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Abstract—LiDAR stands as a critical sensor in the realm of
autonomous vehicles (AVs). Considering its safety and security
criticality, recent studies have actively researched its security and
warned of various safety implications against LiDAR spoofing
attacks, which can cause critical safety implications on AVs
by injecting ghost objects or removing legitimate objects from
their detection. To defend against LiDAR spoofing attacks, pulse
fingerprinting has been expected as one of the most promising
countermeasures against LiDAR spoofing attacks, and recent
research demonstrates its high defense capability, especially
against object removal attacks. In this WIP paper, we report
the progress in conducting further security analysis on pulse
fingerprinting against LiDAR spoofing attacks. We design a novel
adaptive attack strategy, the Adaptive High-Frequency Removal
(A-HFR) attack, which can be effective against broader types of
LiDARs than the existing HFR attacks. We evaluate the A-HFR
attack on three commercial LiDAR with pulse fingerprinting and
find that the A-HFR attack can successfully remove over 96%
of the point cloud within a 20◦ horizontal and a 16◦ vertical
angle. Our finding indicates that current pulse fingerprinting
techniques might not be sufficiently robust to thwart spoofing
attacks. We also discuss potential strategies to enhance the
defensive efficacy of pulse fingerprinting against such attacks.
This finding implies that the current pulse fingerprinting may not
be an ultimate countermeasure against LiDAR spoofing attacks.
We finally discuss our future plans.

I. INTRODUCTION

LiDAR (Light Detection And Ranging) has been integrated
into autonomous vehicles (AVs) as a critical sensor due to its
capability to accurately map the surrounding environment in
three dimensions. As of 2023, all 6 AV companies authorized
to test on public roads in California have adopted LiDAR as
a fundamental part of their perception systems. Reflecting its
importance on AD systems, the security of LiDARs has been
actively researched, especially for the vulnerability against Li-
DAR spoofing attacks [1]–[6]. These attacks involve projecting
malicious lasers against LiDARs, compromising their distance
measurement by overwriting the legitimate signals. Such at-
tacks have significant safety implications for AD systems,
particularly in deceiving LiDAR-based 3D object detectors.
Object injection attacks [3], [5], [6] create ghost objects by
injecting a set of fake points that mimic legitimate objects. Ob-
ject removal attacks [4]–[6] make actual objects indetectable
by erasing the legitimate points of the objects. However,
existing LiDAR spoofing attacks still have a critical gap to be

a real threat against recent AD vehicles, as pointed out in [6].
The majority of evaluations focus only on classic LiDAR
models such as VLP-16 [7], overlooking many recent LiDARs,
referred to as Next-Generation (or New-Generation) LiDARs
(new-gen LiDARs) [6], [8]. New-gen LiDARs have advanced
security-related features that demonstrate high defense and
mitigation capability against LiDAR spoofing attacks. Among
them, timing randomization shows notable defense capability
that randomizes each laser emission interval of LiDAR. It can
make the LiDAR scanning pattern unpredictable and thus make
injecting points at designed locations virtually impossible.
Despite this, Sato et al. [6] demonstrate that their HFR (High-
Frequency Removal) attack is still effective even with the
timing randomization, as it saturates all LiDAR measurements
without needing to discern the scanning pattern. However, the
HFR attack was not effective against the new-gen LiDARs
with pulse fingerprinting that authenticates their lasers with an
embedded fingerprint in the lasers.

In this WIP paper, we report our recent progress on
the further security analysis of pulse fingerprinting in new-
gen LiDARs. Our research addresses two gaps in previous
studies [6]: (1) Prior work does not evaluate the attack with
higher frequent pulses. As its name implies, higher attack
frequency generally leads to higher attack effectiveness in
the HFR attack; (2) prior work evaluated only one new-
gen LiDAR with pulse fingerprinting. Their findings may not
be generalizable. To address these gaps, we designed a new
spoofing attack, the Adaptive HFR (A-HFR) attack, which can
achieve 5 times higher frequency than the prior HFR attack
even with the same laser hardware by adaptively changing the
attack region. Specifically, we boost the frequency when the
LiDAR is scanning the targeted objects, and we idle the attack
when scanning the other areas to avoid overheating the diode
emitting the attack laser. We evaluate the A-HFR attack on
three widely used LiDAR models with pulse fingerprinting
to further evaluate the generality of the A-HFR attack. Our
preliminary results suggest that current LiDARs with pulse
fingerprinting might not sufficiently counter the A-HFR at-
tack. We finally discuss possible enhancements in fingerprint
technology that could bolster defenses against such advanced
spoofing techniques.

II. BACKGROUND AND RELATED WORKS

A. LiDAR Spoofing Attacks

The LiDAR spoofing attacks [1], [2], [5], [6] have demon-
strated high attack effectiveness against LiDARs. Based on the
attacker’s capability, there are two types of LiDAR spoofing
attacks: synchronized attacks and asynchronized attacks.

Symposium on Vehicles Security and Privacy (VehicleSec) 2024
26 February 2024, San Diego, CA, USA
ISBN 979-8-9894372-7-6
https://dx.doi.org/10.14722/vehiclesec.2024.23022
www.ndss-symposium.org



1) Synchronized Attacks: Synchronized attacks (Sync. at-
tack) first learn the laser scanning pattern of the target LiDAR,
understanding its scan timing and coverage. As the adversary
can exactly predict how their attack changes the LiDAR
point cloud, Sync. attack can artificially inject objects of
various shapes and positions of objects such as pedestrians
or vehicles [5], [6]. However, the Sync. attack prerequisites a
deterministic LiDAR scanning pattern, a premise not typically
valid for modern new-gen LiDARs. They often employ timing
randomization, originally installed as an anti-interference fea-
ture to incorporate multiple LiDARs at close distances. Thus,
all previous works can be only successful on first-generation
LiDARs such as the VLP-16 [7], although these attacks can
still inject hundreds of points at random locations [6].

2) Asynchronized Attacks: Asynchronized attacks (Async.
attacks) operate regardless of the victim LiDAR’s scan timing.
There are three types of Async. attacks:

Relay attack [1] involves capturing and relaying the laser
signals from the victim LiDAR. This method is theoretically
effective against all LiDARs since the relayed laser is identical
to the original. However, its threat to AVs is somewhat limited,
as it can only create fake points further than the spoofer.

Saturation attack [2] aims to overwhelm the victim LiDAR
by shooting it with a continuous wave laser. This can either
mask legitimate laser signals or cause misinterpretations of the
received data. The challenge with this attack lies in generating
a continuous wave laser strong enough to obscure legitimate
signals, which limits the attack angle and duration.

HFR attack [6] emits periodic pulses between 400 kHz and
5 MHz at the victim LiDAR. LiDARs generally prioritize
the strongest of multiple valid pulses. If an attacker’s pulse
overshadows the genuine signal, the LiDAR is tricked into
selecting the false signal. This causes the authentic point cloud
to vanish, with noise replacing it across the LiDAR’s range.
The attack’s effectiveness varies; it is potent against some new-
gen LiDARs but less so against those with pulse fingerprinting.

B. LiDARs with Pulse Fingerprinting

Pulse fingerprinting [9] has shown a high defense capability
against LiDAR spoofing attacks while it is also originally
designed for the sake of anti-interference to operate multiple
LiDARs at close distances. Pulse fingerprinting authenticates
the reflected laser pulses and tries not to accept the laser
reflection emitted by the other LiDARs. One of the most
common implementations of pulse fingerprinting (e.g. Livox
Mid-360 [10], Hesai XT32 [11], AT128 [12]) encodes its
fingerprint into the interval between two consecutive pulses
as depicted in Fig. 1. Thus, LiDARs with pulse fingerprinting
need 2 pulses for a single distance measurement instead of
1 pulse as traditional LiDARs need. They then accept the
signal only when the interval between the received pulses
matches the firing interval. Otherwise, the LiDAR discards it.
This mechanism enables them to be robust against interference
as they can be selective for their own pulses. To account
for nonidealities during operation, these LiDARs include a
tolerance error time span Tα. For instance, with a pulse interval
of 400 ns and a tolerance of 40 ns, the LiDAR accepts pulse
pairs with intervals from 380 ns to 420 ns as valid. The interval
between pulses is randomly set between a minimum (Tmin)
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Fig. 1: Operating principle of pulse fingerprinting. LiDAR
fires two pulses per ranging measurement, and if the interval
between the received pulses is within the tolerance error (Tα),
the LiDAR accepts them as valid pulses. This interval is
randomly determined between Tmin and Tmax.

and maximum (Tmax) value. The specific values for Tα, Tmin

and Tmax vary depending on the LiDAR models.

C. Threat Model

As our A-HFR attack is an extension of the normal HFR
attack [6], we follow the same threat model, which is also
commonly used in other prior work [13]. Specifically, the
attacker targets an AV either from the roadside or from a
nearby vehicle in a nearby lane. While the object detection
system used by the victim AV is treated as a black box, the
model and characteristics of the LiDAR installed on the AV
are assumed to be identifiable. The LiDAR scan pattern and
ranging method can be easily known in its datasheet or through
analysis of the emitted signal. This information is utilized by
the attacker as prior knowledge. The primary attacker’s goal
is to compromise the LiDAR point clouds to make vehicles
or pedestrians undetectable. In our preliminary analysis on the
KITTI dataset [14], we found that over 95% of objects located
more than 6 meters away fit within a spatial window of 20◦

horizontally and 16◦ vertically. We thus define the attack goal
in this paper as removing all points within this horizontal and
vertical range.

III. METHODOLOGY

A. Attack Concept to Bypass Pulse Fingerprinting

Pulse fingerprinting is a robust defense against existing
LiDAR spoofing attacks due to its signal authentication that
filters out malicious pulses. Yet, as Table II shows, its reliance
on a single pulse interval for authentication in mass-produced
LiDARs presents a vulnerability. If an attacker replicates this
interval, these systems could be susceptible to spoofing.

This vulnerability is particularly pronounced in the context
of HFR attacks, as illustrated in Fig. 2. Pulse fingerprinting’s
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Fig. 2: Our concept to bypass pulse fingerprinting by HFR
attack. When authentication relies on a single pulse interval,
the attack can bypass it by shooting fake pulses at intervals
shorter than the tolerance error (Tα). However, conventional
HFR faces limitations in simultaneously achieving high fre-
quency and peak power due to overheating issues.
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Fig. 3: Comparative illustration of the conventional HFR attack
(left) versus the A-HFR attack (right). A-HFR can achieve high
peak power at high frequencies by limiting the attack angle
through weak synchronization.

random pulse intervals can be exploited during an HFR attack;
if any two fake pulses coincide with the system’s intervals,
they can bypass authentication, with their success dependent
on the LiDAR’s tolerance error. To quantify this, we calculate
the probability of a successful HFR attack, represented as p in

Eq. 1. This equation holds when the attacker’s pulse intervals
are sufficiently shorter than the pulse interval emitted by the
LiDAR (Tmax).

p = min

(
1,

Tα

THFR

)
(1)

Let Tα be the tolerance error time span of the pulse interval,
and THFR be the interval between the attack pulses. Eq. 1
shows that, ideally, authentication can be bypassed in all mea-
surements by shooting pulse light at an interval shorter than
Tα. This implies that an HFR attack could effectively create
a ’master key’ for pulse fingerprinting by simply increasing
the pulse frequency. For a spoofing attack to succeed, it’s not
enough to just bypass authentication; the fake pulses must have
a higher peak power than that of the legitimate ones. LiDAR
systems typically choose the strongest signal from multiple
valid signals in a single measurement. Thus, to ensure the fake
pulse is selected over the real one, attackers must ensure their
pulses overpower the legitimate signals in peak power.

In summary, an effective HFR attack against pulse fin-
gerprinting requires (1) an attack pulse interval shorter than
Tα, and (2) peak power greater than that of the legitimate
pulse. However, conventional HFR attack [6] faces a trade-off
between pulse interval and peak power, making it challenging
to fulfill both conditions simultaneously. For example, emitting
high-frequency pulses (>5 MHz) reduces laser peak power due
to overheating of the laser driver, failing to overcome legiti-
mate pulses. Conversely, higher peak power attacks can only be
realized at low frequencies, which do not pass authentication.

B. Attack Design: Adaptive HFR Attack

As shown in Fig. 3, we developed the Adaptive HFR (A-
HFR) attack, which works on the existing spoofer hardware, to
overcome the trade-off between pulse frequency and power. A-
HFR employs weak synchronization to selectively target only
specific angles within the victim LiDAR’s scan. This selective
targeting allows the spoofer to rest and cool during non-
targeted angles, averting laser driver overheating. Hence, this
method enables high-frequency, high-power attacks at specific
angles required to bypass the fingerprinting authentication.

Unlike conventional asynchronous HFR attacks, A-HFR
utilizes a photodiode (PD) for weak synchronization, to align
the attack with the LiDAR scan. Facilitating the knowledge
of LiDAR scanning patterns, we achieve angle-specific attacks
by activating the spoofer only during desired angles. A-HFR’s
weak synchronization, which only approximates the LiDAR’s
scanning angle, tolerates minor inaccuracies, making it suitable
for attacks on new-gen LiDARs with randomized intervals.
This point is further elaborated in the following section.

1) Strategic Attack Angle Reduction: The perceptible hori-
zontal angle of a rotating LiDAR’s point cloud for objects like
people or vehicles is just a fraction of the full 360◦ sweep.
For objects over 6 m away, more than 95% fall within a 20◦

horizontal angle (§II-C). Rotating LiDARs, which stack lasers
vertically within the device and rotate them horizontally, scan
points with similar horizontal angles in quick succession. With
a LiDAR rotating at 10 Hz, a full rotation takes 100 ms, and
scanning a 20◦ horizontal section takes about 5.6 ms. Thus, by
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TABLE I: Comparison of synchronization methods in LiDAR
spoofing attacks.

Sync [4] Async [6] Weak-Sync (Ours)
Required sync. accuracy < 3 ns N/A < 50 us
Reducing attack angle " - "

Effective to new-gen LiDARs - " "

reducing an attack to just this 20◦ horizontal angle, the attack
can be executed in less than 6% of the total time.

Reducing the spoofer’s vertical attack angles can further
reduce its operation time, as targeting the full vertical range
seen by the victim LiDAR is generally unnecessary to remove
objects like people or vehicles. For example, focusing on just
20◦ of a LiDAR’s 40◦ vertical FoV can halve the attack
duration. When combined with horizontal angle reduction, the
time needed to attack both 20◦ horizontally and vertically is
only 3% of the total LiDAR scan time.

2) Weak Synchronization Accuracy Requirement: A-HFR
attack leverages a PD to capture pulses from the target LiDAR,
enabling prediction of its scanning pattern. This weak synchro-
nization strategy allows the attack to be timed when the LiDAR
scans a specific angle. While PD-based synchronization is
common in both Sync. attacks [3]–[6] and A-HFR attacks,
their accuracy requirements differ significantly, as detailed
in Table I. Weak synchronization is only to synchronize the
scanning angle of the LiDAR, while prior synchronization
is to synchronize each ranging start timing of the LiDAR.
Sync. attacks demand nanosecond-level precision, with a 1
ns deviation altering the point cloud’s position by 0.15 m.
The PRA [4] requires sync accuracy under 3 ns for the
effective removal attack. However, new-gen LiDARs with
timing randomization complicate precise synchronization due
to intervals randomized up to 1.3 µs [6].

On the other hand, the A-HFR attack requires less stringent
synchronization, only needing approximate knowledge of the
LiDAR’s scan angles and timings. Its design tolerates synchro-
nization discrepancies with the victim LiDAR up to tens of
µs. Consider a rotating LiDAR that operates at 10 Hz; it scans
about 0.2◦ horizontally in 50 µs. Since the A-HFR attack uses
synchronization data primarily to limit the attack to a certain
horizontal angle, synchronization errors within the range of
tens of µs do not significantly impact the attack’s effectiveness.

C. Attack Device Setup

The device setup for the Adaptive HFR attack consists of
three parts: a laser emitter, a function generator, and a receiver.
We follow the same basic setup as in Sato et al. [6]: we
employ a function generator of Agilent 81160A [15], receiver
consisting of S6775 PIN Photodiode [16] as a photodetector
and LM6171 OpAmp [17] as the transimpedance amplifier.

D. Target LiDARs

In this WIP paper, we evaluate three mass-produced Li-
DARs with pulse fingerprinting, summarized in Table II. Our
evaluation reveals distinct differences in the ranging intervals,
specifically in the minimum (Tmin) and maximum (Tmax)

TABLE II: Our target mass-produced LiDARs, equipped with
pulse fingerprinting. ASR: Attack Success Rate.

Livox Mid-360 Hesai XT32 Hesai AT128
[10] [11] [12]

Scanning Type Prism Rotating Rotating Mirror Rotating
Tmin 1250 ns 250 ns unspecified
Tmax 1550 ns 450 ns unspecified

Tα (estimated) 250 ns 42 ns 67 ns
HFR [6] ASR 1.0@4 MHz 0.20@9 MHz 0.03@9 MHz
A-HFR ASR - 0.96@24 MHz 0.99@15 MHz
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Fig. 4: Comparison of the laser pulse power at different
attack frequencies. A-HFR attack reduces the attack angle to
achieve higher attack frequencies with enhanced laser power.
Furthermore, A-HFR can achieve higher attack capability by
reducing the vertical attack angle as well.

pulse intervals, across each model. For AT128 [12], the man-
ufacturer’s product description aligns with our experimental
findings, confirming its pulse fingerprinting feature. However,
due to limitations in our setup, we could not accurately
determine the AT128’s specific fingerprinting parameters.

IV. EVALUATION

A. Effectiveness of Attack Angle Reduction

To assess the power enhancement in A-HFR attacks, we
present a comparison of laser pulse power at different attack
frequencies. This includes conventional HFR attacks and two
variants of A-HFR attacks, as shown in Fig. 4. The first variant
of the A-HFR restricts the attack within a 20◦ horizontal
angle (v=100%), whereas the second variant further halves the
vertical attack FoV (v=50%). In the case of low frequencies
(<5 MHz), the effect of the attack angle reduction in A-HFR
is minimal. However, at frequencies above 10 MHz, the pulse
power of conventional HFR attacks diminishes notably. In con-
trast, A-HFR attacks between 10 and 20 MHz can substantially
achieve higher power, with a tenfold increase. This power
boost is further enhanced by reducing the vertical attack angle
as well, particularly above 25 MHz, where power gains exceed
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Benign HFR@5MHz [6] A-HFR@15MHz

Person@3m

Fig. 5: A-HFR attack results on AT128. While the person
point cloud is only blurred under the HFR attack (center), it
is completely removed under the A-HFR attack (right).

ten times compared to scenarios without reducing. Therefore,
Reducing attack angles in any direction is an effective strategy
to attain high peak power at higher frequencies.

B. Evaluation Against Various Pulse Fingerprinting LiDARs

Fig. 5 compares the effectiveness of the conventional HFR
attack and the A-HFR attack, targeting the Hesai AT128
equipped with pulse fingerprinting. We placed the spoofer 2
m away from the LiDAR, and the person stood 3 m away.
A-HFR specifically targets a 20◦ horizontal angle. While the
HFR attack somewhat blurs this shape, it remains identifiable.
However, with the A-HFR attack, the person’s point cloud is
almost entirely removed. Notably, the A-HFR attack effective-
ness was maintained over prolonged durations (>100 seconds).
This demonstrates that attackers can significantly enhance
their capability against LiDARs with pulse fingerprinting by
employing the A-HFR attack.

Fig. 6 displays the point removal rates for both con-
ventional and A-HFR attacks at various frequencies, tested
against AT128 and XT32 LiDARs with pulse fingerprinting.
For AT128, the attack was conducted over a 20◦ horizontal and
full 25.4◦ vertical FoV. In comparison, the XT32 underwent
evaluations in two scenarios: firstly, with a 20◦ horizontal and
16◦ vertical angle (v=50%), and secondly, with a 20◦ horizon-
tal and 32◦ vertical angle (v=100%). The figure demonstrates
that conventional HFR attacks have a maximum success rate
of only 20%, limited by thermal issues. In contrast, our A-
HFR attack effectively removes the target angle’s point cloud
by increasing the attack frequency. Its removal rate peaks at 15
MHz for AT128 and 24 MHz for XT32, eliminating over 90%
of the point cloud in that angle. The variation in peak removal
rates across different LiDARs can be due to differing pulse
fingerprinting parameters (Tα), which influences the frequency
needed to bypass the authentication.

Fig. 7 shows the efficacy of A-HFR’s vertical attack angle
reduction. Since the angle reduction boosts the peak power
under high attack frequencies (Fig. 4), this expands the point
cloud removal angle by about 20%.
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Fig. 7: 2D projection of point cloud when we conduct Adaptive
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true point cloud remaining, and the red dotted line indicates
the attack angle.

C. HFR Attack on Mid-360

Fig. 8 shows the efficacy of the conventional HFR attack
on Mid-360, equipped with pulse fingerprinting. We found that
even the conventional HFR attack can fully remove points
across 20◦ horizontally and vertically. The Mid-360’s vulner-
ability can be attributed to its relatively less secure authen-
tication system compared to other LiDARs. This suggests a
larger Tα as per Eq. 1 and potentially lower power in legitimate
pulses, indicating that certain LiDAR models might have more
lenient Tα settings and hence weaker security features.

D. Attack Capability in the Physical World

To verify A-HFR attack effectiveness in real-world condi-
tions, we conducted an outdoor experiment aimed at removing
a car from the point cloud data of XT32. The car was placed at
a distance of 12 meters from the victim LiDAR, with its point
cloud appearing within 10◦ horizontally and 8◦ vertically. The
results, shown in Fig. 9, show the complete removal of the
target car point cloud. In addition, we applied object detection
to the point cloud with and without the attack, using Apollo
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Mid-360, under the same condition as Fig. 6.

LiDAR LiDAR

Spoofer

Attack Angle

=20°

Benign Under Attack

(24 MHz, h=20°, v=16°)

12m

Fig. 9: A-HFR attack on Hesai XT32 to hide a real vehicle.
We restrict the attack angle to 20◦ horizontally and 16◦

vertically. The red bounding box shows the detection results by
Pointpillars in Apollo. When under attack, the vehicle becomes
undetected with a 98% success rate over 15 seconds.

6.0 Perception [18]. As a result, while the car was detectable
in the benign point cloud, but went undetected in the attacked
data. This result shows that the A-HFR attack is a significant
threat to real-world autonomous driving systems.

V. DISCUSSION

A. Potential Defences against A-HFR Attack

When the pulse fingerprinting authentication relies solely
on pulse interval pairs, attackers could always theoretically
bypass it if higher enough frequency pulses were available.
This implies that pulse fingerprinting authentication can be an
effective mitigation but may not be an ultimate countermea-
sure. Thus, potential defenses can integrate additional pulse
features, such as amplitude and width, into the authentication
processes. The combination of these features can substantially
increase the entropy of the fingerprinting and thus it can
prevent the creation of a universal ’master key’ by attackers.

We plan to explore such potential countermeasures in future
work since the implementation of them requires expensive
modifications in the LiDAR signal processing or hardware.

B. Limitation of A-HFR Attack

1) Dependency on LiDAR Scan Parameters: A-HFR attack
relies on pre-known scan patterns of the target LiDAR, but
some commercial LiDARs have variable parameters which
affect the spatial density of their scan. Misprediction of these
parameters disrupts attack angle reduction by weak synchro-
nization. For instance, if the rotation speed of the target ro-
tating LiDAR is changed, the horizontal attack angle expected
by the attacker will be distorted. However, this limitation is
relatively minor, as external observation can allow attackers to
adjust their predictions.

2) Synchronizing with Complex Scan Patterns: LiDAR
systems with complex scan patterns pose challenges to the A-
HFR attack. Such features hinder the attacker from accurately
predicting scan timings and establishing effective attack angles.
For instance, AT128 [12] has a very complicated vertical scan
pattern and we could not design a vertical angle reduction for
the A-HFR attack.

C. Ethical and Safety Consideration

We performed all experiments under controlled settings
We fully paid attention to safety in our all experiments. We
obtained official test permission on the private road we tested
and kept other people out of the testing site. The experimental
vehicle was always controlled by a human driver without
autonomous driving features. During the experiments, we wore
laser safety goggles for eye safety. and kept other people out of
the testing site. We have performed a responsible vulnerability
disclosure for related LiDAR manufacturers and AV companies
to inform our findings before publication.

VI. CONCLUDING REMARKS AND FUTURE PLANS

In this WIP paper, we identify a new LiDAR spoofing
attack termed the A-HFR attack against LiDARs to assess
the defensive efficacy of pulse fingerprinting implemented in
new-gen LiDARs. A-HFR attack addresses the limitation of
the diode overheating in the conventional HFR attack by only
emitting lasers when the LiDAR scans the target object. We
evaluate the A-HFR attack on three commercial LiDARs with
pulse fingerprinting and find that the A-HFR attack is always
effective against all three LiDARs and can successfully remove
over 96% of the point cloud within a 20◦ horizontal and
a 16◦ vertical angle, which can cover 95% of pedestrians
and vehicles over 6 m away based on our experiment. This
result poses a serious concern that current LiDARs equipped
with pulse fingerprinting might not be sufficiently robust to
the A-HFR attack. To address this, we plan to explore the
possibility of designing more secure fingerprinting with other
laser features than pulse interval.
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