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Abstract—Due to the absence of encryption and authenti-
cation mechanisms, the Controller Area Network (CAN) pro-
tocol, widely employed in in-vehicle networks, is susceptible
to various cyber attacks. In safeguarding in-vehicle networks
against cyber threats, numerous Machine Learning-based (ML)
and Deep Learning-based (DL) anomaly detection methods have
been proposed, demonstrating high accuracy and proficiency in
capturing intricate data patterns. However, the majority of these
methods are supervised and heavily reliant on labeled training
datasets with known attack types, posing limitations in real-world
scenarios where acquiring labeled attack data is challenging. In
this paper, we present HistCAN, a lightweight and self-supervised
Intrusion Detection System (IDS) designed to confront cyber
attacks using solely benign training data. HistCAN employs a
hybrid encoder capable of simultaneously learning spatial and
temporal features of the input data, exhibiting robust pattern-
capturing capabilities with a relatively compact parameter set.
Additionally, a historical information fusion module is integrated
into HistCAN, facilitating the capture of long-term dependencies
and trends within the CAN ID series. Extensive experimental
results demonstrate that HistCAN generally outperforms the
compared baseline methods, achieving a high F1 score of 0.9954
in a purely self-supervised manner while satisfying real-time
requirements.

I. INTRODUCTION

With the rapid development of Intelligent Transportation
Systems (ITS), wireless communication technologies, such as
Cellular Vehicle-to-Everything (C-V2X) [12] and Dedicated
Short Range Communication (DSRC) [10], are increasingly
employed to enhance interactions among vehicles, pedestri-
ans, and infrastructure. Through the exchange of information
among road users, ITS can prevent potential traffic accidents
and substantially improve traffic efficiency and safety. How-
ever, the extensive use of remote connections exposes smart
vehicles to the insecure internet, making them susceptible to
remote intrusion and hijacking, as reported in [2], [20].

The Controller Area Network (CAN) protocol serves as
the de facto standard for communication within in-vehicle
networks (IVNs), connecting numerous electronic control units
(ECUs). These ECUs manage various vehicle functions and

collaborate by exchanging CAN messages. However, the ab-
sence of an authentication procedure makes CAN vulnerable to
cyber attacks, lacking essential security features. Specifically,
through remote connectivity channels like C-V2X, a potential
adversary can exploit vulnerabilities to hijack an onboard ECU
and sniff CAN traffic. Moreover, the collected traffic data can
be analyzed through reverse engineering analysis techniques,
enabling adversaries to execute injection attacks on the CAN
bus and posing potential risks to the safety of the target vehicle,
pedestrians, and road infrastructures.

To address the limitations of the CAN protocol, various
types of CAN Intrusion Detection Systems (IDS) have been
proposed to monitor broadcast messages on the CAN bus and
verify the presence of injected attacks. Among these meth-
ods, deep learning-based approaches have garnered significant
attention in recent years due to their enhanced effectiveness
in identifying anomalies in high-dimensional or non-linear
time series data. However, many existing supervised and semi-
supervised deep learning methods, such as [1], [3] and [19],
encounter significant challenges when dealing with limited la-
beled data and dynamic anomalies that have not been observed
before - a common scenario in in-vehicle anomaly traffic detec-
tion. Consequently, self-supervised methods are well-received,
as they do not impose strict requirements on elaborately
and precisely labeled data. These methods can be broadly
categorized into one-class classification-based, distance-based,
and reconstruction-based methods [22].

Reconstruction-based models, such as those presented in
[5], [6], [11] and [21], are designed to reconstruct normal
samples. Instances failing to be reconstructed by the model are
deemed anomalies, expressed concretely through a significant
reconstruction error. This approach is gaining rapid momentum
due to its capability to handle complex data by integrating
with various models to capture data patterns. However, when
applied to the CAN stream, most current methods singularly
focus on either the time-domain [7] or spatial-domain [16].
Consequently, to enhance the comprehensive pattern-capturing
capabilities, these methods often incorporate large parame-
ters or layers, a process that is time-consuming and may
be unsuitable for real-time systems. Furthermore, nearly all
methods concentrate only on the CAN sequence at the current
time step, neglecting the historical association between CAN
sequences at different time steps [16] [19]. This oversight
leads to a failure to detect traffic patterns related to long-term
dependencies in CAN bus traffic.
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Fig. 1. The overview of the framework of HistCAN, which comprises a CNN-MLP hybrid encoder, a historical information fusion module and a Deconvolutional
based decoder.

To overcome the limitations of previous approaches, we
introduce HistCAN, a self-supervised method for detecting
anomalies in CAN bus traffic within a reconstruction-based
framework. HistCAN utilizes a hybrid encoder and a historical
information fusion module to learn latent features. The hybrid
encoder integrates components of Convolutional Neural Net-
works (CNNs) and Multi-Layer Perceptrons (MLPs) to simul-
taneously extract spatial and temporal features from the input
data. Concurrently, the historical information fusion module
aids in capturing long-term dependencies across different CAN
series. We demonstrate that the hybrid encoder exhibits robust
pattern-capturing capabilities, even with a reduced training
dataset, and maintains a relatively compact parameter set
for efficient real-time detection. Our contributions can be
summarized as follows:

• We propose a hybrid autoencoder (AE) architecture
that incorporates CNN and MLP components into its
encoder to simultaneously capture spatial and tem-
poral patterns, countering both known and unknown
attacks.

• We introduce a historical information fusion module
into the proposed model that can learn long-term
dependencies from CAN series, further enhancing the
model’s detection accuracy.

• The proposed HistCAN generally outperforms the
compared baseline methods, achieving a high F1 score
of 0.9954. Meanwhile, HistCAN maintains a relatively
compact parameter set and is proven to be suitable
for real-time deployment, as indicated by experimental
results.

The rest of the paper is organized as follows: in Section II, we
introduce the proposed self-supervised learning-based anomaly
detection method. Section III demonstrates the experimental
setup and provides a detailed analysis of the experimental
results. Finally, we offer a summary of the paper.

Fig. 2. Demonstration of CAN IDs preprocess procedure. Step 1: convert
CAN IDs to one-hot vector, Step 2: stack one-hot vectors to CAN ID images.

II. PROPOSED FRAMEWORK: HISTCAN

In this section, we present our proposed model, HistCAN
(as illustrated in Fig 1), which incorporates a CNN-MLP
hybrid encoder and a historical information fusion module
for CAN anomaly detection, distinguishing it from other
reconstruction-based methods. The primary components of the
model are outlined as follows.

A. Input Preprocess

The packet preprocessing methodology adheres to a similar
approach as described in [16]. The CAN stream is segmented
into individual windows, each comprising w CAN messages.
Each CAN message contains a CAN ID consisting of d
hexadecimal numbers. For model data preparation, one-hot
encoding is employed for each CAN ID, leading to a binary
representation. As illustrated in Fig 2, these encoded CAN IDs
are subsequently stacked to construct a CAN image matrix,
denoted as M , with dimensions (w, 16 × d). In this matrix,
the column size corresponds to the window size w, and each
row represents a one-hot encoded hexadecimal value.

B. Encoder with Hybrid Feature Extraction

As shown in Figure 1 (b), Convolutional Neural Networks
(CNNs) and Multi-Layer Perceptrons (MLPs) are combined
to extract features from input data, forming a hybrid encoder.
For the reshaped sequential CAN message data, i.e., matrix

2



M ∈ Rw×16×d, the latent presentation vector v is obtained as
follows:

v = concat(CNN(M),MLP (expand(M)))

where CNN is a simple Convolutional Neural Network,
MLP is a shallow Multi-Layer Perceptrons and expand is
a function expanding input CAN image into one dimension
vector in sequential order. The 2-dimensional CAN images
(i.e., M ) encapsulate bit-level spatial correlation information
among different CAN IDs, directing them to CNNs adept at
capturing local spatial image patterns. Simultaneously, the 1-
dimensional ordered CAN ID sequences (i.e., expand(M))
convey the temporal information of the CAN ID stream over
time, guiding them to MLPs aimed at learning global temporal
relationships. This fusion facilitates the capture of both spatial
and temporal features in the data, enhancing the model’s
comprehension of behaviors within CAN ID sequences.

C. Historical Information Fusion Module

In each window, a CNN-MLP model is utilized to extract
a feature vector v. However, the encoder of a AE model often
learns localized representations, neglecting long-term depen-
dencies between different windows. To preserve the temporal
context of the CAN ID series, a historical information vector
h is introduced and integrated with the latent presentation
vector v. As illustrated in Figure 1 (c), this integration is
achieved by employing an additional MLP network, generating
a new vector h′. Subsequently, h′ is concatenated with v to
create the final and comprehensive latent presentation vector
p, which is then input to a decoder for further processing.
At the conclusion of each window, h′ is looped back for
the subsequent round of historical information extraction.
Algorithm 1 describes the fusion procedure, where vt, pt,
ht and Mt are vectors, matrix mentioned before at the t-th
timestep and fuse is a function fusing historical information
and the current latent presentation vector.

Algorithm 1: Historical Information Fusion Proce-
dure

Input: previous historical feature ht−1, current
window series Wt

Output: hybrid feature pt

Initialization: initial historical feature h0 = 0;

For t in series windows counts do
vt = concat(CNN(Wt),MLP (Wt))
pt = concat(vt, ht−1)
ht = fuse(vt, ht−1)

end for
return pt;

The main objective of this approach is to maintain a
specific level of historical information throughout the feature
extraction process. Through the incorporation of the historical
information vector h and subsequent fusion, this methodology
allows for the simultaneous consideration of both current and
past information at each time step. This assists the model in
gaining a more comprehensive understanding of the long-term
dependencies within the CAN ID series. By updating h at

Fig. 3. Variation and trend of normalized CAN ID values

the end of each window, historical information is propagated
across various windows, enhancing the ability to capture
enduring patterns and evolving trends within the sequences.

D. Reconstruction Module

As shown in Figure 1 (d), we employ a four-layered
deconvolutional neural network architecture to reconstruct the
one-dimensional feature vectors (i.e., the input data X ) back to
their original size, denoted as X ′. The training objective aims
to minimize the mean squared error between X and X ′ as a
reconstruction error, serving as a measure of dissimilarity.

reconstruction error = MSE(X ,X ′)

By doing so, we aim to train the model to capture the underly-
ing patterns within normal data while demonstrating sensitivity
to anomalous patterns. Specifically, when abnormal data is
encountered, characterized by distinct patterns compared to
normal data which is not learned in the encoder and proposed
historical information module, a substantial dissimilarity be-
tween input X and output X ′ arises.

E. Anomaly Score

The Mean-Square-Error between the inputs and their re-
constructions is employed to predict the anomaly status of the
CAN Frame sequence. The sequence is classified as anomalous
if the reconstruction error exceeds a predetermined threshold,
chosen based on the loss observed during the training phase.
Thus, we consider the following formulated labeling criteria:

Y =

{
1 (anomaly) if AnomalyScore(X ) ≥ ϕ
0 (normal) if AnomalyScore(X ) < ϕ

where Y is the detection result, X is the CAN ID sequence,
AnomalyScore is the reconstruction error function, and ϕ is
the selected threshold.

F. Real-time Discussion

As studied in [23], their findings show that a simple model,
such as MLP, outperforms intricate models like transformer-
based methods in scenarios where time series data exhibit
clear trends and periodicity. A time series trend reflects the
persistent movement of the series over a specific duration,
offering valuable insights into its long-term behaviors. In
Fig. 3, the variation and trend of normalized CAN ID values,
extracted from the Car-Hacking dataset, are illustrated. The
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TABLE I. DETECTION PERFORMANCE COMPARED WITH OTHER METHODS

DoS Fuzzy gear RPM Average

F1 recall Precision F1 recall Precision F1 recall Precision F1 recall Precision F1 recall Precision

DCNN(supervised) [19] 0.9995 0.9989 1.0 0.9980 0.9965 0.9995 0.9994 0.9989 0.9999 0.9996 0.9994 0.9999 0.9996 0.9994 0.9999

GIDS [16] 0.9818 0.9960 0.9680 0.9839 0.9950 0.9730 0.9865 0.9900 0.9830 0.9729 0.9650 0.9810 0.9813 0.9865 0.9763

SSAD-NP [18] 0.9833 0.9916 0.9751 0.8861 0.8345 0.9445 0.9261 0.8803 0.9768 0.9850 0.9983 0.9720 0.9451 0.9262 0.9671

Hybrid-AE(ours) 0.9871 0.9810 0.9933 0.9913 0.9853 0.9974 0.9919 0.9905 0.9934 0.9939 0.9923 0.9954 0.9911 0.9873 0.9949

HistCAN(ours) 0.9972 0.9952 0.9992 0.9973 0.9960 0.9985 0.9907 0.9895 0.9919 0.9964 0.9951 0.9976 0.9954 0.9940 0.9968

CAN ID stream manifests a highly cyclical pattern. Therefore,
instead of employing a complex deep neural network with a
large number of parameters and layers for powerful feature
extraction, we opt for a lightweight CNN-MLP hybrid encoder.
This choice allows us to achieve comparable performance with
a relatively compact parameter set. By reducing the model
parameter size, HistCAN attains improved detection speed,
aiming to meet the real-time requirements of real-world vehicle
applications (see real-time analysis in the following section).

III. EXPERIMENTAL EVALUATION

A. Implementation

The proposed HistCAN and its variant are implemented
using PyTorch [13] and trained with the Adam optimizer [9]
employing a learning rate of 0.0001, and a fixed batch size
of 128. The reconstruction threshold ϕ is set µ+ 3σ = 0.006
where µ is the mean reconstruction loss on normal data and
σ is the empirical standard deviation.

For the details of the model, we first define Conv2(k, s, c,
p) to denote a 2D convolution layer, where k, s, c and p are the
kernel size, stride size and the number of channels respectively.
L(i, o) is defined to denote a linear layer, in which i and o
are input and output dimensions. For Car-hacking dataset, we
implement the encoder using four convolution layers: Conv2(5,
2, 128, 1)-Conv2(5, 2, 256, 1)-Conv2(5, 2, 256, 1)-Conv2(5,
2, 128, 1) and three linear layers: L(48×48, 1024)-L(1024,
256)-L(256, 48). The decoder is implemented as Dconv2(4, 2,
256, 1)-Dconv2(4, 2, 256, 1)-Dconv2(4, 2, 128, 1)-Dconv2(4,
2, 1, 1), where Dconv2 denotes the 2D deconvolution layer.
Historical information and current representations are fused
by an two linear layers: L(432, 48)-L(48, 48). Except for the
last Dconv2, each layer is followed by a batch-normalization
(BN) [8] and a ReLU activation. We utilize a sliding window
to obtain a set of sub-series [17], with a fixed window size
of 48. All experiments are conducted on a NVIDIA GeForce
RTX 3060 12GB GPU and a 11th Gen Intel(R) Core(TM)
i7-11700F @ 2.50GHz 16GB CPU.

B. Dataset

We evaluate the proposed HistCAN on the Car-Hacking
dataset [4] [16] which is currently the most widely used dataset
in the literature for evaluating CAN-based IDSs [14]. The
dataset was collected from a real vehicle Hyundai YF Sonata
with injected attacks. It comprises 5 subsets, including 500
seconds of benign data (collected during normal driving) and
four attack types: DoS, Fuzzing, and two Spoofing attacks
(RPM and gear). Each attack subset involves 300 instances
of individual intrusions (message injections). For additional
details, we direct readers to [4].

C. Main Results

The proposed model is trained in self-supervised paradigm,
with only normal data collected in Car-Hacking dataset. It is
subsequently tested on four types of attack data, combining
both normal and abnormal traffic.

We compare the proposed model with several conventional
and deep learning based methods for CAN bus anomaly
detection as baselines. These include DCNN, a supervised
method [19], and two self-supervised methods: GIDS [16] and
SSAD-NP (Self-Supervised Anomaly Detection Using Noised
Pseudo Normal Data) [18].

DCNN is a supervised model with high accuracy. We
select it as our baseline with the goal of approximating the
performance of the best-supervised model using our self-
supervised approach. GIDS is a self-supervised model based
on GAN, demonstrating an ability to identify unknown attacks
with an accuracy of nearly 98% using only benign data. SSAD-
NP is another self-supervised model employing noised pseudo-
normal data to delineate the boundary between normal and
abnormal CAN traffic, achieving significant accuracy. To show
the importance of the major component, we also conduct
comparisons with a variant of HistCAN which is without the
historical information fusion module and uses only a CNN-
MLP hybrid encoder (denoted as Hybrid-AE).

We utilize F1-score, recall, precision, and AUC (Area
Under Curve) as evaluation metrics to assess HistCAN’s per-
formance against message injection attacks. Precision gauges
the detector’s accuracy in predicting anomaly traffic, while
recall measures its ability to detect all anomaly traffic. The
F1-score offers a comprehensive evaluation of the detec-
tor’s overall performance by harmonizing the aforementioned
metrics. Finally, AUC is determined by calculating the area
under the Receiver Operating Characteristic (ROC) curve with
varying thresholds. A higher AUC value indicates superior
performance in detecting anomaly traffic and reducing the false
alarm rate.

Quantitative results are given in Table I. We can see
that the proposed HistCAN model and its variant Hybrid-AE
generally outperforms the compared methods. Thanks to the
CNN-MLP hybrid encoder extracting both spatial and temporal
patterns, Hybrid-AE generally exhibits superior performance
compared to GIDS and SSAD-NP, achieving a high precision
of 0.9949 and an impressive F1-score of 0.9911 on average.
Moreover, the incorporation of the historical information fu-
sion module into HistCAN helps to acquire extra knowledge
between individual sequences and enhances the performance
of Hybrid-AE, further boosting the average F1 score, recall,
and precision to 0.9954, 0.9940, and 0.9968, respectively. Note
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Fig. 4. AUC scores of HistCAN across all attack types.

that DCNN attains the highest performance metrics. However,
DCNN requires training with traced attack data, whereas our
proposed HistCAN model achieves comparable performance
using only benign data, which is more practical for real-world
applications. In addition, Fig 4 shows the AUC scores of
HistCAN across all attack types. We can see that HistCAN
attains AUC scores surpassing 0.9980 for every attack type,
indicating the high performance of the proposed model.

TABLE II. F1 SCORES WITH DISTINCT TRAINING DATA SIZES

train data size DoS Fuzzy gear RPM Average

10,000 0.9935 0.9884 0.9406 0.9654 0.9720
20,601 0.9972 0.9973 0.9907 0.9964 0.9954

To assess the model’s robustness under limited training
resources, we conducted an additional experiment wherein
HistCAN was trained with a dataset reduced by half. Table II
presents the F1 scores of HistCAN for the two distinct training
dataset sizes. Notably, even with a halved training dataset,
HistCAN can learn meaningful patterns and attains perfor-
mance comparable to the full dataset.

TABLE III. DETECTION SPEED OF HISTCAN

DoS Fuzzy gear RPM Average

frame per seconds(GPU) 9145 9312 8998 8305 8940
frame per seconds(CPU) 2834 2905 2524 2504 2692

It is imperative for an IDS to satisfy the latency demands
of real-world applications, particularly for resource-limited
vehicles. Fig 5 illustrates the Kernel Density Estimation (KDE)
[15] of the normal data collected from a real Hyundai YF
Sonata vehicle in the Car-Hacking dataset, providing insight
into the underlying distribution of CAN frames per second
on the CAN bus. As depicted in Fig 5, the concentration of
CAN frames per second is predominantly below 2000 frames
per second. Meanwhile, we assessed the detection speed of
HistCAN on both CPU1 and GPU2, as detailed in Table III.
The average detection speed on GPU reached 8940 frames

111th Gen Intel(R) Core(TM) i7-11700F @ 2.50GHz
2NVIDIA GeForce RTX 3060

Fig. 5. Kernel Density Estimation (KDE) of the normal data collected from
the Car-Hacking dataset.

per second, whereas on CPU, it was 2692 frames per second.
Consequently, the proposed HistCAN detector demonstrates
the capability to achieve real-time monitoring even with the
use of inexpensive, generic CPUs.

IV. CONCLUSION

This paper introduces a novel IDS named HistCAN de-
signed for CAN bus anomaly detection. In HistCAN, we
employ a hybrid CNN-MLP structure to acquire a spatial-
temporal representation. This representation captures multidi-
mensional information from CAN sequences, encompassing
spatial and temporal perspectives. Additionally, HistCAN in-
tegrates a historical information fusion module to grasp long-
term dependencies across CAN ID series, thereby enhancing
detection accuracy and overall performance. Evaluation results
demonstrate that, in comparison to various state-of-the-art
methods, HistCAN attains superior performance on the Car-
Hacking dataset in a self-supervised manner, without the need
for labeled attack data.
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