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Abstract—Autonomous systems are vulnerable to physical
attacks that manipulate their sensors through spoofing or other
adversarial inputs or interference. If the sensors’ values are
incorrect, an autonomous system can be directed to malfunction
or even controlled to perform an adversary-chosen action, making
this a critical threat to the success of these systems. To counter
these attacks, a number of prior defenses were proposed that
compare the collected sensor values to those predicted by a
physics based model of the vehicle dynamics; these solutions
can be limited by the accuracy of this prediction which can
leave room for an attacker to operate without being detected. We
propose AVMON, which contributes a new detector that substan-
tially improves detection accuracy, using the following ideas: (1)
Training and specialization of an estimation filter configuration to
the vehicle and environment dynamics; (2) Efficiently overcoming
errors due to non-linearities, and capturing some effects outside
the physics model, using a residual machine learning estimator;
and (3) A change detection algorithm for keeping track of the
behavior of the sensors to enable more accurate filtering of
transients. These ideas together enable both efficient and high
accuracy estimation of the physical state of the vehicle, which
substantially shrinks the attacker’s opportunity to manipulate the
sensor data without detection. We show that AVMON can detect
a wide range of attacks, with low overhead compatible with real-
time implementations. We demonstrate AVMON for both ground
vehicles (using an RC Car testbed) and for aerial drones (using
hardware in the loop simulator), as well as in simulations.

I. INTRODUCTION

Autonomous Vehicles (AVs) [43] are capable of operating
without the presence of a human controller (see Fig. 1). The
National Highway Traffic Safety Administration (NHTSA)
defines AVs as “those in which at least one aspect of safety-
critical control function occurs without direct driver input” [3].
AVs include aerial, ground, and marine vehicles that are fore-
cast to become an integral part of our life [48]. For example,
the unmanned aerial vehicles market is already estimated at
USD 19.3 billion in 2019 and projected to reach USD 45.8
billion by 2025 with applications ranging from agricultural

management to aerial mapping and freight transportation [25].

We consider a threat model where an adversary compro-
mises the sensors of a victim autonomous vehicle [11], [44].
Compromising or tampering with any of these sensors may
destabilize an AV or even allow attackers to cause damage
to the system and even injuries to people using it or in its
vicinity. For instance, an attacker may use GPS spoofing [29],
by leveraging a nearby radio transmitter to create malicious
GPS signals, leading to wrong location or velocity estimates.
Moreover, transducers are components that are responsible
for converting physical signals into digital measurements. A
transduction attack leverages the limitations of the physical
processes of a transducer to cause measurement errors to the
attacker’s advantage. For example, sound waves can affect
accelerometers and make them report incorrect values [57].
Manipulating the sensor readings can cause the vehicle con-
troller to react in an erroneous way leading to safety and other
concerns.

Conventional security approaches such as software security,
memory protection, authentication, and cryptography fall short
in safeguarding AVs from real-world physical threats. Physics-
Based Attack Detection (PBAD) [21] offers a promising so-
lution, modeling vehicle dynamics to predict future states and
capturing relationships between user inputs, control actions,
and system states. Anomalous sensor inputs are identified by
deviations from the predicted model state. Recent defenses,
like [11], [44], use Kalman Filter (KF) to predict future phys-
ical states and detect attacks by comparing them with sensor
readings. The accuracy of the detector’s estimate is crucial
for detection performance. Models with inaccurate estimates
require looser detection thresholds to avoid false positives,
and therefore provide an attacker with greater opportunity
to manipulate sensor data without being detected. We show
that current PBADs have some limitations that impact their
accuracy, enabling the development of attacks that remain
below the PBAD’s detection thresholds.

We propose AVMON a new framework for protection
against sensor manipulation attacks. AVMON improves the
detection performance relative to prior PBADs using three new
ideas. First, it optimizes the parameters of the state estimator
to tune the model to the vehicle dynamics and operating
environment, leading to more accurate KF. The second op-
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portunity arises due to the limitations of KF, even when using
the Extended Kalman Filter (EKF) which accounts for non-
linear dynamics. Due to the step-wise linear extrapolation,
the EKF algorithm can experience inaccuracies in estimation
under highly dynamic situations where the linear assumptions
do not hold [7]. In parameter estimation, more advanced non-
linear filters are used when high accuracy estimation is desired
(e.g., Particle Filters [22], etc.). However, these filters are
computationally expensive making it difficult to use them
in a real-time setting. As a result, KF generates inaccurate
predictions for trajectories with dynamic behavior and dis-
continuities (e.g., around turns and changes of direction). To
reduce this error, AVMON incorporates a residual estimation
machine learning model. The model compensates for errors
resulting from the nonlinear dynamics of the system as well
as external disturbances that are difficult to model. Residual
learning model closes the gap between KF and advanced non-
linear filters, and captures effects in the training data not
captured by the physical model. Finally, we leverage a change
detection model that analyzes the sensor data to discriminate
true changes of state from transients, reducing false positives,
and improving detection accuracy.

We study the performance of AVMON using a number of
testbed and simulation studies. We use both a programmable
Remote Controlled (RC) vehicle testbed and a hardware-in-
the-loop Unmanned Aerial Vehicle (UAV) testbed to study how
AVMON performs compared to recent defenses [44], [14]. In
addition, we evaluate the system in different attack scenarios,
and profile the code execution on the testbeds and show
the performance overhead is low, making AVMON practical
to deploy. Overall AVMON substantially improves detection
performance relative to Savior [44] and PID-Piper [14]. It
improves both accuracy and Time-To-Detection (TTD), which
also limits the opportunity for the attackers to compromise the
system.

In summary, the paper makes the following contributions.

• We propose AVMON which uses three new techniques
to improve the performance of physics-based attack
detection models. AVMON leverages a residual-based
machine learning model to efficiently incorporate non-
linear effects and unmodeled perturbations into the KF
estimate. It also optimizes the KF parameters to tune
them to the vehicle and environment and uses a change
detection model to reduce false positives.

• We demonstrate attacks against AVs that can bypass
previous defenses, enabling an attacker to impact
AVs’ operation substantially (including attacks where
we crash a drone before the attack is detected). We
show that AVMON with its higher detection accuracy,
substantially reduces the threat surface available to
attackers.

• We evaluate AVMON under different conditions
using both simulation and testbeds and for both
ground and aerial vehicles. We made the source code
for the testbed implementation openly available at
https://github.com/avmon/avmon proj.git.

II. SENSOR MODALITIES AND THREAT MODEL

This section provides some background on common sensor
modalities in AVs and their use in constructing state-space

Fig. 1: General overview of the autonomous vehicle.

Fig. 2: Vehicle motion axes Fig. 3: Quadcopter motion
axes and controls

estimation. We then present the threat model we assume in
this paper. AVs [54] typically include a mix of sensors such
as radar, camera, ultrasonic, Light Detection and Ranging (Li-
DaR), Inertial Measurement Units (IMUs), etc. Radar sensors
monitor the position of neighboring vehicles. Video cameras
are used to detect traffic lights, road signs and track other
vehicles. Ultrasonic sensors detect curbs and other vehicles
during parking maneuvers. LiDAR sensors detect road edges
and identify lane markings. IMUs [15] measure a vehicle’s
angular rate and force by combining a 3-axis linear accelerom-
eter and gyroscope to track a vehicle within six axes of
motion. Specifically, IMU traces both linear (X, Y, and Z) and
rotational components: (1) pitch, rotating a vehicle upwards
or downwards; (2) roll: rotating, the vehicle sideways; and (3)
yaw: rotating, the orientation of the vehicle. These six axes
allow the full vehicle position and orientation to be tracked
in real-time. These sensor streams are processed by software
modules that use them to generate and adapt trajectory paths,
which are effectuated by sending control signals to the ve-
hicle’s actuators to control acceleration, braking, and steering.
To visualize these axes, the inertial frames of a ground vehicle
and a quadcopter are shown in Figures 2 and 3 respectively.

Threat Model: We consider attacks where one or more of
the sensors on an AV are interfered with by an attacker either
directly or indirectly (e.g., using transduction attacks) [43].
Since these sensors are critical to the AV’s estimation of its
behavior and that of the environment, compromising sensors
may lead to erroneous estimates of its operating state, leading
to control actions from the AV that serve an attacker’s goal.
For example, the attacker may exploit the vehicle to cause
property damage, block emergency traffic, or cause accidents
and bodily injury. Prior work has shown that a range of
common sensors are vulnerable to attacks including those that
target IMUs [53], [58], RADAR sensors [34], LiDAR [50],
ultrasonic sensors [34], camera sensors [34], [42], GPS signals
[39], etc.

The required attacker access for successfully launching
these attacks varies substantially across attacks and in ways
that are specific to the target sensors and their implementa-
tions. For example, GPS signals [43] do not contain authen-
tication information and are susceptible to spoofing attacks.
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Conversely, LiDAR [9] is used for measuring distances to
surrounding obstacles using infrared lasers, can provide 360◦

viewing angles, and generate 3-dimensional representations
of the road environment. A LiDAR spoofing attack can be
performed by replaying the LiDAR laser pulses from different
positions to create fake points further than the location of the
spoofer [42]. Our threat model is similar to previous research
in physical attack detection, where we assume an adversary
that can inject false signals in one or more of the sensors used
by AVs at a time. Our defense can also be used to predict and
monitor actuator commands that are potentially controllable by
an attacker, although we do not demonstrate this in this paper.

We assume that the attacker cannot compromise or bypass
our invariant-checking module, which can potentially be sup-
ported using hardware trusted execution environments [12],
[31]. The primary strategy of these attacks is to inject a
time series of biased attack values so that ya = y + bias,
where ya is selected to harm the system. We also consider
sophisticated attacks, where the attacker employs different
strategies to evade detection; for example, an attacker may
generate an adversarial example where ya is selected to cause
small incremental drift in the state of the AV. We do not
consider the actions to be taken after an attack is detected; this
is a difficult problem and context sensitive decision that can
be handled in some scenarios by dropping to a safe operating
mode or alerting the operator.

III. SYSTEM INVARIANTS AND ATTACK DETECTION

We next provide a brief review of the autonomous system’s
dynamics, including aerial and ground vehicles, which serve
as the basis of the models used within AVMON. We then show
how these models are used as part of a physics-based attack
detection defense.

A. Physics-based System invariants

Aerial vehicles, such as quadcopters [8], control movement
through four rotors. Motor pairs generate opposing torques
for equilibrium, allowing constant heading during hovering.
Yaw control adjusts motor pairs for a counter torque, and
altitude is managed by equal thrust changes. Lateral movement
is achieved by varying relative motor speeds. A quadcopter
can move in six degrees of freedom; longitudinally (forward
and backward), vertically (up and down), and laterally (right
and left), by controlling the differential thrusts to the rotors.
It can also move rotationally among each axis to produce roll,
pitch, and yaw movements. The basic quadrotor parameters
that depict Euler angles [26] including roll, pitch, yaw, and
body coordinate frame, can be shown in Fig. 3. The model
for a four-wheel vehicle is also well studied [4], [41]. This
model has two degrees of freedom that are represented by the
vehicle’s lateral position and the yaw angle.

B. Physics-based attack detection

Monitoring the physics of cyber-physical systems [47] to
capture sensor attacks is a growing area of research. Our
contribution is to substantially improve these predictions for
AVs by improving the extended Kalman Filter estimator by
learning its optimal configuration, leveraging residual learning
to compensate for nonlinear dynamics, and using context

information to filter out transients and reduce false positives.
Physics-based attack detection can be thought of as a security
monitoring system that creates a time-series prediction model
of sensor readings for the autonomous system and identifies
anomalies as deviations between the predicted and actual
sensor readings. Thus, such a framework consists of 1) Phys-
ical model prediction and 2) Anomaly detection. A physical
vehicular system can predict the expected future measurements
using a state-space representation that describes the physical
system as a set of inputs, outputs, and state variables. In
general, the control invariants model can be represented as
follows [35]:

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1)

where x(t) is the state variables, u(t) is the system inputs and
y(t) is the system outputs. Equations 1 determine the next state
and output of the system based on the current state and control
signals. Specifically, A, B, C, and D are matrices modeling
the state and inputs of the system as follows: A represents
the time-invariant dynamic state matrix; B, the time-invariant
input matrix; C, the time-invariant measurement matrix; and
D, the time-invariant feedforward matrix.

IV. AVMON DESIGN OVERVIEW

Fig. 4 shows AVMON design. It consists mainly of sen-
sors pre-processing, prediction process, residual learning, and
anomaly detection function. These components work together
in a real-time/online manner to achieve substantially higher
attack detection accuracy by improving the physics-based
prediction and anomaly detection components. In our work,
we use the Extended Kalman Filter (EKF) that was designed
for nonlinear system estimation and filtration. AVMON starts
by receiving the sensor data as input and uses it to predict
the next state in the prediction model. Finally, the anomaly
detection algorithm compares the predictions to the sensor
values to detect attacks.

AVMON improves the prediction using two ideas: (1) it
uses an optimization algorithm that is executed offline to
configure the primary EKF module to operate more accurately
with respect to the AV parameters; and (2) it uses residual
learning to compensate for the nonlinear dynamics of the
model that are not captured effectively by the EKF. Finally, in
the anomaly detection process, a time series of residuals rk,
i.e., the difference between the received sensor measurement
yk and the predicted or expected measurement ŷk, is used
to detect unusual deviations and raise an alarm if the sensor
values are sufficiently different from the predicted values. We
improve anomaly detection by using a change-aware model
instead of just looking for deviations between predictions and
sensor data to monitor the sensor data for self-consistency
over time and reduce false positives. Fig. 5 shows the offline
optimization or training components.

Data Collection and Preprocessing: We collect the vehicle
operation profile data, including input states and sensor values
such as velocity, acceleration, latitude, and longitude. Simul-
taneously, we preprocess the data, converting GPS readings to
flat-Earth coordinates (X , Y , and Z) and using Inertial Mea-
surement Unit (IMU) data to calculate orientation parameters
(roll, pitch, and yaw angles).
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Fig. 4: AVMON system overview.

Fig. 5: AVMON offline learning and optimizing.

A. Model Parameter Optimization

AVMON predicts the AV states using an Extended Kalman
Filter (EKF) [27]. EKF is a lightweight algorithm that does
not require historical data, using only the previous state infor-
mation to predict the next state. EKF is capable of modeling
nonlinear estimation problems but uses piece-wise linearization
between estimation steps. EKF uses Bayesian inference to
provide an estimate of the joint probability distribution over
the variables for each time frame.

We take sensory measurements and previously estimated
outputs as the inputs to the EKF model to predict the following
sensor states. The model has two procedures; (1) prediction
and (2) correction. The first component takes the last sensors’
values estimation and the current sensor readings to generate
predicted sensor values for the next time step. However, these
predicted values are refined to account for the nonlinear nature
of the estimation process. Specifically, the covariance matrix
of the estimation error (i.e., the error between the actual
measurements and the predicted states) and the state transition
matrix (encapsulating the equations for the vehicle dynamics)
are used to obtain the predicted states.

The second component is the correction procedure: this
component uses the previous sensors’ values predictions, the
observation matrix (i.e., a transformation matrix that trans-
forms the AV system from the physical state space to mea-
surement space), and the covariance of the measurement noise
to compute the Kalman gain. The Kalman gain is defined
as the ratio of the uncertainty in a predicted state to the
uncertainty in the predicted state in addition to the uncertainty
in measurement readings or message data. As a result, we
get the sensor value predictions that are corrected using the
measurement and covariance updated matrices. The outputs of
this procedure will be used in the Residual Learning module
and will feed the next iteration of this algorithm.

To define the dynamics and control algorithm to be used in

the EKF for prediction, we use System Identification (SI) [52]
to extract the AV control invariants and equations that describe
how the vehicle behaves given the control objectives (e.g., a
reference position) and the current states. We use a MATLAB
built-in function [1] to derive such equations through regres-
sion over a set of collected traces of vehicle operation.

Since EKF can generate errors in predicting the dynamic
behavior of many systems due to the poor tuning of some
of its parameters, such as the covariance matrices Q and R
respectively, these parameters have to be tuned to improve the
model performance. Thus, we use a Genetic Algorithm (GA)
to tune these parameters based on measurement data. Note
that this is an offline procedure as shown in Fig. 5. GA [40]
is a method for solving both constrained and unconstrained
optimization problems that are inspired by the Human genetic
process of passing genes from one generation to another. GA is
a tool to aid in the system identification process as it is used to
compute the optimal coefficients. We model the AV dynamics
prediction competence by evaluating its accuracy based on its
coefficients. The specific coefficients corresponding to the EKF
model are represented as a typically binary array, which can be
viewed as a chromosome carrying genetic information about
the individual (candidate set of parameters for the EKF model
in our case). Thus, GA starts from a widely dispersed initial
population of coefficients setups for the EKF model design
and converges to the best coefficients’ estimation. Note that
other non-linear optimization approaches could also be used.

B. Residual Learning

Since EKF approximates a nonlinear physical system (e.g.,
the quadcopter) using a piece-wise linear process, the predic-
tion suffers large inaccuracies and filter instability in highly
dynamic scenarios [60]. The prediction can be inaccurate in
terms of the individual predicted values and the error can
accumulate causing substantial divergence from the real-time
state. When an AV vehicle changes its trajectory slowly, linear
extrapolation between steps is effective and prediction errors
are low. However, in more dynamic scenarios, such as sharp
change of direction or start-stop behavior, the model will
experience errors that can accumulate. For more effective
detection, we need to minimize the generated error between
the predicted and observed measurements.

One approach uses a more complex filter that models the
nonlinear behavior between steps, but such complex filters
rapidly become computationally prohibitive, especially for
embedded controllers [6]. Moreover, they may not account

4



Fig. 6: General structure of AVMON residual learning neural
network module.

for sensors’ noise and other perturbations that arise in the
real world. Thus, we approach this problem using machine
learning to predict the residual sensor values (the expected
deviation between the EKF prediction and the measurements).
To learn the residual dynamics, we use a neural network model
shown in Fig. 6. The model uses one input layer and three
hidden layers, with 256, 128, and 64 neurons respectively,
with rectified linear (ReLu) activation function. We used this
architecture consistent with recommendations for the type of
problem that recommend 3–5 hidden layers for this type and
size of problem [19].

The inputs consist of the sensors readings such as the
location and orientation of the AV. Having a large first hidden
layer and following it up with smaller layers will lead to better
performance as the first layer can learn a lot of lower-level
features that can feed into a few higher order features in the
subsequent layers. The output layer represents the prediction
errors that can be used to validate the outputs coming from the
EKF equations. Identifying the set of features that are most
discriminative with respect to identifying anomalies from the
large set of features (e.g., roll speed, pitch rate, yaw rate,
altitude) can be challenging. We use a Sequential Forward
Selection (SFS) algorithm, shown in Algorithm 1 [24], to
reduce the feature space. SFS starts from an empty set and
continues to add features based on their impact on the residual
prediction model until a subset of the most salient features of
size K is reached.

Discussion and Limitations: It is natural to ask why would
a learning module be able to capture non-linear dynamics that
are not captured by EKF. We believe that the key observation is
that AVs have predictable behavior that may be learned. While
EKF and other filters extrapolate based on the current state
and the underlying model, they cannot predict likely control
actions and operating contexts. The model also learns external
disturbances such as impact of weather to the extent that it
is exposed to them in the training data. A limitation of our
approach is that the residual accuracy may drop if there is
concept drift (e.g., completely novel operating conditions or
regimes). We believe that the current generation of AVs is
likely to be targeted towards a known subset of environments,
with sufficient training data to reduce this risk. Moreover,
there is a rich and growing body of work for learning and
operation in the presence of concept drift [20]. We can
leverage such techniques to incorporate continuous learning,
or alternatively concept drift detection and model selection.
It is also possible to increase the number of sensors (e.g.,
incorporating anemometers (wind sensors) and extending the
model or the residual learning module to account for them.
We hope to explore these directions in our future work.

C. Online Anomaly and attack detection

To mitigate false positives from transient states and sensor
noise, we implement a change detection algorithm [55]. Instead
of relying solely on the instantaneous error between prediction
states and sensor observations, this algorithm examines the
self-consistency of predicted data over time. In our anomaly
detection method, pre-processed sensor readings I(k) generate
predicted sensor values Y (k+1) using the EKF algorithm. We
then update the predicted residual e(K) using a neural network
to compute the final residuals, expressed as:

ri(k) = I(k)− Y (k)− e(K). (2)

To address transient errors caused by PID control algorithm,
we employ a statistical detection test based on sequentially
discounting autoregression time series modeling (SDAR) [46].
SDAR discounts older data values, prioritizing recent ones,
making it effective for online change point detection. This ap-
proach outperforms many detection algorithms, enabling early
detection of malicious values and minimizing false positives
from transient errors.

In AVMON, the anomaly detector algorithm, SDAR, keeps
track of the historical changes of the residuals instead of a fixed
time window to prevent an attacker from hiding their attack
between time windows. In each iteration, new residuals data
arrives each time frame with (t = k + 1, k + 2, ...). Here, we
define a parameter S that represents the anomaly score value
and is calculated as:

Sk = Θ̂i(Sk−i − µ̂) + µ̂ (3)

where variances-covariances vector µ̂ characterizes the vari-
ance and covariances among residuals data, and Θ represents
the weights assigned to the past residuals at different time
lags when calculating the current anomaly score. For example,
if your anomaly detector is sensitive to recent changes and
less influenced by distant past observations, you might have

Algorithm 1 Sequential Forward Selection Algorithm

Parameters:
S → a whole d-dimensional feature set as input
ek → total error when using selected features.

Result:
XK → {xj | j = 1, 2, ..., k;xj ∈ S}, k = (0, 1, 2.., d)

▷ a list of the critical features (R) used for our ANN model

Require:
S ← {s1, s2, ..., sd}
e←{∞}
Initialization:
X0 ← 0
k ← 0
while k < K do

e+ ← argmine(e, e(Xk + x+)) < e, where x+ ∈
S −Xk

k ← k + 1
if e+ < e then

Xk ← Xk + x+

S ← S − x+

end if
end while
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Fig. 7: Front wheel testbed vehicle.

a diagonal matrix where the main diagonal contains higher
weights for recent lags and lower weights for older lags. It is
essential to note that the optimal values for these parameters
often require experimentation and tuning based on a specific
application and dataset. Finally, once S exceeds a predefined
threshold, an anomaly alarm will be triggered.

V. PERFORMANCE EVALUATION

Implementation: We implemented our approach using
CARLA simulator [16] which is an open urban driving sim-
ulator to support the development, training, and validation of
autonomous urban driving systems. Then, our approach was
applied to two different AVs (aerial and ground). In CARLA,
the vehicle becomes autonomous through the subdivision
of driving tasks into perception, planning, and continuous
control. The perception stack utilizes semantic segmentation
with the RefineNet [33] model, estimates lanes, road limits,
and hazards. A state machine-based local planner manages
driving states, and continuous control employs a PID controller
for steering, throttle, and brake based on current position
and waypoints. AVMON program implementing the system
algorithm uses actors in the simulation and their interactions
with sensors via designated APIs.

For the aerial AV, we utilized Dronecode’s PX4 autopi-
lot on dedicated hardware, Pixhawk 4 [2], powered by a
32-bit ARM Cortex M7 processor. The Pixhawk board in-
cludes sensors like accelerometer, gyroscope, magnetometer,
and barometer. The simulation employs Gazebosim [30], and
mission control inputs are managed through QGroundControl.
Additionally, a Python module representing AVMON is im-
plemented on a Raspberry Pi 3, acting as a flight controller
for the PX4. Our ground vehicle, based on the AVWLtoys
A242 model as shown in Fig. 7, is Raspberry Pi 4-powered
with an HD camera and motor drive controller for autonomy.
Motors are controlled through PWM signals from GPIO, using
on-board battery power. The vehicle features infrared speed
encoders, a TOF LiDAR (VL53L1X), and operates on the
Robot Operating System (ROS). Our AVMON is implemented
as a ROS node, receiving sensor measurements and showcasing
adaptability to diverse autonomous vehicles despite differences
in invariants, real-time requirements, and environments.

Experimental Setup: We evaluate AVMON on PX4 autopilot
running on Pixhawk 4 and Gazebosim for the aerial vehicle
and ROS Kinetic Kame[56] running on Raspberry Pi 4 for the
ground vehicle. We also use the CARLA autonomous vehicle
simulator that runs on Windows 10 64-bit.

Our experiments are based on maps designed in the
CARLA simulator for training, testing, and validating. For real

(a) Real image.

(b) Injected image.

Fig. 8: A visual attack on a ground vehicle.

experiments, we performed missions to obtain real data sets
containing information obtained from different trajectory sce-
narios, including simple (i.e., low curvature) and complex (i.e.,
increased curvature) ones with varying settings of velocity. We
separate the dataset into separate training and testing data sets.
To avoid overfitting, we use k-fold cross-validation and apply
random drop-out to regularize the network during training. We
also tried L2 regularization [38] as an alternative to random
drop-out, which resulted in slightly lower test accuracy.

Attack benchmarks: The attacks manipulate directly sensor
data at the interface between the control code and sensor mod-
ules. This approach permits various malicious interferences,
including publishing false sensor data to compromise inertial
and GPS sensors, control signal spoofing affecting steering
and the motor pulse width modulation (PWM ) signals, and
parameter corruption by modifying control parameters (e.g.,
PID control coefficients) at run time. As an example, an attack
node replays a chosen image at a higher rate than the camera,
compromising visual data and influencing steering decisions,
as represented in Fig. 8.

Creating simple attacks by adding bias values stochastically
to sensors can introduce significant errors – these attacks are
straightforward to detect once the errors exceed the thresholds
of the detectors. Consequently, we also consider an advanced
adaptive attack where the attacker is aware of the internals of
this detector and attempts to carry out attacks such that they
fool the detector eventually (so called Frog Boiling attack [10],
[13]). Specifically, the error at any point between observed
values Vo and estimated output Ve has to be larger than a
predefined threshold τ to raise an anomaly alarm. the attacker
triggers stealthy attacks in a controlled manner where |Ve−Vo|
never exceeds τ because the error remains under the threshold
τ at any time, the attack should remain undetected. We try
the attacks across all of our scenarios and for both ground
and aerial AVs to test the defenses across a range of operating
conditions.

A. AVMON characterization

In the first set of experiments, the impact of the individual
components of our solution is evaluated as they together track
closed loop and straight line trajectories. The average and
maximum errors of each component are shown in Table I.
In a straight line track, using only the default EKF estimator
after configuring its relevant parameters can cause an error
up to almost 9 meters and an average of 1.77 meters, espe-
cially during the turn maneuver for the vehicle. After using
GA optimization to configure the EKF, the prediction error
becomes significantly lower. However, it experiences spikes of
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Cyclic track Straight track
Components Avg Max Avg Max

EKF 1.77 8.92 0.08 0.16
EKF+GA 1.06 6.46 0.042 0.08

EKF+GA+RL 0.16 0.49 0.03 0.05

TABLE I: Average and maximum errors (distances in meters)
of main components in AVMON.

Fig. 9: An example of a velocity attack on an AV.

Fig. 10: Anomaly detection under the attack (in Fig. 9).

up to 6.5 meters during turns and an average of 1.06 meters.
Finally, considering the Residual learning (RL) component
further decreases the prediction error to be less than 0.5 meters
at its maximum and 0.16 meters on average (a 10x reduction
from just EKF) because it compensates for the non-linear
effects that challenge the EKF estimator. For the straight track,
the average error using only the default EKF estimator was not
high (0.08 meters) with the RL component slightly improving
prediction error (0.03 meters).

Next, we evaluate our anomaly detection performance. In
Fig. 9, we trigger a malicious wheel speed sensor attack. As
the attack started at time 12 secs, the signal was replaced with
a malicious value. The ground vehicle tried to compensate to
correct its orientation, causing large deviations from trajectory
potentially leading to a crash. Fig. 10 shows the anomaly
score over time using SDAR, which rapidly detects the attack
crossing the detection threshold line. An anomaly score S
quantifies the historical deviation based on SDAR. If S >
threshold, then an alarm is raised.1 Similarly, we launched
GPS, IMU, and gyroscope attacks during quadrotor missions:
AVMON caught all the attacks successfully within 0.2 secs
(on average) after the attack launch.

B. Comparison to Savior

We performed a series of experiments comparing AVMON
and SAVIOR [44]. The experiments use the CARLA simulator,
as well as our ground, and aerial vehicle testbeds. Recall
that SAVIOR uses an EKF for tracking vehicle state, and
a cumulative sum (CUSUM) [37] algorithm for anomaly
detection.

1) Prediction performance: In the first experiment, we use
a quadrotor under our different scenarios, which differ in

1A video demonstrating the attack can be found at this link.

Curvature Velocity Mid-air
stops

AVMon
accuracy

SAVIOR
accuracy

High High No 98.77% 89.19%
High Low No 100.0% 95.03%
High Low Yes 99.44% 88.72%
Low High No 100.0% 97.62%
Low Low No 100.0% 98.26%
Low Low Yes 100.0% 97.58%

TABLE II: Prediction accuracy for different route types.

Attack bias range AVMon SAVIOR
Less than 1m Detected Not detected
More than 1m Detected Not detected
More than 5m Detected Detected

TABLE III: Detectability using different bias values in the
location readings for a ground vehicle.

Fig. 11: Positional Error Ground AV.

trajectories’ curvatures, velocity, presence of events such as
multiple stopping in midair, and so on. Table. II shows that
AVMON prediction quality is slightly higher than SAVIOR
on simpler trajectories. However, it significantly improves the
prediction quality in high dynamic routes.

In the next attack, we use GPS Spoofing to inject a bias into
the GPS sensor values. We measured if the anomaly detector
in both schemes is capable of detecting the attacks for different
bias ranges, as shown in Table. III. Due to its higher accuracy,
AVMON can detect all the attacks in the bias ranges we tried,
while Savior detected only attacks with more than 5m bias.

Time-To-Detect (TTD) is another essential metric for
cyber-physical systems. Detection delays can provide an at-
tacker with an opportunity to cause significant damage. Thus,
we launched attacks where bias is injected into the AV sensor
signals to compare TTD performance. We use different scenar-
ios that vary in terms of trajectory curvatures, vehicle velocity,
and presence/frequency of events where the vehicle stops and
hovers in midair. We evaluate both schemes since they use
different anomaly detectors to track the error throughout the
quadcopter missions. AVMON was able to detect attacks faster
than Savior, on average by 0.6 seconds with the anomaly detec-
tor and 0.3 seconds without across all scenarios. An accurate
AV positioning, key for context awareness, is evaluated by our
system AVMON vs. SAVIOR through position error. In both
simulated ground vehicle and real quadrotor tests, AVMON
outperforms SAVIOR, achieving significantly lower errors,
reducing attacker maneuvering space within predicted paths.
Fig. 11 shows an example of the positional error comparison
using both scheme using a ground vehicle.

Finally, we experimented with different spoofed values for
the internal parameters of the PID controller. Specifically, we
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(a) Anomaly performance with
high injected Kd value.

(b) Anomaly performance after
spoofing steering.

Fig. 12: Detection comparison for two attacks.

Fig. 13: ROC comparison implemented in a quadrotor.

Fig. 14: FPR vs thresholds’
values.

Fig. 15: Deviation vs thresh-
olds’ values.

spoof the derivative coefficient Kd and integral coefficient Ki.
These derived values can efficiently cause the AV to get out
of its reference trajectory. Kd reduces the overshoot caused
by the proportional component of the controller, which drives
the control output in proportion to the error. Ki fixes the
systematic bias caused by the steering angle over time, which
could eventually drive the vehicle out of the track. We also
spoofed the steering angle output from the PID controller. In
Fig. 12, we see a small advantage in TTD and anomaly score
maximum threshold for AVMON.

2) End-to-End Attack Detection: AVMON is assessed
against Savior for end-to-end performance. Threshold selection
for each detector influences the trade-off between sensitivity
to attacks and false positive probability. Adjusting thresholds
through empirical experiments, including complex trajectories,
allows for Receiver Oriented Characteristics (ROC) curve
plotting, aiding in the identification of suitable thresholds
balancing sensitivity and specificity. From Fig. 13, we observe
that: (1) with the same threshold, AVMON outperforms and
has lower FP rates, (2) by selecting smaller threshold values,
we can detect attacks faster due to the smaller FP values, (3)
AVMON can detect the attack with a probability close to 100%
while having an FP rate (below 1%) using the same thresholds
values for detecting the anomaly values as SAVIOR uses. To
achieve the same sensitivity, SAVIOR would have over 30%
FP rate.

3) Stealthy/adaptive attacks: We test the systems against
stealthy attacks (described earlier under attack benchmarks).
In these attacks, we inject false sensor data just under the
detection threshold to avoid detection while causing maximum

Fig. 16: False positives with weather condition (AV model in
CARLA).

damage. Fig. 14 shows the impact of these stealthy attacks:
how much deviation can a stealthy attack cause without being
detected for different rates of false alarms. The resulting
deviations are shown in Fig. 15. AVMON experiences lower
deviations from the stealthy attacks at the same threshold
value. Moreover, due to its higher accuracy AVMON can
operate with a lower threshold with low false positives to
even more efficiently avoid deviations from stealthy attacks
compared to Savior. Of course, this only prolongs the duration
needed to cause the required deviation, but this could allow
sufficient time for a proximity detector, or an infrequent more
expensive estimate (perhaps from the roadside infrastructure)
that can help detect slow/accumulating deviations.

4) Sensitivity to external disturbances and noise: In real-
world deployments, factors such as weather, road conditions,
or system degradation affect the state of the vehicle and
the sensors but are not captured in our EKF model, which
tracks only vehicle dynamics. However, these disturbances
could exhibit patterns when the residual learning component
could learn present in the training data. To study the effect of
these disturbances, we measured the prediction errors under
different wind speeds and environmental conditions (e.g., clear,
overcast, and rain). The baseline EKF model (SAVIOR) predic-
tions are impacted appreciably. However, the residual learning
component can compensate for these external disturbances and
therefore experiences substantially lower false positive rates,
as shown in Fig. 16.

C. Comparison to PID-Piper

We also compare AVMON to PID-Piper [14], a recently
proposed framework that incorporates a machine learning
predictor. PID-Piper uses a Feed-Forward Controller (FFC),
as opposed to the Feed-Back Controller (FBC), to predict the
future output of the PID controller rather than using feedback
to minimize perceived error. The design relies on a Long Short-
Term Memory (LSTM) [23] to learn the temporal correlation
between inputs over time. This allows the system to predict
future states of the vehicle, for example, predicting transition
states from steady state to landing in drones.

We use the publicly available implementation of PID-Piper
and evaluate it on the quadrotor using the PX4 Solo system
for our different benchmark scenarios (recall that these include
various trajectories’ curvatures, velocity, as well as other
events such as stopping and starting events). From Table. IV,
we can see that AVMON achieves slightly better prediction
quality (measured as a percentage of predictions within a
preset detection threshold) on low curvature trajectories, which
are simpler. However, it significantly improves the prediction
quality in trajectories with high dynamics (marked as high
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Trajectory AVMon PID-Piper
High curvature 97.7% 85.0%
Low curvature 99.0% 96.38%

TABLE IV: Prediction accuracy for different routes.

Quadrotor Ground vehicle
No residual learning 0.0075 sec 0.0013 sec
Full AVMON 0.012 sec 0.0041 sec
CPU overhead 10% 4.1%
Memory overhead 3% 8%

TABLE V: AVMon Overheads.

curvature); we conjecture that because of its open loop control
(no feedback), PID-Piper can accumulate errors, which is a
known drawback of FFC controllers.

D. Performance Overhead

To ensure real-time decisions, AVmon’s components are
lightweight (225.5 KB model) and seamlessly integrate with
the vehicle’s ROS controller. We measured the execution time
of the AVMON module (e.g., conducting its Path planning
algorithm) for 5 minutes using two different tracks. The
average execution time metric was calculated as an indica-
tion for evaluating the runtime performance. The overhead
represents the average execution time with respect to the real-
time constraints or timestamp (i.e., each 0.1 sec). So for the
ground vehicle, Table V shows the performance of AVMon
(second row) and AVMon without residual learning (first row),
which is similar to the overhead of Savior. While the residual
learning increases the overhead, the overhead remains low
(about 4% for the ground vehicle). The execution time for
the aerial vehicle was, on average, 0.012 seconds with 10%
overhead. For our implementation in the aerial vehicle, we used
the latest stable version of a popular drone operating system,
PX4 v1.11.0. The size of the AVMON module is 8.5 KB. The
module uses the Dronekit library to provide access to telemetry
data and to send an interface with the controller through action
commands such as take off and landing through accessor
functions. Finally, AVMON incurs over 3X lower overhead
than PID-Piper, on average across all the tested scenarios.

E. Potential Mitigations

Mitigating attacks once detected is a difficult problem
deserving of its own investigation; it is critical to detect attacks
accurately and in a timely way to effectively trigger mitiga-
tions. A potential approach is to replace the sensor data with
the data generated from the predictor as PID-piper does [14];
however, this approach could be dangerous. Another approach
is to identify more carefully the anomalous set of sensors and
use predicted values for them, or alternatively estimate the
state without them if possible; having some redundancy in the
sensors can also help this approach. When such actions are not
supported or possible, the AV should drop into a safe operating
mode and/or alert human controllers.

F. Possible Limitations

Using AVMON in AVs has limitations due to the dynamic
and complex nature of real-world driving environments. Op-

erating without detailed maps, especially in unmapped con-
struction zones, poses challenges for Kalman Filters (KF) that
rely on accurate initial state estimates and prior knowledge.
Additionally, modeling the complex and sometimes irrational
behavior of human drivers, pedestrians, and cyclists is difficult,
introducing inaccuracies in state estimation. Extreme weather
conditions can degrade sensor performance, requiring assis-
tance for KF to handle abrupt sensor quality changes. Real-
time processing is crucial for AVMON, and while advanced
nonlinear filters like Particle Filters and Unscented Kalman
Filters offer superior accuracy, their computational expense
makes them unsuitable for high-frequency prediction, involv-
ing tuning parameters that can impact performance.

VI. RELATED WORK

A number of prior studies have considered how to pro-
tect vehicles against software attacks that originate from a
malicious or compromised component. For example, several
studies [59], [36], [28] demonstrate detection approaches to
protect against attacks on electronic control units (ECU) within
vehicles. If an attacker successfully compromises an ECU,
they control the functionality it governs, leading to a poten-
tially catastrophic compromise of the vehicle. These detection
schemes look for pre-defined attack signatures and achieve a
low false positive rate. However, they cannot capture novel
attacks or variations of known attacks and require maintaining
an up-to-date attack signature database.

In order to limit an attacker with access to the internal
Controller Area Network (CAN) bus, the standard bus that
interconnects components within a vehicle, Siddiqui et al. [51]
propose hardware-based mutual authentication and encryption.
Seshadri et al.[49] introduce the notion of Indisputable Code
Execution (ICE), which supports the secure execution of func-
tionality on a network node from a trusted component based
on measuring the integrity of the system from the firmware
and up. Redundancy-based techniques [17], [18] duplicate
important system components and cross-check their states and
outputs at run-time for detecting attacks and anomalies. The
redundancy can include software and/or hardware modules.
These approaches target a different threat model and can work
orthogonally to protect an AV.

Recently, Choi et al. [11] proposed LTC, a detection
framework for sensor tampering attacks. They use standard
model templates that are fit on profiling data from just a few
test missions and use it to detect physical or sensor attacks.
However, the algorithm uses a linear prediction filter which can
cause large errors, especially in dynamic scenarios. Quinonez
et al. [44] improve on this model by using a second-degree
nonlinear Kalman Filter as the basis of the model. Although
the model is nonlinear, the extrapolation between computation
steps in the model is linear; this is the issue we address using
the residual learning component of AVMON. Li et al. [32]
proposed using a dual extended Kalman filter (DEKF) using
linear parameter-varying system proposed to achieve faster
convergence. However, the authors did not compare their
scheme with any machine learning-based work to compare
accuracy.

A number of recent proposals integrate a Machine Learn-
ing component with a physical dynamics model, similar to
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our approach. The real-time adaptive sensor attack detection
ramework [5] can dynamically adapt the detection delay and
false alarm rate to meet the detection deadline and improve
usability according to different system statuses. It is based on
a deep learning model that is offline extracted from sensor
data through leveraging convolutional neural network (CNN)
and recurrent neural network (RNN). Thus, the overhead could
be larger. PID-Piper [14] uses a Machine learning based
Feed-Forward Controller (FFC) to monitor the deviation and
predict the potential disturbances (due to attacks) and directly
rectifies the autonomous robotic vehicles’ trajectory based on
the prediction. If the deviation exceeds a pre-defined threshold,
PID-Piper signals an attack. However, this technique has a
longer run time behavior since it is based on Long Short
Term Memory (LSTM) architecture. As we showed earlier, our
model outperforms PID-piper while also being significantly
less computationally expensive. KalmanNet [45], also proposes
combining KF with a machine learning model. Specifically,
KalmanNet replaces the Kalman gain (KG) computation with
a Recurrent Neural Network (RNN). However, the complex
RNN, while improving accuracy, is computationally expensive,
making the solution unsuitable for real-time use.
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VII. CONCLUDING REMARKS

We proposed a new framework for protecting autonomous
vehicles from attacks that manipulate sensor data, based on
monitoring the control invariants of the AV. We identified sev-
eral opportunities to improve on recent state-of-the-art defenses
that rely on using predictions of the model’s state. We proposed
a machine learning residual estimation module to compensate
for non-linear effects, as well as other optimizations to improve
accuracy and reduce false positives. Our solution substantially
improves the prediction quality in highly dynamic trajectories,
and in the presence of unmodeled effects such as weather, with
fewer false positives. We evaluated the scheme in both ground
vehicles and quadrotors, using both simulation and hardware
testbeds, demonstrating the effectiveness and practicality of the
solution. We believe our defense represents an important step
forward in improving this classes of defenses.

REFERENCES

[1] “Matlab system identification toolbox,” accessed 2021 from https://ww
w.mathworks.com/products/sysid.html.

[2] “Pixhawk 4,” 2020, accessed 2021 from http://https://docs.px4.io/v1.9
.0/en/flight controller/pixhawk4.html/.

[3] “Automated Vehicles for Safety,” 2021, accessed 2017 from https://ww
w.nhtsa.gov/technology-innovation/automated-vehicles.

[4] M. Abdullah, J. Jamil, and A. E. Mohan, “Vehicle dynamics modeling
simulation,” 02 2020.

[5] F. Akowuah and F. Kong, “Real-time adaptive sensor attack detection
in autonomous cyber-physical systems,” in 2021 IEEE 27th Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2021,
pp. 237–250.

[6] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking,”
IEEE Transactions on signal processing, vol. 50, no. 2, pp. 174–188,
2002.
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