
modify the data packets being transmitted between them. This
has major implications, as nodes could fail after having their
packets intercepted and modified to produce errors such as
segmentation faults.

To discover how many ROS 1 applications are regularly
exposed to the Internet, DeMarinis et al. [16] ran three scans
between December 2017 to January 2018 across the entire
IPv4 internet space, each time observing over 100 instances
spanning 28 countries [16]. However, it has been nearly six
years since their last scan, and as the results of our new scans

Fig. 1: Overview of ROS 1 scanning procedure. 501 refers to the ex-
pected response of error code 501 Not Implemented to HTTP GET /
requests sent to the ROS 1 master port [16]. getSystemState and
getParamNames are the passive commands (§III-A) used to retrieve in-
formation from ROS 1 instances [16].

reveal, both the count and variety of robotic vehicle systems
observed have substantially increased since then.

Other researchers have taken a different approach to exam-
ining application security by deploying intentionally exposed
applications called “honeypots” to investigate patterns that
attackers may follow. Pa et al. [20] set up Internet of Things
(IoT) honeypots to examine Telnet-based attacks and discov-
ered that there are at least 4 varieties of DDoS attacks targeting
Telnet-enabled IoT devices. Meanwhile, Dang et al. [15] set
up honeypots to investigate protocols involved in attacks on
IoT applications, including SSH and RDP. However, to the
best of our knowledge, no such honeypot studies have been
performed for either ROS 1 or ROS 2. Thus, it is important to
determine whether any such patterns can be observed in ROS-
related attacks and be able to mitigate them if necessary.

III. INTERNET SCAN FOR ROS HOSTS

By default, ROS systems have no security mechanisms,
with the ROS master accepting connections and commands
from any and all sources [16, 21]. As such, exposure to the
public Internet opens up critical security vulnerabilities, with
attackers able to arbitrarily connect to open ROS hosts. Once
connected, attackers could then retrieve potentially sensitive
information and inject their own data into the system, including
sending commands that could compromise the integrity of the
system as well as the real-world space a physical robot may
inhabit [16]. Thus, as described in this section, we perform new
scans to revisit the vulnerability landscape of these publicly
exposed ROS systems six years since the last reported scans,
conducted by DeMarinis et al. [16].

A. Methodology and Setup

Scanning method. In an effort to minimize disturbances
to scanned networks and systems, we followed the general
scanning procedure described by DeMarinis et al. [16] in our
ROS host isolation and scanning pipeline. We used ZMap [17]
to asynchronously scan the IPv4 address space for hosts
listening and responding on TCP port 11311, and as out-
lined in Fig. 1, after an initial TCP SYN scan to identify
hosts responding on port 11311, we sent an HTTP GET /
request to the port, expecting a response of HTTP error
code 501 Not Implemented [16]. Upon receiving such
response, we retrieved non-sensitive host information using
passive commands that would not alter the state of the ROS
system in any way, allowing us to collect information on
topics, services, and parameters while minimizing the risk of
operational disruptions [16]. As with DeMarinis et al. [16], we
made conscious efforts to ensure no sensitive information (e.g.,
camera feed) was collected from ROS hosts in any capacity.

Result analysis method. As in DeMarinis et al. [16], the
data collected from each scan was stored in a local database.
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We first manually inspected the data (e.g., hostnames, topic
types, and topic, service, and parameter names) for com-
mon or meaningful identifiers that indicated different sensors,
capabilities, simulators, robot types, and libraries. Then, we
constructed queries using these identifiers to automate the
process of categorizing the scanned ROS instances. For each
ROS instance, we also sought to discern whether it was running
within a simulation or in a physical space, to account for
differences in potential security implications between instances
with capabilities likely in the physical world and those with
such capabilities likely only within simulations. Specifically,
we categorize a ROS instance as being a Simulation (as in
Tables I and II) if the instance shows evidence of running a
simulator (e.g., Gazebo, playback, or simtime) by identifying
topic and service names such as gazebo, implying use of
the Gazebo simulator [18]; services such as playback,
signaling the playing back of recorded data; or the parameter
use_sim_time with a value set to true, indicating use
of simulated time. Instances not showing any such evidence,
including those with use_sim_time set to false, revealing
the potential to run with simulated time inputs [16] but
indicating that such simulated inputs were not used at the time
of observance [3], are classified as Likely-Physical.

Scanner setup. In total, we performed three scans for
ROS 1 hosts, each performed approximately one month apart
between the months of September and November of 2023.
In line with DeMarinis et al. [16] and the guidelines and
best practices for Internet scans utilizing ZMap as laid out in
Durumeric et al. [17], we performed our scans from a network
within our institution, with each scan performed over the span
of multiple days to lower the amount of traffic received by
any single network at any given time. Additionally, on the host
from which we performed our scan, we provided a web page
with contact information outlining our work and the purpose
of our scans, offering to exclude parties that did not wish to
be included in any future scans [16, 17].

B. Results

Overall statistics. Table I shows the aggregated results
of the three scans and Table II shows the breakdown of the
detected instances based on ROS node characteristics (§III-A).
Note that since the deployment period of our honeypots (§IV)
overlapped with our scans, the raw scanning results were
processed to ensure that all data and results presented in this
paper do not include our own honeypots. In total we detected
∼194 hosts per scan, which is a nearly 60% increase compared
to the results six years ago (∼123) [16]. Of the total instances
detected across the three scans, 61 appeared across all three
scans, 80 appeared across two of the scans, and 240 appeared
in only one scan. Meanwhile, the percentage of hosts observed
in addresses belonging to research institutions, as identified
through the Autonomous System (AS) name associated with
each address, dropped from ∼70% [16] to ∼35%. These results
fall in line with a prediction made by DeMarinis et al. [16]
postulating that the number of potentially vulnerable robotic
systems, particularly in home and industry settings, would
likely only increase as time went on and robots are deployed
out of laboratory settings.

Case study: Cleaning robots. One of the major new robot
types observed in our scans that is completely absent from the

TABLE I: Summary of the number and robot types of publicly exposed ROS
instances found in our scans. The number of exposed instances is substantially
higher (∼60% more) compared to the prior scan ∼6 years ago [16].

Type Scan 1 Scan 2 Scan 3 Average
Likely-Physical

- Cleaning robot 56 65 50 57
- Autonomous vehicle 13 9 8 10
- Drone 8 9 7 8
- Tutorial 9 6 5 7
- Unclassified 83 79 84 82

Simulation 33 28 31 31
Total 202 196 185 194

Prior scan in 2017-18 [16] 144 122 102 123

results of DeMarinis et al. [16] is that of cleaning robots. In
particular, we observed two major types of cleaning robots:
Rockchip/TinaLinux and ILIFE, identified as such based on
the hostnames observed in their corresponding ROS instances.
Apart from the specific hostname of individual instances
varying between Rockchip and TinaLinux, instances of the
Rockchip/TinaLinux cleaning robot type are nearly identical,
sporting nodes with names such as clean_the_room and
clean_the_area as well as sensors and capabilities in-
cluding lidar, IMU, odometry, gyro, and mapping. The ILIFE
type refers to the ILIFE robot vacuum cleaner [4]. Instances
of this type possessed topic names including clean_mode
and slam_map_for_cleaning along with sensors and
capabilities such as lidar, odometry, and mapping. All cleaning
robot instances contained no evidence of running as simula-
tions at the time of identification and are thus classified as
Likely-Physical, suggesting that their public Internet exposure
may expose possible safety risks and lead to potential direct
physical damage.

In fact, this new exposure appears to be the most important
contributor to the significant increase in the number of publicly
exposed ROS instances in recent years. If we exclude these
cleaning robots from the total number of identified hosts,
our totals would be 146, 131, and 135 exposed hosts per
scan respectively, which is substantially closer to the host
numbers identified by the prior work (144, 122, and 102,
respectively) [16]. Note that six years ago, this ROS instance
exposure was contained largely within university and research
settings [16], whereas now, this newly observed type of ROS-
based robot is more likely to be found in industrial and home
environments (e.g., as marketed by ILIFE [4]). This suggests
that this trend of increasing public exposure of robotic systems,
if exploited, may result in more damage at a broader societal
level than would have easily been possible before.

Case study: Drones. Another robotic vehicle type briefly
mentioned but not specifically counted nor discussed in De-
Marinis et al. [16] is that of drones, marked by topics like
quadrotor and mavros [7]. Instances of this type observed
in our scan revealed sensor capabilities including lidar, IMU,
odometry, camera, GPS, and compass. Notably, 24 out of
the 27 instances across the three scans with evidence of
being drones were Likely-Physical with no signs of running
simulations, highlighting another type of publicly exposed
robotic vehicle with the potential for direct physical damage
and potential safety risks. Especially with drones, security is a
particularly important concern due to their flying capabilities
and increased mobility, posing potential threats to aircraft, in-
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TABLE II: Categorization of the publicly exposed ROS instances from our scans based on common topics, services, parameters, nodes, and hostnames. In each
row, we list the number of ROS instances of a specific type with a breakdown based on whether it is likely running in a simulator (Simulation) or in the physical
world (Likely-Physical) (classification method described in §III-A). For each category, the different types are ranked based on number of discovered instances.

Scan 1 Scan 2 Scan 3
Category Type Likely-Physical Simulation Likely-Physical Simulation Likely-Physical Simulation

Sensors

Lidar 99 22 122 17 98 22
IMU 87 19 101 16 75 21
Odometry 84 19 102 16 72 16
Camera 40 21 49 17 53 21
Gyro 51 55 45
GPS 22 12 20 8 16 5
Compass 14 3 14 14 2
Radar 6 1 5 1 5 2

Capabilities

Movable 75 20 93 13 73 17
Mapping 56 64 2 50 1
Nuvo 7 1 5 5
CAN bus 5 1 2 2 2
Navigation 1 2 2 2 1 3
Traffic sign/light 3 1 2 1

Simulators
Simtime 7 25 11 21 10 25
Gazebo 19 16 20
Playback 8 7 6

Robot types

Cleaning robot 56 65 50
- Rockchip 30 31 26
- TinaLinux 21 24 16
- ILIFE 5 9 6

Autonomous vehicle 13 1 9 8 2
Drone 8 3 9 7
Tutorial 9 1 6 1 5

Libraries

RViz 15 9 17 9 18 10
Rosbridge 18 4 14 5 18 3
MAVROS 6 3 8 7
RMS 2 2 2
darknet ros 1 1 1 1

frastructure, property, and people [13]. Should a drone exposed
to the public Internet be the target of an attack, not only might
an attacker be able to obtain information such as that from a
camera or GPS, but they may also be able to interfere with its
flight systems, leading to potentially disastrous consequences
including potential loss of life.

Case study: Autonomous vehicles. We also observe public
exposure of a third major robotic vehicle type not discussed
in DeMarinis et al. [16]: autonomous vehicles, categorized by
the CAN bus, Nuvo, and Traffic sign/light types in Table II.
Instances of the CAN bus type were identified by topics
indicating usage of the CAN protocol, with topic names
such as vehicle_can (or VehicleCAN). The presence
of CAN messages in a ROS instance signals a high like-
lihood that such an instance is an autonomous automobile
with computation, communication, and control provided by
ROS. Instances of the Nuvo type were categorized based
on evidence showing usage of Nuvo vehicle AI computing
platforms such as the Nuvo-8108GC [6], with hostnames
such as discovery-Nuvo-8108GC-Series. Such Nuvo
vehicle AI computing platforms are commonly used for au-
tonomous vehicle applications such as in Baidu Apollo [2].
Instances of the Traffic sign/light type were identified by
evidence of traffic sign and light/signal processing capabilities,
with topics including trafficsign, trafficlight, and
trafficsignal. Two out of seven such Traffic sign/light
instances also belonged to the other CAN bus and Nuvo types,
further suggesting the likely identity of instances across these
three types as autonomous vehicles.

The autonomous vehicle instances we discovered also
possessed previously discussed sensor capabilities including
lidar, IMU, odometry, camera, gyro, GPS, compass, and radar.
As with the identified drone instances, the majority (9 of 12
across the CAN bus type, 17 of 18 across the Nuvo type, and
6 of 7 across the Traffic sign/light type) of these autonomous
vehicle instances across the three scans were Likely-Physical,
showing no evidence of being simulated, highlighting another
major publicly exposed robotic vehicle type with potentially
disastrous real-world consequences should they be targeted
for attack. This becomes especially urgent as autonomous
driving continues to develop and evolve at a rapid pace,
with related vulnerabilities in autonomous driving technologies
having already been extensively demonstrated [22].

IV. ROS SCANNERS IN THE WILD

Given the vast number of ROS hosts exposed to the public
Internet, it is essential to further understand if real world
attackers are already attempting to actively scan and exploit
them, along with any patterns they may follow when doing
so. To achieve this, we deploy ROS honeypots around the
world and report our observations in this section. To the best
of our knowledge, this presents the first study to measure ROS
scanners in the wild.

A. Methodology and Setup

Honeypot instance setup. We take a similar approach to
Dang et al. [15], setting up honeypots on public cloud servers
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Fig. 2: Geographical distribution of our ROS honeypots. The blue points
represent the locations of our honeypots and the red points represent the
locations of all the IPs that sent traffic to our honeypots.

and logging network traffic on specific ports. The ports under
investigation are TCP port 11311, the default port used for
ROS 1 master nodes, and UDP ports 7400 and 7401, where
7400 is the DDS default port and 7401 is a port one of our
ROS 2 nodes runs on. If there are packet payloads that use the
XML-RPC or RTPS protocols, then there is a high probability
that a ROS-related scan or attack is taking place.

Each server runs two copies of the talker-listener applica-
tion, one on ROS 1 Noetic and the other on ROS 2 Iron.
The talker-listener application is the most classic example
application in the official ROS tutorial [9], in which a “talker”
node sends a simple string every second to a “listener”
(receiver) node. To ensure that the honeypots themselves are
not corrupted, we run the application on Docker containers,
enabling port forwarding on the necessary ports so that they are
still publicly exposed. Using the scapy library, we intercept
traffic to these ports on each server and store them in PCAP
files. We then set up an AWS cloud server that retrieves these
files using rsync and stores each packet in a database, using
an open-source visualization tool called Grafana to provide
improved insights into this traffic. We wrote a shell script to
automate the process of setting up all the honeypot software,
and the code of this entire pipeline, including the script, is
released at our project website [12].

Honeypot deployment. We deployed 38 honeypots on
cloud servers running Ubuntu 22 Jammy, distributed as evenly
as possible around the world from three cloud providers:
Amazon Web Services (AWS), Google Cloud Platform (GCP),
and Microsoft Azure, making sure to open TCP port 11311
(ROS 1) and UDP ports 7400 and 7401 (ROS 2) for all
honeypots. We then left the honeypots running from November
to December of 2023. Table III and Fig. 2 display information
related to each honeypot, including provider and location.
We aimed to diversify both the IPs of our honeypots and
their geographical locations to maximize the potential traffic
received by them, although we were still limited due to the
lack of cloud provider availability in select regions.

B. Results

Overall statistics. From the 38 honeypots we set up, we
received over 4,000 packets in total from more than 220 IPs
over this period. On average, we received around 2.8 packets
per honeypot per day. The traffic to ROS 1 took up the majority
of the average (approximately 2.7 packets per honeypot per

TABLE III: IP distribution of our 38 ROS honeypots. To maximize the
potential traffic our honeypots would receive, we set them up in different
locations around the world on different cloud providers.

Provider IP Address

AWS

Eastern US Brazil
United Kingdom Bahrain

South Africa Japan
Western India Singapore

Spain Central India
Western US (2) Korea

Italy Indonesia
Australia Germany
Sweden

GCP

Central US (2) Finland
Australia Hong Kong

Qatar Chile
Northern India Poland

Belgium Western US

Azure

Western US Canada
United Arab Emirates France

The Netherlands South Africa
Switzerland Norway

Central India

day) while ROS 2 occupied the remaining 0.1, mainly because
we deployed our ROS 2 honeypots later than our ROS 1
honeypots. The red points in Fig. 2 indicate the locations of
the IPs these packets were sent from and Fig. 3 shows the
average number of packets received per honeypot by day.

Overall takeaway: No malicious ROS scans observed.
We received packets hitting our ROS ports from regions all
around the world, including Great Britain, Belize, Belgium,
and China, but we do not believe any of them were malicious
ROS scans. Specifically, for scans targeted at ROS 1 instances,
we expect to receive an XML-RPC payload, since this protocol
is needed to interact with the master node. However, for the
packets hitting our ROS 1 honeypots, we did not identify any
received payloads containing such information. For the packets
hitting ROS 2 ports, we received payloads from likely ROS 2-
specific scanners, but those were either from known legitimate
Internet scanners or from a university, which we elaborate
further below. Meanwhile, we did manage to capture likely
malicious, but non ROS-targeted, real-world scanners.

Case study: ROS 2 scans. The majority of the packets
our ROS 2 honeypots received were from the Shodan search
engine, a reputable Internet scanning service [10]. They all
consisted of the exact same payload (depicted in Fig. 4) as the
one demonstrated by Vilches et al. [24]: an RTPS packet used
to discover ROS 2 nodes. By crafting such RTPS packets and
sending them to a ROS 2 node on the same subnet, they can
trigger a response from another ROS 2 node.

We received a similar RTPS payload from the Technical
University of Denmark, shown in Fig. 5. From the payload
itself, we were unable to determine what exactly their in-
tentions were; perhaps they were scanning for ROS 2 hosts.
Nonetheless, this was one of the only non-Shodan payloads
our ROS 2 honeypots received at the time of writing.

Case study: Potentially malicious RDP scans. One of
the most notable observations from our study so far was
that over 400 of the packets we received on our ROS 1
honeypots contained the text Cookie: mstshash. This is
most likely a probe attempting to connect to a Remote Desktop
Protocol (RDP) instance, rather than targeting ROS. One of
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Fig. 3: Number of packets hitting our ROS honeypots per honeypot per day.
The number on November 15 was much larger because of an aggressive HTTP
scan (§IV-B). The ROS 2 line begins later than the ROS 1 line as we started
deploying our ROS 2 honeypots at a later time than the ROS 1 honeypots.

the parameters RDP accepts when connecting to an instance
is mstshash, which is used for load balancing in RDP
servers [11]. We have seen multiple values provided to this
parameter including Administr and Domain, which are
usernames truncated to nine characters [11].

At this moment, we are unsure of whether these pay-
loads are part of an attack because we have seen evi-
dence for both possibilities. For example, several develop-
ers noted that their public Flask servers received the same
Cookie: mstshash=Administr payload, characterizing
this as a “connection attempt” or an “attack” [5]. Upon further
examination of the RDP connection specification however,
we discovered that this Cookie parameter is optional when
sending a connection request to an RDP server, so it is most
likely not related to the login process, except for the fact
that the value contains an RDP username [11]. In fact, the
specification states that Cookie can only be present if a
separate parameter called routingToken [11], used for
load balancing, is not present, which implies that Cookie
is involved more with load balancing rather than with logging
in. Thus, we were not able to confidently conclude whether
this payload represents an attack.

Case study: Other potential malicious scans. Besides
the RDP scans, we received one packet from an IP that
attempted to exploit the Log4Shell vulnerability in order
to gain LDAP access to our honeypot. The same IP
then proceeded to perform an aggressive HTTP scan,
sending HTTP requests to a variety of paths and files
from our honeypots such as /api/hpe-restapi.json,
/Wsusadmin/Errors/BrowserSettings.aspx, and
/api/sonicos/is-sslvpn-enabled. We checked
AbuseIPDB [1], a widely used and trusted website that
collects reports on abusive IPs, and found that this IP has
been reported previously for aggressive web scans and web
app attacks.

We also received multiple attempts to connect to our
honeypots via the Secure Shell (SSH) protocol using different
versions of OpenSSH from multiple different IPs. Similar
findings were also observed in past honeypot studies, including
Dang et al. [15].

Fig. 4: The ROS 2 scan payload we received from Shodan. Packet content
related to RTPS and DDS can be seen in the decoded portion.

Fig. 5: The RTPS packet we received from the Technical University of
Denmark. Notice how the majority of the content of the two payloads differs,
but both are still RTPS packets as indicated by the RTPS header.

V. CONCLUSION

In this paper, we perform a two-part measurement study
to systematically understand the vulnerability landscape for
ROS-based robotic vehicles exposed to the public Internet. By
performing new scans over the entire IPv4 address space, we
find that various classes of robotic vehicles, such as cleaning
robots, drones, and autonomous vehicles, are newly and more
commonly exposed to the public compared to the previous
scans performed six years ago [16]. Although there is always
a possibility of such robotic systems being used in research
settings (e.g., used as a base for research prototyping), these
types of robotic vehicles (in particular cleaning robots) are
much more likely to be used in industrial and home environ-
ments. As such, the compromising of such vehicle systems by
a remote attacker could result in significantly more damage at
a broader society-wide level. Meanwhile, by setting up ROS
honeypots, we performed the first study on ROS scanners in
the wild. Fortunately, although we did find ROS-targeted scans,
we did not find any evidence of malicious intentions up to
this point. Nevertheless, considering that we did find some
(∼190) systems being regularly exposed to and accessible on
the public Internet, it becomes both urgent and timely for
developers and users of robotic vehicles to start becoming more
aware of such problems and take steps towards addressing
them. We hope our efforts in this paper can help foster such
change, and thus contribute to the security improvements of
these critical cyber-physical systems.

Future work. Due to lack of time, in this work we did not
get the chance to perform scans for ROS 2 hosts in addition
to the ROS 1 hosts. We thus leave this to future work.
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