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Abstract—Trucks play a critical role in today’s transportation
system, where minor disruptions can result in a major social
impact. Intra Medium and Heavy Duty (MHD) communications
broadly adopt SAE-J1939 recommended practices that utilize
Name Management Protocol (NMP) to associate and manage
source addresses with primary functions of controller applica-
tions. This paper exposes 19 vulnerabilities in the NMP, uses them
to invent various logical attacks, in some cases leveraging and
in all cases validating with formal methods, and discusses their
impacts. These attacks can–➀ stealthily deny vehicle start-up by
pre-playing recorded claims in monotonically descending order;
➁ successfully restrain critical vehicular device participation and
institute a dead beef attack, causing reflash failure by performing
a replay attack; ➂ cause stealthy address exhaustion, Thakaa-
vath–exhaustion in Sanskrit, which rejects an address-capable
controller application from network engagement by exhausting
the usable address space via pre-playing claims in monotoni-
cally descending order; ➃ poison the controller application’s
internally maintained source address-function association table
after bypassing the imposter detection protection and execute a
stealthy SA-NAME Table Poisoning Attack thereby disable radar
and Anti Brake System (ABS), as well as obtain retarder braking
torque dashboard warnings; ➄ cause Denial of Service (DoS) on
claim messages by predicting the delay in an address reclaim
and prohibiting the associated device from participating in the
SAE-J1939 network; ➅ impersonate a working set master to
alter the source addresses of controller applications to execute a
Bot-Net attack; ➆ execute birthday attack, a brute-force colli-
sion attack to command an invalid or existing name, thereby
causing undesired vehicle behavior. The impact of these attacks
is validated by demonstrations on real trucks in operation in a
practical setting and on bench setups with a real engine controller
connected to a CAN bus.

I. INTRODUCTION

With the automotive industry expanding rapidly into vast
smart mobility ecosystems, new levels of cyber sophistication
have been reached today. The transformation, however, has
introduced new cybersecurity risks as proven by the expo-
nential increase in the magnitude, frequency and sophisti-
cation of cyber attacks over the last decade [1]. UNECE
WP.29 R155 [2] and R156 [3] regulation enforcement linked
to ISO/SAE 21434 [4] and ISO/SAE 24089 [5] standards

effectively mitigate automotive-specific cyber risks and are
aggressively being adopted by automotive industries. These
guidelines eschew guidance on the exact processes to be fol-
lowed and avoid recommending specific solutions but instead
heavily emphasize risk analysis, life-long cybersecurity threats,
and vulnerability management. The vehicular communication
security risks emerging from ISO/SAE 21434 assessments
are not mitigated on commercial vehicles due to Society of
Automotive Engineers J1939 (SAE J1939) [6]–[15] security
limitations. An attacker can exploit the SAE-J1939 vulnera-
bilities widely adopted in MHD vehicular communication to
induce undesired vehicle behaviors.

Vehicle Network Attacks. The openness of the SAE J1939
recommended practices gives easy access to replicate known
consumer vehicle safety-critical attacks [16]. The support of
the right to repair via On-Board Diagnostics II (OBD-II) port
on MHD vehicles allows for extracting vehicle diagnostic
information. Efforts to limit diagnostic tool functionalities by
minimum privileges by access control methods emerged as ad-
versaries started plugging malicious devices to tamper critical
vehicle functionalities, [17]. Just by attaching a cheap CAN-
capable device to the OBD-II port, the adversary attains access
to a critical vehicular SAE-J1939 CAN network. CAN being
inherently insecure, researchers have exploited weaknesses
of CAN and have demonstrated stealthy selective denial-of-
service attacks [18]. Authentication defenses to secure intra-
vehicle CAN communication, such as watermarking [19],
freshness, and integrity headers [20], still lack industry-wide
adoption.

Motivation and Goal. In view of the fact that security was
not a primary design consideration in SAE-J1939 protocols
and with no formal protocol verification conducted in prior
research, there is a lack of systematic security analysis in
SAE-J1939 protocols. Vehicle manufacturers and component
makers urge following industry standards for easy integration
for interoperability, and there is no industry standard method
(yet) to achieve security for onboard MHD communications
and no SAE-J1939-compatible way (yet) to perform it. On
SAE-J1939 networks, controller applications announce their
source address and primary function following SAE-J1939 81
recommended practice [14] without any authentication. In this
paper, we aim to systematically analyze the SAE-J1939-81
Name Management Protocol (NMP) that defines and influences
the primary functions of controller applications to identify
security gaps and their possible exploits.

Contributions. In this paper, we characterize vulnerabilities
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of the NMP of SAE J1939 networks. To the best of our
knowledge, we are the first to perform such an examination on
MHD vehicular protocols. With vulnerability analysis of NMP,
we uncover 19 new stealthy attack vectors. Our analysis is
bolstered by LTL-based formal model checking of these attack
vectors on NMP. To this end, we create 3 formal models of
the different forms of NMP by solving several modeling chal-
lenges and using a state-of-the-art model checker to validate
and uncover the possible addressing schemes systematically.
We validate and verify attacks on a bench setup with a real
engine controller connected to a CAN bus as well as on a real-
world truck. On the bench setup, our technique to predict the
reclaim time creates repeated collisions with claim messages
to suppress a controller application from network participation.
On a moving truck, we disable the radar with our stealthy
automated source address-function association table poisoning
attack, thereby incapacitating vehicle features such as lane
change assistance, parking aid, collision mitigation, blind spot
detection, and rear cross-traffic alert. Disabling such features
can have a catastrophic impact on the security of the vehicle.
For instance, in case the ABS is disabled with our attack,
the victim vehicle operator would be required to adjust their
braking pressure to prevent the tire from being locked up
instead of providing constant full braking or hard-breaking
pressure.

Responsible Disclosure and Open-source. We have respon-
sibly disclosed the findings of our work to the standardiza-
tion body and are actively cooperating with them for miti-
gation. The models and related research artifacts are open-
sourced at: https://github.com/MasterTigress2020/J1939 81
NMP Attacks

II. BACKGROUND

A. Name Management Protocol

ISO/OSI Layers J1939 Standard

Application Layer SAE J1939/71 - Vehicle Application Layer
SAE J1939/73 - Application Layer Diagnostics

SAE J1939/81 - Network Management
Presentation Layer -

Session Layer -
Transport Layer SAE J1939/21,22 - Datalink Link Layer
Network Layer SAE J1939/31 - Network Layer
Datalink Layer SAE J1939/21 - Datalink Link Layer
Physical Layer SAE J1939/11 - Physical Layer - 250Kbits/s

SAE J1939/12
SAE J1939/14

SAE J1939/15 Reduced Physical Layer, 250 kbits/s

TABLE I: SAE J1939 ISO/OSI Layers

SAE J1939 is the recommended practice for communica-
tion and diagnostics between vehicle components in the car
and heavy-duty truck industry. Originating in the United States,
SAE J1939 is now widely used worldwide and can support up
to 254 logical nodes. On a typical bit rate of 250 kbps or 500
kbps, the protocol also supports control and measurement value
transfers. As shown in Table I, the SAE J1939 standard is split
into multiple standards [6]–[15] according to the OSI reference
model with session and presentation layers unspecified like
most of the field bus protocols.

Overview. The SAE J1939/81 standard [14] defines messages
that can be used by connected controller applications to

Message Name PGN Payload

Request PGN 59904 PGN 60928
Address Claimed 60928 NAME

Cannot Claim Source Address
Commanded Address 65240 NAME, new SA
Name Management 37632 Name fields and mode

TABLE II: Network Management Messages

acquire and maintain a network address on an SAE J1939
communication network by specifying the address arbitration
process. The network is managed by associating source ad-
dresses with the primary function of the controller application.
This standard also specifies the initialization process, reaction
requirements to power outrages, and detection and reporting of
the source address contention. For network management, a set
of messages is used. Each message uses a specific Parameter
Group Number (PGN), as shown in Table II. On SAE-J1939
networks, messages can be broadcast messages or destination-
specific messages (P2P) as indicated by the transmitting Con-
troller Application (CA) in the PDU-specific field of the 29-bit
CAN identifier. If the value of the PDU-specific field is set to
255 the message shall be a broadcast message that can be
received and processed by all connected CAs. Alternatively, if
the PDU-specific field is set to a destination address of CA
on the network, this message shall be detected and processed
by the targetted CA. Though address announcement message
PGN 60928 is recommended [14] as broadcast, P2P claims are
as well processed by CAs. Various acronyms used throughout
this paper are tabulated in Table III

Acronym Expansion

MHD Medium and Heavy Duty
NMP Name Management Protocol
ABS Anti Brake System
DOS Denial of Service
SAE Society of Automobile Engineers

OBD II On-Board Diagnostics II
PGN Parameter Group Number
CA Controller Application

SACCA Single Address Capable Controller Application
MSB Most Significant Bit
DA Digital Annex

AACCA Arbitrary Address Capable Controller Application
RAM Random Access Memory
TPMS Tire Pressure Monitoring System
CIA Confidentiality Integrity, and Availability

MAC Machine Authentication Code
CMAC Cipher-based Message Authentication Code
HMAC Hash-based Message Authentication Code
FSM Finite State Machine
SMV Symbolic Model Verifier

TABLE III: Term Reference

Finite State Machine. A CA on the SAE-J1939 network
follows the SAE-J1939-81 arbitration process to determine
the source address that it can claim (SACCA initialization
state transitions as shown in Fig. 2). An 8-bit source address
within the CAN identifier serves as the source address. A CA
uses the Address Claimed message (PGN 60928) indicating
the NAME it prefers to operate on (shown in Fig. 1). A
unique 64-bit NAME transmitted in data field of a claim
consisting of 10 fields provides the primary function that the
CA has on the network. On power-up and receipt of the request
message for Address Claimed, a CA shall transmit an address

2

https://github.com/MasterTigress2020/J1939_81_NMP_Attacks
https://github.com/MasterTigress2020/J1939_81_NMP_Attacks


Priority Reserv
ed

Data
Page

3 Bits 1 Bit 1 Bit

29-bit-identifier

Start
Of

Frame
(SOF)

SOF

128 Bits CAN Frame

SA - NAME Association Table

SA 1 NAME 1

SA 2 NAME 2
: :

SA n NAME n

Data = NAME

PDU
Format

PDU
Specific

Source
Address

(SA)

8 Bits 8 Bits 8 Bits

Data

64 Bits

Control
Fields

7 Bits

CRC

15 Bits

Delimiter

1 Bit

ACK

1 Bit

Delimiter

1 Bit

End of
Frame
(EOF)

7 Bits

Control  Data CRC Data Field EOF

1 Bit

Fig. 1: SA-NAME Association Table derived from a Classic-
CAN Address Claim Frame

Fig. 2: SAE-J1939-81 State Transition Diagram for Initializa-
tion of Single Address Capable CAs

claim message announcing its source address and NAME, i.e.,
transitioning from state S1 to S2 as indicated in Fig. 2. An
address contention is resolved by arbitrating over NAME at
S3 or at S6, where lower NAME has higher priority. Any
CA unable to claim an address shall announce its inability
on the Cannot Claim Address message and navigate from S2,
S3 to S5. If no contending claim is received, a CA shall start
trans-receiving communication messages, transiting from S2
to S4. Every CA constructs an SA-NAME association Table
that associates its NAME and source address to correlate the
critical function of a CA to an address.

Address Configuration and Capability. A particular CA
determines the source address to use for Address Claim via
the address configuration method. Two primary capabilities–
Single Address Capable and Arbitrary Address Capable are
defined for the Address Claim process. The primary capability
can be distinguished as indicated in NAME’s Most Significant

Bit (MSB). Single Address Capable CA (SACCA) can only
claim a single source address typically assigned by the SAE-
J1939 committee published as J1939 Digital Annex (DA) doc-
ument. SACCA can be classified as non-configurable, service
configurable, commanded configurable, and self-configurable.
Non-configurable CA has a fixed permanent address that can
be altered only by a software update. The service tool can
change Service configurable CA’s source address using com-
manded address messages. The source address of Command
configurable CA’s is commanded during vehicle power-up
without the intervention of a service tool. Based on the vehicle
configuration at a particular position of the vehicle, self-
configurable CA’s determine internally which source address
it can use from a limited set of source addresses. Arbitrary
Address Capable CA (AACCA) can select its source address
within the 128 to 247 inclusive range. AACCA can re-calculate
and re-claim an unused address in case of an address conflict.

B. Vulnerabilities

Among the various communication protocols found in
automotive networks, such as LIN, FlexRay, CAN-FD, Auto-
motive Ethernet, etc., the most widely used is the CAN-based
multi-master serial. The recommended vehicle bus practice
SAE J1939 is found wherever a diesel engine exists. The CAN
vehicle bus standard is a message-based protocol originally
designed to save on copper without taking security into ac-
count. Various security risks, such as lack of authentication,
inadequate integrity checks, and insecure arbitration schemes
are inherently present in the CAN vehicle bus standard.

SAE J1939 over CAN was designed assuming an hon-
est/trusted vehicular environment. Vulnerabilities that open
up due to this assumption are perceptible in all SAE-J1939
recommended practices.

In the case of the SAE-81 Name Management Protocol,
the protocol allows for an SA-NAME association if an in-
terval of 250 ms has expired without a contending address
claim in the absence of a strong security authentication. This
permits an adversarial CA to issue fake claims, segregate
CAs, poison NAME-SA association tables in CA’s and make
the network unusable by pre-claiming addresses. The rec-
ommended practices only address address contention and do
not address NAME contention. This breaks the primary goal
of NAME management protocol to corroborate that NAMEs
of all CAs intended to transmit on a particular network are
unique. This key responsibility earmarked on integrators of
networks and manufacturers of ECUs by SAE-81 results in
several adversarial possibilities of misuse that may lead to
undesired/unsafe vehicle behavior. SACCAs that only have
the ability to claim preferred addresses can be silenced by
replaying the claim at a higher priority, as shown by the exploit
reported in [21]. While AACCA can mitigate such a threat
by providing the flexibility of claiming on a different address
upon arbitration loss, we observe that address exhaustion by
forged claims leaves AACCA with no address to claim on. The
SAE-J1939-81 recommended practices prescribe including a
NAME checksum byte computed on the target CA’s original
NAME as a security check to ensure that the correct CA
receives the command message. However, as the checksum has
no associated key, it can easily be matched up by an adversary

3



and, hence is inadequate to perform the security check required
by SAE J1939-81.

C. Model Checking with Linear Temporal Logic (LTL)

Model checking is a common verification technique used
to analyze control systems [22], hardware [23], and communi-
cation protocols [24]. There are two inputs: a given property
ϕ (e.g., a controller always receives an address) and a model
M to be verified. Generally, the property can be expressed
in linear temporal logic [25], which describes the relative or
absolute order of behaviors in the verification system (e.g.,
the next state denoted by X, the subsequent path denoted by
F, and the entire path denoted by G). The target for LTL-
based model checking is whether the property ϕ holds in M
under the semantics of temporal logic (M |= ϕ). An LTL
model-checking algorithm is a decision procedure that, given
a model M and an LTL formula ϕ, returns the answer “yes”
if (M |= ϕ), and “no”, plus a counterexample, if (M ̸|= ϕ).
To perform model checking, the algorithm essentially negates
the whole property (¬ϕ) and constructs the correspondence
model M′. It then searches the state space (i.e., the set of
system execution paths P) for the existence of an intersection
(P(M)∪P(M′)). If the intersection exists, then the property is
not verified, and a path from the initial state to the intersection
is provided as a counterexample; otherwise, the property ϕ is
satisfied. We use model-checking in this context to analyze
and validate the attacks on the NMPs systematically.

III. ATTACKS ON THE NAME MANAGEMENT PROTOCOL

Our security analysis of NMP revealed several vulnera-
bilities that were carefully exploited to construct new attack
vectors. This section describes the threat model and manifold
attacks and their mitigation.

A. Threat Model

For the purpose of this work, we assume that the adversary
has direct access to the CAN bus via a public OBD port. The
adversary’s capabilities are limited by computational power
attributed to the number and speed of the processors on the
device, the amount of Random Access Memory (RAM), and
the efficiency of the software used to execute the attacks. This
device that is physically attached to the bus can be a compro-
mised onboard device, a compromised infotainment unit [26],
[27], a compromised datalogger, or a diagnostic tool where a
Man-In-The-Middle shim is inserted [28]. The device can also
be remotely connected to wireless interfaces on the vehicle
bus, such as the edge units, the telematics units, wireless
capable dataloggers, Bluetooth-capable diagnostic tools, or a
Tire Pressure Monitoring System (TPMS).

B. Attacks

Combining the power of human inspection and formal
model checking, security vulnerabilities found are constructed
into attacks. Our human security analysis focused on com-
promising cyber security properties such as Confidentiality,
Integrity, and Availability (CIA) that can lead to vehicular
damage scenarios. The uncovered attack vectors, their action
sequences, and the violated security properties are tabulated in
Table IV.

1) Pre-Play, Replay, and Dead Beef Attacks: In conformity
with SAE J1939-81, if two CAs contend for an address, the
CA with the equal or lower numerical value of the NAME shall
have higher priority and win the address arbitration. In these
attacks, the adversary impersonates a CA with equal NAME
and wins address contention, effectively restraining a legit CA
from network participation.

Attack steps. In this attack, the attacker records address claims
to discover connected CAs SAs. On the power cycle, the
attacker Pre-Plays the claims monotonically in descending
order (ex: A-1, B-2, C-3) at state S1 prior legit claims.
Alternatively, attacker Replay claims post legit claims or during
reflash to force the CA state from S1, S2, S3 to S5.

Impact. The primary impact of the attack is to restrain the
network participation of critical vehicular devices stealthily.
Replaying claims during software download of a CA to
institute Dead Beef attack would leave the CA in a non-
operational state, requiring rebooting or re-downloading of
software to recover. As NMP is excluded from SAE J1939-
22 [10] and proposed SAE J1939-91C, these attacks persist
even on secured CAN-FD networks as well.

Mitigation. An inter-CA authentication mechanism with a key
agreement scheme would prevent unauthorized claims from
affecting CA network participation. This can be realized by
including NMP in SAE J1939-91C to perform key agreement
and authentication. Also, if NMP is addressed in secured SAE
J1939-22 networks, these attacks can be prevented on CAN-
FD networks.

2) Thakaavat (Address Exhaustion) attacks: An AACCA,
on address conflict, can select a source address from 128 to
247 inclusive at S3 by re-claiming. In this attack, the adversary
claims on every address in 128 to 247 inclusive, disallowing
a legit AACCA to claim on. In scenarios where SACCAs and
AACCAs contend, AACCAs shall lose arbitration as setting
the “Arbitrary Address Capable” bit in its NAME decreases
its priority for winning arbitration. An adversary can replay
claims with Bit-Flip to deny an AACCA on the network.

Attack steps. In this attack, the attacker Pre-play claims in
monotonically descending order with all addresses in the 128
to 247 inclusive range, forcing legit AACCA to lose arbitra-
tion, send a “cannot claim address” message, and move to state
S5. As this attack exhausts all the 120 addresses, we call it
Thakaavat, which in Sanskrit means exhaustion. Alternatively,
the attacker can leave out any one address while performing
Thakaavat, forcing the legitimate AACCA to take the left-out
address and move to S4. We name this attack Magical - Pick
a Card, Any Card Attack. If the AACCA is command-capable,
the adversary can command an AACCA to take a specific SA.
In this case, they can Replay an AACCA claim with a bit
flip at the “Arbitrary Address Capable” bit by impersonating a
SACCA, forcing the AACCA to lose arbitration. By latching
on to the AACCA claims and performing a Bit-Flip attack, a
Thakaavat attack is executed, leaving CA’s at state S5.

Impact. The impact of this attack is a stealthy denial of an
AACCA from network participation. Furthermore, adversarial
control on the SA of an AACCA helps avoid the attack step
of network discovery.

Mitigation. Effective mitigation of these attacks can be
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achieved by restricting fraudulent claims by performing key
agreement and authentication schemes.

3) SA-NAME Table Poisoning Attacks: When a CA trans-
mits the Address Claimed message, all CAs compare or record
this newly claimed address to their SA-NAME mapping table.
In this attack, the adversary poisons the SA-NAME mapping
table to break the SA-NAME correlation, thereby creating
undesired vehicle behavior. SAE-J1939 recommends each CA
detect one or multiple source address imposters and alert the
network. An adversary can bypass this imposter detection
mechanism by P2P claims.

Attack steps. The adversary claims on the same NAME as
a legitimate node but on a different SA for this attack. We
executed SA-NAME Table poisoning attacks by swapping
identities using P2P poisoning also bypassing imposter alert
messages.

Impact. As an effect of the attack, a CA that processes by
NAME cannot distinguish between legitimate and adversarial
claims, given that both have won arbitration without contention
and have reached state S4 from S2, creating unauthorized
vehicle behavior. This creates inconsistencies between the real
and the SA-NAME association table maintained in a receiver
CA at state S4.

Mitigation. SA-NAME Table Poisoning attacks can be mit-
igated by authenticating the address claim messages instead
of arbitrating by the NAME field. The imposter alert bypass
can be prevented by restricting the processing of address claim
messages to global addresses only.

4) DOS with Collision Attack: CAN is based on
CSMA/CD+AMP, where collisions are resolved through a bit-
wise arbitration based on a pre-programmed priority of each
message in the identifier field of a message. As simultaneous
address claim messages shall result in collisions and fur-
ther bus-off, SAE-J1939-81 specifies adding a pseudo-random
transmit delay to avoid collisions by retaining a CA at S7. In
this attack, the adversary intentionally inserts a claim aimed
to collide with a legitimate claim, denying a legitimate CA to
claim.

Attack Steps. The attacker exploits the predictive nature
of the pseudo-random delay from weak entropy sources to
intentionally create collisions by duplicating the legitimate
claim at the exact time, forcing CA’s to stay at state S7.

Impact. Due to this attack, an adversary can deny a legitimate
CA from network participation.

Mitigation. Collision attacks can be mitigated using non-
repeatable true random numbers within the CAs or secured
pseudo-random number generators.

5) Bot-Net and Commanded Addressing Attack: A network
interconnection CA, a bridge, or a diagnostic or scan tool may
command another CA to use a given source address with the
“commanded address” message without any security authen-
tication. As SA commands are unauthenticated, an adversary
can impersonate a commanding CA and assign SA to one or
multiple CAs.

Attack Steps. In this attack, an attacker exploits the lack of
authentication, impersonates a commanding CA, and alters the

SA of CAS on the network. Alternatively, the adversary can
override a legitimate command by message injections to an
invalid address of 0xFE. Post failing a commanded addressing
sequence, the adversary can act as a commanded CA to
suppress fault indications at the vehicular driver. Additionally,
as SAE-J1939-81 does not contend on NAME, an attacker
can impersonate a “working set master” by claiming the same
NAME on a different address, still complying with SAE-
J1939-81 recommended practices.

Impact. The CA that understands the working set in this
scenario shall update the SA-NAME association table with the
attacker’s SA and receive working set communications from
the attacker.

Mitigation. This class of attacks can be mitigated by authenti-
cating the “commanded address” message and adding NAME
contention mechanisms in [14] standard.

6) Birthday Attack: The NAME checksum contains the
arithmetic sum of the 8 bytes of the target CA’s original NAME
truncated to 8 least significant bits. This security check ensures
that the correct CA receives the command message to protect
against the possibility of changes to the SA having through the
address arbitration process. In this attack, the attacker brute
forces the 8-bit check iterating from 0 to 255 to assign an
invalid or an existing CA NAME.

Attack Steps. Exploiting the inadequacy of using checksums
for security use cases, the attacker can brute force a birthday
collision attack to command multiple CAs with incorrect
NAMEs. As the checksum used is truncated, it eases the attack
execution by reducing the collision space.

Impact. The attack can cause undesired vehicle behavior due
to an incorrect CA NAME assigned.

Mitigation. This attack can be mitigated by replacing the
checksum with a Machine Authentication Code (MAC) to
authenticate NAME strongly.

7) Source Address Alteration Attack: As already men-
tioned, checksums are not recommended for security verifi-
cation as they can be easily matched up due to the lack of key
association. This gap is exploited in this attack where adversary
easily matches up checksum to assign a new CA NAME.

Attack Steps. The attacker impersonates a CA match-up
checksum and alters the NAME of the CA.

Impact. As NAME uniquely identifies the primary function
of a CA, altering NAME can create disassociation between
CA’s actual primary function and the NAME assigned, further
resulting in confusing the receiver.

Mitigation. To prevent adversaries from altering SA’s, the
checksum could be replaced by a Cipher-based Message
Authentication Code (CMAC) or Hash-based Message Authen-
tication Code (HMAC) along with agreed pre-shared keys.

IV. VALIDATION WITH FORMAL VERIFICATION

In this section, we delve into the validation of the attacks
using formal verification.
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TABLE IV: Catalog of New Attacks

No. Technical Requirement Attack Impact Sequence
of Action

Violation

1 CA with ≤ NAME wins
arbitration

Pre-play chained recorded
claims prior to legit claim

Stealthily deny CA from
network participation

(S1-S2-
S3-S5)+

Availability

2 CA with ≤ NAME wins
arbitration

Replay (=NAME) recorded
claims within 250ms

Stealthily deny CA from
network participation

(S1-S2-
S3-S5)+

Availability

3 CA with ≤ NAME wins
arbitration

Dead Beef Attack: Replay
(=NAME) recorded claims

during CA reflash

Interrupted reflash, needs
reboot or reflash to recover

S1-S2-S3-
S5

Availability

4 AACCA can select SA in the
range of 128 to 247

Thakaavat Attack: Pre-play
chained claims (128 to 247)

Stealthily deny legit AACCA
from network participation

S1-(S2-
S3)+-S5

Availability

5 AACCA can select SA in the
range of 128 to 247

Pick a Card, Any Card
Attack: Pre-play chained

claims with any one SA left
out (128 to 247)

Attacker stealthily assigns
AACCA’s SA, reduces CA SA

ambiguity

S1-(S2-
S3)+-S4

Integrity

6 SA of CCACA can be
commanded

Prior legit claims, chain
pre-play claims (128 to 247),

command at S5

Attacker stealthily assigns
AACCA’s SA, reduces CA SA

ambiguity

S1-(S2-
S3)+-S5-

S2-S4

Integrity

7 SACCA wins over AACCA as
“Arbitary Address Capable”

bit is set

Repeat replay AACCA claim
with “Arbitrary Address

Capable” bit flip

Effective stealthy address
exhaustion denies AACCA on

network

S1-(S2-
S3)+-S5

Integrity

8 Each CA owns a unique
NAME and unique SA

Replay recorded claims on
new SA

Legit CA processes messages
from new SA

S1-S2-S4 Integrity

9 Claims are sent on global
address (255)

Use P2P claims to be invisible
to legit CA but audible to

receiver CA

SAE J1939 imposter alert
mechanism bypass

S1-S2-S4 Integrity

10 Each CA owns a unique
NAME and unique SA

SA-NAME Table Poisoning
Attack: Disassociate/swap
identities using P2P claims

Poison NAME-SA association
table. Indirect CA silencing

S1-S2-S4 Integrity

11 Re-claim post a random delay
to avoid a collision

Collision Attack: Exploit
delay prediction to cause

collision

Deny legit CA from network
participation

S1-(S2-
S7)+

Availability

12 SA of CCACA can be
commanded

Impersonate commanding CA
to command CAs SAs

Undesired vehicle behavior S1-S2-S4 Integrity

13 Change in SA of the Working
Set Master shall NOT change

the definition of the Set

Bot-Net Attack: Claim on the
same NAME with new SA to
impersonate as “Working Set

Master”

Users update SA association
to NAME via attack claim,

redirecting members to
adversary

S1-S2-S4 Integrity

14 SA of CCACA can be
commanded

Command CCACA’s SA as
0xFE(invalid), mock CCCA

messages

Stealthily denial of CCCA
from network participation

S1-S2 Integrity

15 NAME checksum security
verify on commanded CA’s

Birthday Attack: Brute force
checksum collision to change

CA NAME

Undesired vehicle behavior
due to incorrect NAME

assignment

S1-S2-S4 Integrity
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TABLE V: Catalog of New Attacks - Contd.

No. Technical Requirement Attack Impact Sequence
of Action

Violation

16 Only the most recent tool can
issue adopt command

successfully

Match-up checksum to change
CA NAME post legit tool

command

Undesired vehicle behavior
due to incorrect NAME

assignment

S1-S2-S4 Integrity

17 Each CA on the network may
be a member of only one

Working Set

Replace the Working Set
definition via “Working Set

Master” impersonation

Undesired vehicle behavior S1-S2-S4 Integrity

18 Working Set Masters
re-defines Working Set with

“Working Set Master”
message with data of zero

Transmit “Working Set
Master” with all zero

messages implying the
purpose of the Working Set is

finished

Makes the Working Set
useless leading to undesired

vehicle behavior

S1-S2-S4 Integrity

19 Users shall create the Working
Set with a total number of

members specified

Exhaust the number of
members of working set

SA members can not join the
Working Set anymore

S1-S2-S4 Integrity

A. Formal verification with model checking

To validate the attacks, we formally verify the addressing
schemes. For this, we build formal models for the addressing
schemes and identify several safety and liveness properties,
including the crucial property that the addressing scheme will
always reach the state where the CA will have a valid address.
Violating this property means there are ways an attacker can
stop a CA from getting a valid address. Then, we use the model
and properties with a model checker to ensure the properties
hold; otherwise, we get a counterexample trace for an attack.
Model checking with the formal model guarantees that, within
the state space of the model, all possible scenarios or attacks
that may cause the addressing scheme to hinder are discovered.
In the following, we details each such step and discuss the
technical challenges we faced and how we resolved them.

B. Modeling

For the formal modeling we go through the SAE J1939-
81 recommended practices [14] and model the three ad-
dressing schemes: single-addressing, arbitrary addressing, and
command-configurable in the SMV [29] formal language as
finite-state-machines (FSMs). Symbolic Model Verifier (SMV)
is a seminal language introduced to model synchronous, asyn-
chronous systems, and network systems formally. We model
two CAs that are communicating with a shared channel.
Modeling two CAs is enough for us to test the safety and
liveness properties that need to be ensured. We assume the
shared bus that connects the CAs is under the influence of
a Dolev-Yao adversary [30]. Following this adversary model,
the attacker can inject, drop, and modify any communication
between the two CAs. Dolev-Yao is a very popular threat
model that has been used in analyzing multiple protocols, and
the adversarial capabilities also suit our modeling.

Challenges of modeling. While modeling the addressing
schemes, we face several challenges.

(C1) Modeling NAME variable: Every CA that transmits
messages on a SAE J1939 network shall have a NAME. This
NAME is a 64-bit identifier for a CA and is composed of 10
fields. These fields include industry groups, vehicle systems,
and others. This NAME is communicated between CAs and

may be formally modeled as a stream of bits. However, for a
64-bit NAME stream, the search space of the model will be
264 states, which hits the scalability of the model checker.

(C2) Address space: For each CA the address space is between
0 to 254. Therefore, for modeling multiple CAs this essentially
implodes the states of the model.

Insights on the challenge solutions. Here, we discuss how
we solve the discussed challenges. To solve (C1), we examine
the design documents thoroughly and observe that though the
NAME is a 64-bit variable, they are divided into dependent and
independent fields. The independent fields are arbitrary address
capable, industry group, function lower, and manufacturer
code. Therefore, we can essentially model only these four
fields with a sequence variable. This gives us a scalable
solution to test the properties. To resolve (C2), we downgrade
the address variables to smaller values(i.e., 5) to efficiently
capture the property space without causing a state space
exploration. As we do not have any property that specifically
reasons about a specific address value, this downgrade does
not affect the soundness and completeness of our model.

C. Properties

For properties, we consult the recommended practices and
find out invariants that need to be ensured by the addressing
scheme. One of the most important invariants is: the addressing
scheme should reach the designated state where the CA is
assigned an address for receiving and sending traffic. In total,
we test 5 safety and liveness properties, and these properties
are converted to formal SMV language as well.

D. Model checking

For modeling checking, we use NuXmv [31]. NuXmv is
a popular model checker that uses state-of-the-art algorithms
to verify. We utilize LTL-based model checking and encode
the properties in linear temporal logic. We pass the model and
property to the model checker. In case the property is violated,
we get a trace of a vulnerability through a counterexample. We
then modify the property to ensure the same counterexample
is not generated again. This process is repeated until the model
checker returns the property as true.
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Delaying 
Address Re-

claim
(S1)
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 Occurred/
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250 ms Expired
without a

contending
Address Claim

Fig. 3: Simplified FSM for Initialization of Arbitrary Address
Capable CAs (AACCA); the convention for transitions is
“condition/action”

To show this process in a running example, we focus on
the simplified partial FSM of the arbitrary addressing scheme
(shown in Figure 3). For the property, we use the previously
discussed liveness property the addressing scheme should
reach the designated state where the CA is assigned an address
for receiving and sending traffic. The property is converted to
a LTL property as F (State = S5). This essentially encodes
that in every run of the scheme, the protocol should move the
S5 state Sending and Receiving normal traffic. Any violation
of this property, in other words, the counterexample trace, is
a sequence of messages that forces the scheme to move to a
state where the CAs do not get any more addresses. Providing
this property and the formal model to the model checker, in
most cases, generates a counterexample, where a bus-off-error
is caused repeatedly, and the addressing scheme is stuck in the
S3 → S1 → S3 states (shown with the blue arrow in Figure 3).
We then modify the LTL property as G(!Bus− off − error
& !delay − complete) → F (State = S5) so that this
counterexample is not generated again. Following a second
run of the model checker, we get another counterexample,
now related to the case where there is a contending address
claim, the contender NAME being less than equal to the CA,
and there are no addresses available, the scheme will never
reach state S5 (shown with red arrows in the Figure 3). This
process continues until there are no more counterexamples
and issues with the addressing protocol, and the property is
declared true. As shown, model checking provides a systematic
way of uncovering all the possible issues of the addressing
schemes one by one. Also, it provides assurance that we can
exhaustively list all the weaknesses. We uncover issues 17-19
and verify all the issues shown in Table IV and Table V using
nuXmv and our formal models.

V. ATTACK DEMONSTRATION

This section provides detailed demonstrations of some of
the attacks identified in Section III.

A. Birthday Attack

Background Theory. The Name Management (NM) message
PGN 37632 assigns CA’s NAME fields during network con-
figuration. This message is 8 bytes long and contains the NM
Control mode indicator field, sent in the least significant 4 bits

Commanding
ECU Network Adversary

Request for Address Claim
SA = V, DA = 255

Address Claim

SA = X, NAME = A1
Address Claim

SA = X, NAME = A2

Address Claim

SA = W, NAME = A2

Address Contention

Address Claim

SA = Y, NAME = A3

Address Claim

SA = Z, NAME = A4 NM, Model 0 (Set Name)

SA = V, DA = 255, Checksum 00,
New NAME = A4

NM, Mode 3 (ACK)

SA = X, NAME = A4
NM, Mode 3 (ACK)

SA = Y, NAME = A4

NM, Mode 7 (Adopt Pending)

SA = V, DA = 255

Address Claim

SA = X, NAME = A4

Address Claim

SA = Y, NAME = A4

SA = V, DA = 255, Checksum 255,
New NAME = A4

:
NM, Model 0 (Set Name)

Assume checksum of
A1 and A3 collidies

Exploit Lack of NAME
Contention

Fig. 4: Birthday Attack Demonstration on an AACCA Network

0x05 Shift Controller
0x0F Retarder
0x21 Body Controller
0x0B

OBD-II Port
Engine Controller,
SA =0x00

Instrument
Cluster,
SA =0x17

Brake,
SA =0x0B

Body Controller,
SA=0x21

Shift Controller,
SA=0x05

Transmission
Controller,
SA=0x03

Retarder,
SA=0x0F Brake

Transmission Ctlr 

Post Poisoning

Adversary

Instrument Cluster0x17
0x03

SA - NAME Table

0x05 Retarder
0x0F Shift Controller
0x21 Body Controller
0x0B Brake

Instrument Cluster
Transmission Ctlr 0x17

0x03

SA - NAME Table

Fig. 5: SA-NAME Table Poisoning Attack
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Fig. 6: Truck used for Validating SA-NAME Table Poisoning
Attacks

of byte 2 that indicates various modes of usage. To ensure that
the NM message has been received by the correct CA, an 8-bit
NAME checksum is used.

Execution. We design a birthday attack, a brute-force colli-
sion attack that exploits the mathematics behind the birthday
problem in probability theory [32].To demonstrate the attack,
we impersonated the commanding ECU and exploited the lack
of authentication handshake during NAME assignment and the
higher likelihood of 8-bit checksum collisions to assign a legit
CA with an invalid or existing NAME. The unique SA-NAME
mapping on the network is now broken, as two CAs with two
different source addresses have the same corrupted NAME.
This scenario remains stealthy as SAE-J1939-81 does not
handle the NAME contention. If the attacker assigns a NAME
“A4”, in effect, the original CAs A1 and A3 are disconnected
from the network, as shown in Fig. 4. This brute-force birthday
attack can change multiple CA’s identities, leading to undesired
vehicle behavior.

B. SA-NAME Table Poisoning Attack

Background Theory. Each CA records and/or compares the
received address claims to their SA-NAME association table of
used SAs and network addresses. Should multiple CAs claim
to use the same address, an address contention is detected on
the CAs using the contented address. The CA with the equal or
lowest NAME wins, and the other CAs shall claim a different
address or stop participation on the network. These changes
on the network are also reflected in the SA-NAME association
table maintained at each CA. To defend against the adversarial
impersonation of legitimate CAs on the SAE-J1939 network,
SAE J1939 included an imposter PG Alert message acronym-
ed as “IPGA” which would be sent out when a CA receives a
message from its SA.

Execution. Exploiting the lack of authentication on address
claim messages, we impersonated several CAs to corrupt the
SA-NAME association table maintained on each CA. We
bypassed the imposter alert detection mechanism by using
destination-specific or P2P claims to show that the attack can
still be stealthily carried out. We developed Python scripts
to attack the truck shown in Fig. 6 that consisted of an
Engine Controller, Shift Controller, Retarder, Brake, Body
Controller, Transmission Controller, and Instrument Cluster.
Each CA maintains an SA-NAME association table. An Engine
Controllers SA-NAME association table is shown in Fig. 5. To
demonstrate the attack, we corrupted the engine controller’s
and headway controller’s SA-NAME association table by
connecting to the OBD port and sending destination-specific

claims, as shown in Fig. 5. Note that we chose the NAME
corruption in such a way that it swaps identities on a critical
vehicular network. We confirmed the Engine SA-NAME as-
sociation table corruption by inspecting the address where the
SA-NAME table was stored in the Engine Controller. For a
CA based on the SA-NAME association table, this corruption
can cause undesired vehicle behavior due to identity swap.
Messages received from the brake are now treated as from the
shift controller, messages received from the body controller
are now treated as received from the instrument cluster, and
messages received from the transmission controller are now
treated as received from the retarder. With the poisoning
attack, we could disconnect the ABS on a moving truck,
which led to hard/erratic braking. The vehicle warning on the
dashboard is shown in Fig. 7a. We could disable the radar
on an advanced truck equipped with radar while the truck
was moving. Disabling of radar, in effect, disabled vehicle
features such as lane change assistance, parking aid, collision
mitigation, blind spot detection, and rear cross-traffic alert. The
vehicle warning is shown in Fig. 7b. The actual braking torque
of the retarder was indicated abnormal, as shown in Fig. 7.
Since we used destination-specific messages directed to the
Engine controller, our messages were undetected by the legit
CAs, and hence, no imposter alert message was seen post-
attack execution in the network traffic logs.

C. Collision Attacks

Background Theory. After transmitting a claim message,
the transmitted CA shall monitor the network for error code
information and contending claims. If an error has occurred
or a CA detects an equal or lower claim, automatic re-
transmission of the claim message shall be scheduled after a
pseudo-random transmit delay. If this pseudo-random transmit
delay is predictable, an adversary can perform repeated inten-
tional collisions, denying CAs participation in the SAE-J1939
network.

Execution. Our experimental test setup (shown in Fig. 8)
consists of an adversary, an engine controller, and a PCAN
logger connected to a J1939 CAN network at 250 kbps. We
developed Python scripts to replay the engine claim at a time,
t1, which took Tpystack time to reach the lower layer driver
and further took Tframe time to get transmitted on the CAN
bus as shown in Fig. 9. Assuming the engine controller took
Tenginestack to reach the application layer, Tprocessing time
was taken to process the frame and a delay of Trandomdelay

was added to make the re-claiming time unpredictable to avoid
a collision. On timeout of Trandomdelay , the engine controller
reclaims. The engine controller received the frame at time t8,
and reclaim was started at t7. The frame takes Tenginestack

to reach the lower layer driver and further takes Tframe to
get transmitted on the bus and finally takes Tpystack time for
the adversary to receive the message in the application layer
at timestamp t6. The PCAN logger receives the adversary’s
claim at timestamp t2 and receives engine controllers reclaim
at timestamp t5. On visualizing these timestamps and delays
as shown in Fig. 9, we could derive the below equations:

x = (t5− t2) + Tpcanstack − (Tframe + Tpcanstack)

x = (t5− t2)− Tframe

9



(a) ABS Disabled on the Truck (b) Radar Disconnected (c) Braking Torque of the Retarder

Fig. 7: Real World Attack Impact

Fig. 8: Bench Setup for Validating Claim Collisions

For a baud rate of 250000 kbps, the bit time is 1/250000
seconds, i.e., 4µs. This means that 1 bit takes 4µs to transfer
on a bus of 250000 kbps. Hence, the approximate time for
transferring one frame consisting of 125bits is 500µs. How-
ever, when measured with an oscilloscope, we found this value
to be 552.2µs

Tframemeasured = 552.2µs

x = (t5− t2)− 0.5522ms

Since the adversary’s Python script and PCAN logger are
on two different devices, time synch is inaccurate. However,
time differences on the device itself, such as t6 − t1 and
t5− t2, are reliable. Hence, we created equations to enhance
accuracy based on time differences on one device. With time
synchronization, we do not need to restrict in this manner. If
the adversary tries to find x based on pystack time, which
is under the control of the adversary, the delay - x ms that
needs to be accounted for the adversary to collide with a claim
message perfectly is:

x = (t6− t1)− (Tframe + Tpystack)− (Tframe + Tpystack)

x = (t6− t1)− 2 ∗ (0.5522ms+ Tpystack)

With multiple logging on our experimental setup, we found
that x averaged to 18.24376321 ms. We could perfectly collide
with engine reclaims by adding an 18.24376321 ms delay in
the adversarial Python script, as shown in Fig. 10.

VI. DISCUSSION AND FUTURE WORK

In this work, we take the first steps to perform a systematic
analysis of SAE J1939 networks, starting with NMP. We
uncover 19 new attack vectors, validate them using formal

verification, and show their impact in real trucks. Though our
attacks are extensively applicable in MHD trucks, they can be
demonstrated wherever SAE J1939 standards are used, such as
agricultural equipments, forklifts, and industrial equipments.
As SAE J1939-81 is applied over ISO 11898 and ISO 11992
physical layers, our attacks would be relevant on both these
physical layers. Although CAN FD Data Link Layer J1939-
22 [10] offers security trailers for onboard messages, NMP
messages were excluded. Therefore, our attacks are feasible on
SAE J1939 CAN-FD networks and are not limited to classic
CAN networks.

Our future work includes uncovering attacks in other SAE-
J1939 protocols and deploying robust security mechanisms
with real-world demonstration. We also plan to model and
experiment with different inter-CA authentication handshake
mechanisms and authenticated commanded messages to create
an effective defense against our attacks. This will include
exploring practical dynamic inter-CA key agreement schemes
and identifying optimized security trailers.
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