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Abstract—Connected Vehicle (CV) and Connected and Au-
tonomous Vehicle (CAV) technologies can greatly improve traffic
efficiency and safety. Data spoofing attack is one major threat to
CVs and CAVs, since abnormal data (e.g., falsified trajectories)
may influence vehicle navigation and deteriorate CAV/CV-based
applications. In this work, we aim to design a generic anomaly de-
tection model which can be used to identify abnormal trajectories
from both known and unknown data spoofing attacks. First, the
attack behaviors of two representative known attacks are mod-
eled. Then, Using driving features derived from transportation
and vehicle domain knowledge, an anomaly detection framework
is proposed. The framework combines a feature extractor and an
anomaly classifier trained with known attack trajectories and can
be applied to identify falsified trajectories generated by various
attacks. In the numerical experiment, a highway segment with a
signalized intersection is built in the V2X Application Spoofing
Platform (VASP). To evaluate the generality of the proposed
anomaly detection algorithm, we further tested the proposed
model with several unknown attacks provided in VASP. The
results indicate that the proposed model achieves high accuracy
in detecting falsified attack trajectories from both known and
unknown attacks.

I. INTRODUCTION

The implementation of connected and autonomous vehicle
(CAV) and connected vehicle (CV) technologies can greatly
benefit the transportation system by improving safety and
efficiency. CVs report their status (e.g., location and speed) to
infrastructure, which utilizes the received vehicle trajectories
for various safety and mobility applications. For example, CV-
based adaptive signal control can effectively reduce intersec-
tion congestion [17]. CAVs also can utilize information from
other vehicles or infrastructure to improve situation awareness
(e.g. help detect occluded and far away objects) [21].

To guarantee the efficiency and safety of CAV and CV
applications, it is crucial that the received data needs to be
authentic. However, falsified data can be generated easily using
various attack methods. Based on the purposes, the attack
methods can be roughly categorized into two types. In the
first type, the attacker generates falsified data to deteriorate
CV/CAV-based applications through V2X communications

such as Cooperative Adaptive Cruise Control (CACC) [13],
CV/CAV-based signal control systems [4], and CV/CAV-based
safety warning systems [20]. The above-mentioned methods
primarily aim to disrupt V2X-based applications, resulting in
reduced efficiency and safety. In the second category, the at-
tacker spoofs the vehicle’s onboard sensors, for example, GPS
[9] [7] and LiDAR [3] to mislead vehicle’s localization and
navigation. Multi-Sensor Fusion (MSF) algorithms [15] [8],
which take data from multiple sensors, are usually considered
as one way to defend data spoofing attacks. However, a recent
study from Shen et al. [12] found that by spoofing the GPS
data only, the error in the MSF-based localization module
could grow exponentially.

To identify data spoofing attacks, various detection methods
have been proposed. Consistency and plausibility checks are
two widely used methods. Multiple plausibility check based
algorithms have been developed to check the consistency
between vehicle’s speed and location [11] [14]. However, the
above-mentioned methods cannot identify trajectory spoof-
ing attacks designed considering vehicle dynamics and kine-
matics. Wong et al. [16] proposed a hierarchical detection
framework to detect falsified vehicle trajectories, consider-
ing vehicle dynamic boundaries, kinematic relationships, and
the overlap among trajectories. The proposed method may
fail to identify sophisticated falsified trajectories generated
considering vehicle dynamics and traffic flow properties. To
defend against more complicated attacks, Huang et al. [5]
proposed an anomaly trajectory detection algorithm to defend
against falsified trajectories generated by optimization models
(i.e., consider vehicle dynamic and car-following behavior).
Yang et al. [18] proposed a GPS spoofing attack detection
framework that achieves high accuracy in identifying GPS
spoofing attacks toward the MSF module in autonomous
vehicles. However, this method (along with most existing
anomaly detection methods), is mainly designed to distinguish
specific attacks while the performance in detecting unknown
attacks is limited.

In this paper, we aim to design a generic anomaly detection
model that can be used to identify abnormal trajectories from
both known and unknown attacks. Known attacks refer to the
attacks that have been previously launched and the abnormal
patterns are known and used to train the anomaly detection
model. In comparison, unknown attacks refer to attacks that
may happen in the future and their abnormal patterns are
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unknown. Two existing attack models (i.e., ETA attack and
MSF attack) are selected and modeled as known attacks.
We call both attacks ”sophisticated” because the physical
boundaries of vehicle kinematic parameters, vehicle kinematic
motion consistency, and traffic flow properties are considered
in the attack models, which greatly increase the difficulties in
detection. The ETA attack generates falsified trajectories that
do not obey car-following rules [4]. The MSF attack generates
falsified trajectories that fluctuate around the lane center and
gradually deviate from the road [12]. These two attacks
represent longitudinal and lateral abnormal behaviors from the
first and second attack categories respectively and thus are
selected. To generate the ETA attack trajectory, we propose an
optimization-based model, considering vehicle dynamics and
neighboring vehicle position. We further propose an innovative
modeling paradigm to mimic the Multi-Sensor Fusion (MSF)
attack behavior and generate falsified trajectories with similar
lateral deviation patterns and achieve the same attack goal.
Then a candidate feature set is derived from transportation
and vehicle domain knowledge and a greedy algorithm is
applied to select representative features from the candidate
feature set. Based on the selected features, several machine
learning-based classifiers are trained to learn from the two
representative attack trajectories. Given an observed trajectory,
a feature extractor is applied first to obtain critical features,
and the pretrained anomaly classifier is utilized to distinguish
whether the trajectory is abnormal. The proposed algorithm
achieves high accuracy (97.70%) in detecting MSF and ETA
attacks, with low false positive and low false negative rates and
100% accuracy in detecting other unknown attacks from the
VASP platform. The main contributions are listed as follows:

(1) A generic detection framework is proposed. The detec-
tion framework combines a feature extractor and a classifier.
The feature extractor can be customized based on various driv-
ing scenarios such as highways, and signalized intersections.
The detection framework is trained with two known attacks
but can detect other unknown attacks.

(2) We propose a feature set that effectively represents nor-
mal driving behavior using transportation and vehicle domain
knowledge. The proposed feature set can be combined with
different machine learning-based classifiers, such as SVM,
random forest, and decision tree, and achieves high accuracy
in detecting both known and unknown attacks.

(3) We propose a new paradigm to model cyber attacks that
can accurately represent vehicle-level attack behaviors without
constructing complicated attack pipelines. Compared with the
original MSF attack model in [12], our proposed method needs
much less computation resources and only needs information
from the GPS receivers.

The remainder of the paper is arranged as follows. Section II
introduces how the ETA and MSF attacks are modeled. Section
III presents the detection algorithm. Numerical experiments
are introduced in section IV. Section V concludes the work
and lays out future research directions.

II. ATTACK MODELING

In this section, two approaches are introduced to model the
ETA attack and MSF attack.

A. Modeling Estimated Time of Arrival (ETA) Attack.

1) Attack Introduction: The ETA attack has been proven
to be a threat in CV-based traffic control systems (CV-TSC),
for instance, the I-SIG system [6]. Figure 1 denotes the attack
concept. The figure contains two types of vehicles, the vehicles
under attack (red vehicle), and the normal vehicles (yellow
vehicle). Both vehicles are CV and broadcast BSMs, including
the vehicle’s current speed and position to infrastructure. The
signal timing plan is broadcast through Signal Phasing and
Timing (SPaT) messages to the CVs. When the vehicle is
not under attack, its longitudinal movement follows a certain
car following pattern, for example, Intelligent Driver Model
(IDM), and sends out BSMs the same as the ground truth tra-
jectory. When the vehicle is under attack, its actual movement
still follows the same car-following model, as shown in the
blue color. However, it sends out falsified BSMs to fulfill the
attack objective, for example, decelerating without apparent
reason as shown in the red color. The ETA of the falsified
BSM trajectory is then longer than the ground truth. The
falsified ETA will mislead the infrastructure to generate a non-
optimal signal timing plan, for example, unnecessary extension
for the current green phase. To model the falsified trajectory
under the ETA attack, an optimization model is formulated
as shown in Equation 1. The generated vehicle trajectory is
a sequence of trajectory points at consecutive time steps. At
each time step, the trajectory point contains 5 elements, in-
cluding xt,yt,vt,at,ψt, which are variables of the optimization
problem. xt,yt denote the vehicle’s longitudinal and lateral
position at time step t. vt,at,ψt are vehicle kinematic-related
variables, denoting the speed, acceleration and heading angle
at time step t. The length of the trajectory is denoted as N,
which is decided by the signal update time.

min
xt,yt,vt,at,ψt

θT f(xt, yt, vt, at, ψt, et)

s.t. vehicle safety constraints (Equations 8-9)
vehicle dynamics constraints

(1)
In the objective function, f is the function of features

extracted from the generated trajectory. et denotes the envi-
ronmental parameters, including the road heading, the leading
and following vehicles’ current state and predicted future state.
θ is the weight vector of the selected features.

2) Objective Function: The objective function is designed
to achieve two goals: 1) generate a falsified trajectory with a
specified longer ETA than ground truth, by modifying vehi-
cle’s speed and position. 2) generate a falsified trajectory close
to normal driving behavior. To achieve the attack goal, we
selected 5 representative driving features, representing normal
car following behavior, trajectory smoothness, and desired
ETA. The selected features are demonstrated as follows:
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Fig. 1. ETA Threat Model
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f5 =
dstop
N

vN
− ETAdes (6)

Equations 2-4 denote the smoothness of the generated
trajectory. f1 penalizes large acceleration and deceleration.
∆t is the time interval between two consecutive time steps.
f2 calculates vehicle’s heading rate. f3 denotes the difference
between the vehicle’s heading and road heading. f2 penalizes
large deviations in the vehicle heading and f3 avoids the
vehicle deviating from the road. Equation 5 calculates the
difference between the desired space headway (ddest ) and the
actual space headway (dt) at time step t. theadway denotes the
desired time headway. ds is the minimum safety gap between
the two vehicles. Equation 6 denotes the difference between
the ETA of the generated trajectory and the desired ETA at the
end of the planning horizon. dstopN is the distance to the stop
bar at time step N . The desired ETA is calculated in Equation
7, which is the current ETA and a constant offset.

ETAdes = ETAinit + ETAoffset =
dstop
0

v0
+ ETAoffset (7)

3) Vehicle Safety and Dynamics Constraints: To generate a
trajectory as realistic as possible, Equations 8-9 are applied to
guarantee the minimum space headway between the falsified
trajectory and the leading/following vehicle position. Other-
wise, the generated trajectory can be easily identified by cross
validation using neighboring vehicle trajectories.

(dfollow travel
i + ds)− δfo

i ·M ≤ dtravel
i , i ∈ (1, 2, . . . , N) (8)

dtravel
i ≤ (dfront travel

i − ds) + δfr
i ·M, i ∈ (1, 2, . . . , N) (9)

M is a constant large number. δfr
i and δfo

i are two binary pa-
rameters indicating the existence of the leading and following
vehicles. Equations 8-9 are valid when the leading/following
vehicle exists. dtravel

i , dfront travel
i , and dfollow travel

i denote the
traveled distance of the ego/leading/following vehicle at time
step i. Equations 8-9 guarantee the safety distance between
the ego vehicle and the leading/following vehicle in the same
lane and forbid the ego vehicle from exceeding the leading
vehicle or overlapping with the following vehicle.

Vehicle dynamics constraints represent the physical limits
of variables and their kinematic motion relations. Details of
these constraints can be found in previous studies such as [19].

4) Example attack trajectories: Figure 2 denotes the time-
space diagram of the ego vehicle, leading vehicle and fol-
lowing vehicle trajectories. The x-axis denotes the time steps,
and the y-axis denotes the traveled distance. The red curve
denotes the BSM trajectory sent by the ego vehicle when
it is under attack, the dashed red curve denotes the ego
vehicle’s actual trajectory. The black and blue curves denote
the trajectories of the leading and following vehicles. The
figure demonstrates that the attack trajectory decelerates when
it is still far from the leading vehicle in order to fulfill the
ETA attack goal. Besides, the figure also demonstrates that the
attacked trajectory keeps safe distances from the neighboring
vehicles, increasing difficulty for detection.

Fig. 2. Ego vehicle, leading vehicle and following vehicle trajectories

B. Modeling Multi-Sensor Fusion (MSF) Attack

MSF algorithms are widely used on AVs [15] [8]. It
combines input from multiple sensors, including GPS, IMU
(Inertial Measurement Unit) and LiDAR to provide precise
localization results. MSF algorithms are usually considered to
be one defense method for spoofing attacks because it is highly
unlikely that all sensors are compromised at the same time.
However, recent study proposed by Shen et al. [12] indicates
that by modifying the output from GPS receiver only, the
performance of the MSF algorithm is deteriorated. The MSF
attack contains two stages, the vulnerability profiling stage,
and the aggressive spoofing stage. In vulnerability profiling,
constant deviations are added to the original GPS data to
identify vulnerabilities. After the vulnerability is found, in the
aggressive spoofing stage, exponentially growing deviation is
added. The deviation added to the original GPS data causes
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large deviations in the MSF output and causes the AV driving
off the road. The proposed MSF algorithm [12] is evaluated
using LGSVL simulator [10], an autonomous vehicle simulator
with Apollo 5.0 as the autonomous driving platform [2]. The
entire simulation process is time-consuming and complicated,
making it challenging to scale up.

Since our primary objective is to model the attack’s impact
on safety and mobility at the transportation application level,
which is mainly reflected by the falsified trajectories. As
a result, we only need to model the trajectory level attack
behaviors without replicating the complicated attack pipeline.
For trajectory level attack behavior, the MSF attack generates
falsified trajectories with lateral deviations increasing expo-
nentially [12]. Such lateral deviation can cause vehicles to
cross the lane boundaries, forcing neighboring vehicles to
decelerate and potentially lead to crashes. By analyzing the fal-
sified trajectories, we observe that the lateral deviations in the
vulnerability profiling stage follow the Gaussian distribution.
The lateral deviations in the aggressive spoofing stage follow
a family of exponential functions, with different parameters
in different driving scenarios. Similar to the original attack
model, we also model the lateral deviations in two stages.

1) Vulnerability profiling stage modeling: Falsified tra-
jectories in the vulnerability profiling stage are modeled
considering the lateral deviation from the ground truth and
attack duration. The lateral deviation follows the Gaussian
distribution with mean equals to -0.020 and standard deviation
equals to 0.048, as shown in Figure 3a. The majority of
lateral deviation ranges between (-0.2m, 0.2m), with most of
the lateral deviation being close to zero.

Fig. 3. Vulnerability Profiling Stage Lateral Deviation Distribution

The vulnerability profiling stage duration is modeled as an
exponential distribution, as shown in Figure 3b. The fitted
exponential function is represented in Equation 19, with the
scale equals to 705.15. As shown in the figure, the exponen-
tial function doesn’t fit the data perfectly. However, lateral
deviation in the vulnerability profiling stage only deviates the
vehicle from the lane center within a limited range and does
not cross the lane boundary. The influence of the attack vehicle
to other vehicles in the neighboring lane can be ignored. As
a result, the error between the data and the fitted exponential
curve is acceptable.

f(x) =
1

scale
· e− x

scale (10)

2) Aggressive spoofing stage modeling: The lateral de-
viation of the aggressive spoofing stage trajectory follows

exponential growth. Equation 20 is applied to fit the curve.
x represents the xth attack point and f(x) denotes the lateral
deviation of the xth point. a,b,c are function parameters. Fig-
ure 4 demonstrates six types of lateral deviation profiles from
the original attack study and the fitted curve in the same type.
The x-axis denotes the time step. The y-axis denotes the lateral
deviation. By analyzing trajectories collected from different
driving scenarios, it is revealed that the lateral deviation pattern
remains consistent for trajectories within the same scenario
but varies among different driving scenarios. Therefore, for
trajectories in each scenario, we use an exponential function
to fit all the lateral deviation profiles. Trajectories in different
scenarios are fitted separately, as shown in Figure 4.

f(x) = c · ax + b (11)

Fig. 4. Lateral Deviation Profile and Fitted Exponential Curve

III. DETECTION METHODOLOGY

A. Problem Statement

An anomaly detection framework is designed to distinguish
falsified trajectories. The proposed detection framework is
demonstrated in Figure 5. The framework combines a feature
extractor and a machine learning algorithm based anomaly
classifier. Two types of falsified trajectories modeled in the
previous section, are used to train the anomaly classifier.
Given the collected ETA attack trajectories (DE) and MSF
attack trajectories (DM ), a feature extractor is applied to
select representative driving behavior related features from the
trajectories. Then, the selected features are applied to train
the classifier to distinguish between normal and abnormal
trajectories. Given an observed trajectory, the same feature
extractor is applied to identify critical features fDo , which
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are fed into the anomaly classifier to distinguish whether the
observed trajectory is attacked or not.

Fig. 5. Anomaly Detection Framework

B. Feature extractor
Thirteen features are designed to capture various aspects

of normal driving, considering both longitudinal and lateral
driving behaviors. The features are described as follows:

1) Mean acceleration (absolute value) f1 = 1
N

∑
i |ai| . f1

calculates the average absolute acceleration value.
2) Mean heading rate (absolute value) f2 = 1

N

∑
i |(ψ̇i)|. f2

measures the smoothness of the vehicle’s heading angle. The
change in the heading angle should be small during normal
car following and lane-changing maneuvers.

3) Mean car following distance difference (absolute value)
f3 = 1

N

∑
i |di,des−di,act| =

1
N

∑
i |ds+vi · theadway −di,act|.

f3 measures the fluctuation of the difference between di,des
and di,act.

4) Mean speed f4 = 1
N

∑
i vi. f4 calculates the average

driving speed.

5) Standard deviation of speed f5 =

√∑
i
(vi−v̄)2

N−1 . f5
calculates the standard deviation. f4,f5 denotes the distribution
of vehicle speed.

6) Mean acceleration f6 = 1
N

∑
i ai. f6 calculates average

acceleration.

7) Standard deviation of acceleration f7 =

√∑
i
(ai−ā)2

N−1 .
f1,f6,f7 are vehicle acceleration related features. f1 denotes
the magnitude of vehicle acceleration while f6,f7 denotes the
acceleration’s distribution.

8) Mean heading rate f8 = 1
N

∑
i(ψ̇i). f8 denotes the

average heading rate.

9) Standard deviation of heading rate f9 =

√∑
i

(
(ψ̇i− ¯̇

ψ)2
)

N−1 .
f8,f9 denotes the distribution of heading rate.

10) Mean car following distance difference f10 =
1
N

∑
i(di,des − di,act). f10 calculates the average difference

between desired car following distance and the actual car
following distance.

11) Standard deviation of car following distance difference.

f11 =

√∑
i
((ddiff

i
− ¯ddiff

i
)2)

N−1 . ddiff
i = di,des−di,act. f10,f11 denotes

the car following distance distribution.
12) Maximum speed f12 = maxivi. f12 calculates the

maximum speed.
13) Maximum acceleration f13 = maxiai. f13 calculates

the maximum acceleration.

To avoid overlapping among designed features, an iterative
greedy algorithm is applied to select the most significant
features from the feature list. Details of the greedy algorithm
description can be found in [20]. The proposed feature set can
be integrated with multiple machine learning based algorithms,
for example, SVM classifier, decision tree classifier and ran-
dom forest classifier. The structure of the classifiers is different
and the features need to be selected separately for each
classifier using greedy algorithm. Features f2,f4,f7,f13 are
selected for SVM based anomaly classifier. Features f4,f9 are
selected for both the random forest classifier and the decision
tree classifier. The selected features for the above mentioned
classifiers include both longitudinal (e.g., car-following) and
lateral (e.g., lane changing) behaviors.

IV. NUMERICAL EXPERIMENTS

To validate the proposed anomaly detection framework, a
highway segment with a signalized intersection is built to
generate the attack trajectories in the V2X Application Spoof-
ing Platform (VASP) [1]. VASP is an open-source framework
developed by Qualcomm to simulate attacks on V2X networks
and applications. VASP is selected as the test platform since
it contains 68 typical V2X attacks including attacks based on
kinematic values and attacks on V2X applications, which are
considered as unknown attacks developed by a third-party to
test the proposed anomaly detection model. ETA attack and
MSF attack models in Sections II are also integrated into the
VASP to generate falsified trajectories for training.

A. Detection framework evaluation

To evaluate the anomaly detection framework, 1000 ground
truth trajectories are collected by running the simulation
without implementing attack. 276 ETA attack trajectories and
464 MSF attack trajectories are generated. Both the attack
and ground truth trajectories are collected with a frequency of
10Hz. The collected trajectories are divided into training and
testing sets, with proportions of 80% and 20%. The detection
results are demonstrated as follows:

Anomaly detection starts when the entire trajectory is ob-
served. The proposed detection framework achieves 97.70%
accuracy for SVM based classifier. 196/203 of the ground
truth trajectories and 144/145 of the attack trajectories are
identified correctly. The false positive rate equals 3.45% and
the false negative rate equals 0.69%. The accuracy for the
decision tree classifier and random forest classifier is 100.00%.
Table I denotes the details of the detection performance, using
detection rate and false alarm rate. The results indicate that the
proposed algorithm performs well in distinguishing between
normal and abnormal trajectories. To further evaluate the gen-
erality of the proposed model, we selected 6 attacks provided
in the VASP platform, whose falsified trajectories are not
trained by the proposed model (i.e., unknown). The selected
attacks are random position attack, random position offset
attack, high acceleration attack, low speed attack, Braking
from communication range attack and Electronic Emergency
Brake Light (EEBL) attack, including attacks focus on vehicle
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TABLE I
PERFORMANCE OF ANOMALY DETECTION

Classifier FP FN TP TN Detection
Rate

False Alarm
Rate

SVM 7 1 144 196 144/145 7/203
Decision Tree 0 0 145 203 145/145 203/203

Random Forest 0 0 145 203 145/145 203/203

TABLE II
DETECTION ACCURACY OF ATTACKS ON VASP

Attack type
Attack
Trajectory
Number

SVM
Accuracy

Decision
Tree
Accuracy

Random
Forest
Accuracy

Random Position 246 1.0 1.0 1.0
Random Position
Offset 216 1.0 1.0 1.0

High Acceleration 225 1.0 1.0 1.0
Low Speed 225 1.0 1.0 1.0

Braking from
Communication
Range

990 1.0 1.0 1.0

EEBL 1055 1.0 1.0 1.0

position, speed, acceleration and V2X application. Details of
the selected attacks can be found in (24).

Table II denotes the detection accuracy of attack trajectories
generated by VASP. The results indicate that the proposed
detection algorithm achieves high accuracy in detecting VASP
attack trajectories, even though they are not used for training
(i.e., unknown attacks). The reason is that the proposed model
captures normal driving behaviors well. Therefore, as long
as the VASP attacks change normal driving behavior, the
proposed algorithm can be applied to detect the anomaly.

V. FUTURE RESEARCH
To complete this work, two types of baseline models will

be added for comparison in the future, including plausibility
check-based models and neural network-based models. Plau-
sibility check has been widely used for anomaly detection and
the model proposed by So et al. [14] will be used as one of
the baselines. In this work, the authors selected six features
to check the consistency between vehicle acceleration, speed,
and position. It is interesting to see whether the plausibility
check based models are able to detect sophisticated attacks
(e.g., ETA and MSF attacks).

To show the importance of integrating domain knowledge
with the feature selection, we also plan to compare the
proposed framework with a few neural network-based anomaly
detection models, where features are selected by the neural
networks and may not have any physical meanings. In ad-
dition, whether neural network-based models can detect un-
known attacks remains uncertain, since the features extracted
from the training data (i.e., known attacks) may not represent
the abnormal patterns in unknown attacks.
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