
Commercial Vehicle Electronic Logging Device
Security: Unmasking the Risk of Truck-to-Truck

Cyber Worms
Jake Jepson

Colorado State University
jepson2k@rams.colostate.edu

Rik Chatterjee
Colorado State University

rik.chatterjee@colostate.edu

Jeremy Daily
Colorado State University

jeremy.daily@colostate.edu

Abstract—In compliance with U.S. regulations, modern com-
mercial trucks are required by law to be equipped with Elec-
tronic Logging Devices (ELDs), which have become potential
cybersecurity threat vectors. Our research uncovers three critical
vulnerabilities in commonly used ELDs.

First, we demonstrate that these devices can be wirelessly
controlled to send arbitrary Controller Area Network (CAN)
messages, enabling unauthorized control over vehicle systems.
The second vulnerability demonstrates malicious firmware can
be uploaded to these ELDs, allowing attackers to manipulate
data and vehicle operations arbitrarily. The final vulnerability,
and perhaps the most concerning, is the potential for a self-
propagating truck-to-truck worm, which takes advantage of the
inherent networked nature of these devices. Such an attack
could lead to widespread disruptions in commercial fleets, with
severe safety and operational implications. For the purpose
of demonstration, bench level testing systems were utilized.
Additional testing was conducted on a 2014 Kenworth T270 Class
6 research truck with a connected vulnerable ELD.

These findings highlight an urgent need to improve the security
posture in ELD systems. Following some existing best practices
and adhering to known requirements can greatly improve the
security of these systems. The process of discovering the vul-
nerabilities and exploiting them is explained in detail. Product
designers, programmers, engineers, and consumers should use
this information to raise awareness of these vulnerabilities and
encourage the development of safer devices that connect to
vehicular networks.

I. INTRODUCTION

Commercial vehicles, specifically medium and heavy-duty
trucks, serve as the backbone of supply chains and critical
infrastructure globally. These trucks are not just vehicles, but
pivotal cogs in the vast machinery that drives the world’s
economies. Their role extends far beyond simple transporta-
tion; they are integral in the distribution of a wide range of
goods, from consumer products to industrial materials. This
distribution network, supported by these commercial vehicles,
is essential for maintaining the continuity and efficiency of
global economic systems.

According to the US Bureau of Transportation Statistics, the
United States alone has over 14 million medium and heavy-
duty trucks registered, underscoring their prevalence and im-
portance in national infrastructure [1]. Moreover, the American
Trucking Association’s report highlighted these trucks moved
approximately 72.6% of the nation’s freight by weight in
recent years, showcasing their critical role in the country’s
freight transportation system [2]. This statistic further empha-
sizes the reliance of economies on these vehicles, not only for
domestic transport but also for international trade and com-
merce. The seamless operation of these commercial vehicles
is vital for the smooth functioning of supply chains, directly
impacting everything from local businesses to international
markets.

A. Background on Electronic Logging Devices (ELDs)

Many heavy vehicles are required to be equipped with
Electronic Logging Devices (ELDs), since they are mandated
by the Federal Motor Carrier Safety Administration (FMCSA)
under the ELD Final Rule [3]. This so-called ELD Mandate
is a component of the Moving Ahead for Progress in the
21st Century Act (MAP-21) and it went into effect December
18, 2017. These devices are essential for recording driving
hours and ensuring compliance with Hours of Service (HOS)
regulations, which are designed to prevent accidents due to
driver fatigue. ELDs automate the process of capturing data on
engine operation, vehicle movement, and miles driven, serving
as a modernized alternative to traditional paper logbooks.
The legal framework for ELDs requires self-certification and
registration with the FMCSA. The regulation also includes
provisions to protect drivers from harassment based on ELD
data.

ELDs acquire data through communication with the vehi-
cle’s engine control module (ECM) via the vehicle newtork.
Either the diagnostic connector or RP1226 connector are used
as those interfaces expose the Controller Area Network (CAN)
bus and the J1939 protocol. This setup enables ELDs to record
mandated information such as engine hours, vehicle motion,
and distance traveled, which are necessary for adherence to
HOS regulations. Interestingly, the J1939 standard suggests
the engine hours parameter is available only ”on request” over
a J1939 network. This required parameter means the ELD

Symposium on Vehicles Security and Privacy (VehicleSec) 2024
26 February 2024, San Diego, CA, USA
ISBN 979-8-9894372-7-6
https://dx.doi.org/10.14722/vehiclesec.2024.23047
www.ndss-symposium.org

must have some ability to write to the network and request
the engine hours data.

The diagnostic connector, such as a the 9-pin connector
defined in SAE J1939-13 or the J1962 connector, allows the
ELD to interface with the vehicle’s communication network.
Additional connections defined by RP1226 provide dedicated
access to third-party devices on the vehicle networks [4]. The
CAN bus, known for its robustness, low latency and effi-
ciency, facilitates real-time communication between modules
[5], while the J1939 protocol, specific to heavy-duty vehicles,
standardizes the physical construction of the CAN bus and the
format of application layer messages [6].

SAE J1939 messages are organized into Parameter Groups
(PG), each identified by a unique Parameter Group Number
(PGN). These messages carry operational parameters and are
encapsulated in the J1939 Protocol Data Unit (PDU), which
also contains information like the source and destination
addresses, message priority, and data payload.

However, neither CAN nor J1939 are renowned for their
security features. While a comprehensive analysis of CAN
and J1939 vulnerabilities is beyond the scope of this paper,
they provide relevant context. Notable research includes Miller
et al.’s identification of a network-level vulnerability leading
to network overload, and Burakova et al.’s explanation of
application-layer vulnerabilities capable of controlling truck
engines and disabling critical functions [7], [8]. Murvay et
al. and Campo et al. highlighted network management layer
weaknesses, such as ECU isolation and denial-of-service vul-
nerabilities [9], [10], while Mukherjee et al. and Chatterjee
et al. demonstrated data-link layer vulnerabilities, including
ECU overloads and denial of service via open connections
[11], [12].

In cybersecurity, a worm is defined as self-replicating mal-
ware that autonomously propagates across a network, exploit-
ing security vulnerabilities or software flaws. Although worms
have traditionally targeted standard computer network systems,
the increasing connectivity of systems, including ELDs and ve-
hicles, has created new attack surfaces for embedded systems
[13], [14], [15].

B. Contributions

This research encompasses several significant contributions
to the domain of cybersecurity, particularly in the context of
Electronic Logging Devices (ELDs) and vehicular networks.
These contributions are itemized as follows:

• Reverse-Engineering Analysis of an ELD Our study
entails a detailed reverse-engineering process of a com-
mon off-the-shelf ELD. We thoroughly investigate its
firmware update mechanism and delineate a potential
method to compromise its firmware. This compromise
could result in detrimental effects on both the vehicle
and its immediate environment. The study also examines
the implications of the malicious code on the device’s
standard operational performance.

• Design and Demonstration of a Novel Truck-to-Truck
Worm We introduce the design of an innovative worm,

specifically conceptualized for truck networks, which is
capable of autonomous propagation from one ELD to
another. This self-replicating worm is practically demon-
strated using ESP32 development boards. The demon-
stration serves to validate the feasibility and operational
mechanics of the worm in a controlled environment.

• Empirical Assessment of the Compromised ELD and
Truck Worm The research includes an evaluation of
the effects induced by both the compromised ELD and
the prototype truck worm. This assessment is conducted
through a series of experiments designed to demonstrate
the impact of the worm in real-world scenarios, providing
empirical evidence of its potential repercussions.

• Discussion of Countermeasures and Defensive Strate-
gies Finally, the paper discusses a range of potential
countermeasures and defense strategies aimed at miti-
gating the risks posed by the identified vulnerabilities.
These strategies are proposed to enhance the security
posture of ELDs against similar attacks in the future,
thereby contributing to the broader field of vehicular
cybersecurity.

C. Organization

Following the introduction, which sets the stage by dis-
cussing the significance of trucks in the U.S. supply chain
and providing a background on Electronic Logging Devices
(ELDs), the paper is structured into cohesive sections. The
second section, ”Understanding the System and Threats,”
delves into the intricate relationship between heavy trucks and
ELDs, and introduces a detailed threat model for the Truck
to Truck Worm. This sets the foundation for the subsequent
section on ”ELD Firmware Modification,” where the focus
shifts to the technical aspects. Here, the architecture of ELDs,
the vulnerabilities uncovered, and the reverse engineering
methods are thoroughly explored. This section also describes
the creation and testing of malicious firmware, emphasizing
its real-world implications.

Moving forward, the paper presents the ”Design of a Truck
to Truck Worm,” elaborating on the development process and
evaluation of such a worm, especially in the context of ESP32
development boards. Addressing the challenges posed, the
next section, ”Mitigations Against Worm Attacks,” proposes
various strategies to counter the identified vulnerabilities and
potential threats. Concluding the paper, the final section syn-
thesizes the key findings and posits future research directions,
underscoring the necessity for continuous enhancement of
ELD security within the trucking industry and its associated
infrastructures. This structured approach ensures a comprehen-
sive understanding of the vulnerabilities in ELDs and formu-
lates strategies for strengthening these pivotal components in
the logistics and transportation sector.

II. UNDERSTANDING THE SYSTEM AND THREATS

A. System Definition

The system of interest is composed of two distinct systems
that come together for use: a heavy truck and an electronic

2

logging device. This distinction is important because it il-
lustrates the interplay and interdependence within complex
systems, which may exhibit emergent behaviors. In systems
engineering, the integration of the heavy truck (the primary
operational system) and the electronic logging device (ELD,
a key data management subsystem) create a composed ar-
chitecture. Each system by itself may not have cybersecurity
concerns; the truck without an ELD does not have a wireless
connection, and the ELD by itself cannot command a truck.
The heavy truck acts as a dynamic operational platform,
encompassing various mechanical and electronic components,
while the ELD serves as a mandated interface for data logging,
regulatory compliance, and potentially, vehicle control. This
systemic integration, therefore, not only enhances operational
capabilities but also introduces potential vulnerabilities and
points of failure that can be exploited. The combination of a
truck and ELD creates a system with an exploitable wireless
connection that affects the operation of the truck.

B. Threat Models

Typical cyber-physical control oriented threat scenarios for
ELDs or On-Board Diagnostic scanners (OBD-II scanners)
involve either close proximity wireless access (e.g. via Wi-
Fi or Bluetooth) or long-range access via cellular networks.
In both scenarios, attackers exploit security flaws to launch
attacks on vehicles, using the attached device as a proxy to the
vehicle’s internal CAN bus [16], [17]. This paper introduces
a novel approach for a diagnostic plug-based attacks, capable
of spreading to other devices encountered along the driver’s
route.

From an attacker’s perspective, a widespread worm-like
attack necessitates the compromise of numerous ELDs from
multiple companies to inflict substantial damage. In addition,
since the late 2010s, vehicle manufacturers have integrated ve-
hicle network gateways as a countermeasure to such exploits.
These gateways, analogous to firewalls, obstruct malicious
traffic while permitting legitimate communications. Further-
more, an ELD’s disconnection from the vehicle by the trucker
can promptly impede the attack.

Among the approximately 880 ELDs registered [18], our
analysis reveals a much narrower diversity than initially ap-
parent, with only a few tens of distinct ELD models actually
in use. This limited variety is primarily due to a high degree
of rebranding, where many ELDs are essentially clones of
each other with minimal variations, sharing similar form
factors, execution environments and codebases. Consequently,
the differences between models, often limited to firmware
variations, do not significantly hinder the portability of ma-
licious firmware across devices from the same manufacturer.
In addition, recent studies have identified attacks capable of
bypassing vehicle gateways by exploiting flaws in protocols
permitted through these gateways [12]. Additionally, the legal
requirement for drivers to use ELDs reduces the likelihood
of device removal, except during diagnosis by a technician.
Typically, a technician disconnects the ELD to access the

diagnostic port to scan for codes; however, we posit that this
may obscure the diagnosis of issues originating from the ELD.

As an illustrative proof of concept, we introduce a malicious
variant of the firmware for a widely used consumer-grade
ELD, demonstrating its potential to initiate an attack against
the vehicle. We abstain from constructing and publishing a
comprehensive proof of concept for the worm-like capabilities.
Instead, we shift our focus to the developer board of the same
ESP32 platform. Utilizing these boards, we will exhibit and
assess a proof of concept for a malicious firmware worm that
propagates from one device to another.

The attacker initially requires the compromise of at least
one device, achievable through a drive-by attack or by posi-
tioning at locations frequented by trucks, such as truck stops,
rest stops, hubs, distribution centers, or ports. The attacker
wirelessly connects to the device and uploads the malicious
firmware. Once re-flashed, the device commences scanning for
similar devices through the unutilized interface (either WiFi
or Bluetooth Low Energy). Upon detecting another device,
it attempts to connect using default credentials if WiFi is
inactive 1, or without credentials for Bluetooth. Success leads
to an over-the-air (OTA) firmware upgrade, transferring the
malicious firmware to the subsequent device. There is a brief
interruption in the other device’s service before it resumes its
standard functions and concurrently seeks additional devices
for propagation. After spreading to a predetermined number of
devices (X), set by the attacker, the device waits for a specific
set of conditions (Y), akin to a logic bomb, to execute an
attack (Z).

While our emphasis is not on devising the most destructive
attack sequence, we offer a potential scenario for illustrative
purposes: The device initially waits until it has propagated
to multiple devices or a certain amount of time has elapsed.
This stage ensures broader dissemination of the worm before
executing an attack, which could otherwise impair the ELD
and limit its infectious potential. Subsequently, the device
waits until the vehicle reaches a vulnerable state (as indicated
by CAN bus data), such as the first signs of deceleration
after achieving highway speeds (65+ mph). At this time, the
malicious ELD may flood the CAN bus with Torque/Speed
Control 1 (TSC1) messages, commanding the engine to spin
to maximum capacity, potentially causing the vehicle to un-
expectedly collide with an object it was attempting to slow
down and avoid.

III. ELD FIRMWARE MODIFICATION

In this section we describe how we modified the firmware
of a popular consumer off-the-shelf ELD to execute an attack
on the vehicle. While we focus on a specific ELD for the
purpose of this paper, our research has indicated that these
types of problems are not limited to this specific model or
this specific manufacturer. As such, we do not believe it adds

1The ELD discussed in this paper left all interfaces on by default. Therefore
”active” and ”inactive” refers to whether the interface on the compromised
ELD is in use by a connected device.

3

Fig. 1: ELD PCB Up Close

any value to this paper to disclose the manufacturer’s name or
device model.

A. ELD Architecture

The hardware and software described here are specific to
the device we analyzed. However, we observed that multiple
ELDs from the same manufacturer utilized almost identical
architectures. Furthermore, we noted that there were large
overlapping similarities between many of the diagnostic port
mounted ELDs.

1) Physical Device: The ELD we analyzed is a small,
hand-held device that plugins into the 9-pin diagnostic port
on Heavy Vehicles. The device gathers data from the vehicle
through the CAN channels exposed on the diagnostic port
and is powered by the diagnostic port. The device has no
other ports on it as all other communication is performed
over wireless interfaces. The ELD presents 3 wireless inter-
faces namely: WiFi, Bluetooth, and GPS. GPS is used for
gathering location data while WiFi and Bluetooth are used
to communicate with an application on the user’s phone or
tablet. Depending upon the reseller, either WiFi or Bluetooth
Low Energy (BLE) is used, but we did not find an instance
where both where necessary. An ESP32 chip is in charge
of controlling the device. While the exact chip model varied
between devices, they all were dual threaded with integrated
storage, and supported WiFi, BLE, GPS, and CAN. Other
notable features include a small PCB antenna and an ESP
programming port.

2) Execution Environment: The ESP32 chips executes a
32-bit Xtensa instruction set architecture (ISA) that blends
16-bit and 24-bit instructions in a RISC-based framework
[19]. The device utilizes the Espressif Integrated Development
Framework (ESP-IDF) which makes use of a Symmetric
Multiprocessing implementation of FreeRTOS, a lightweight
and fast Real Time Operating System [20]. Unless the General
Purpose Input/Output (GPIO) pin 0, which is exposed with the

ESP programming port described earlier, is pulled down, the
board will boot the program code stored in flash. Otherwise,
it will boot into the serial bootloader. The bootloader connects
to a host computer via a serial connection and allows for
reading/writing to the flash memory, setting EFuses, and more
[20].

3) Software Architecture: Since the ESP32 IDF utilizes
FreeRTOS, most of the device’s functionality is segmented into
tasks or threads. At the core of the ELD’s architecture is the
main thread, initiated after basic hardware setup and system
checks. This thread begins by initializing critical components
like flash memory, GPIO pins, and the TCP/IP adapter. Follow-
ing this initialization phase, the software architecture diverges
into several distinct threads, each dedicated to a specific
function. Notable threads include, operating the WiFi interface
for network connectivity, data transmission and device control,
a similar thread for Bluetooth, a dedicated thread for WiFi
debugging, an upgrade thread which hosts a web server for
easy firmware updates, and another for data collection and
logging related to vehicle interfacing.

One of the most crucial aspects of this architecture, as it re-
lates to this paper, is the over-the-air (OTA) update mechanism.
This feature allows the ELD to update its firmware wirelessly,
using WiFi or Bluetooth. To support this functionality, the
device’s partition tables are configured to include two OTA
application partition slots and an OTA Data Partition. During
an update, the system checks the checksum and SHA256 hash
of the new firmware image for integrity violations before
writing it to an inactive OTA slot. Once verified, the OTA
Data partition is updated to boot from the new firmware.

B. Related Vulnerabilities Discovered

In our evaluation of ELD units procured from various
resellers, we discovered that they are distributed with factory
default firmware settings that present considerable security
risks. Our reverse engineering endeavors exposed an API
that permits extensive device feature configuration, including
over-the-air (OTA) updates. Contrary to expectations, initial
connections with the re-seller’s mobile applications do not
activate a setup or reconfiguration routine towards more secure
settings.

• Default Network Settings By default, WiFi and Blue-
tooth functionalities are activated. The WiFi Service
Set Identifier (SSID) is predictable, following the for-
mat <Vendor Name> ELD: <MAC ADDR>, and is
secured with a default password of minimal strength,
’de*******77’. 2

• Web Server and OTA Update Endpoint The de-
vice hosts a web server, accessible via the IP address
192.168.4.1. A critical endpoint on this server is /u-
pload.php, which facilitates OTA firmware updates. This
page is safeguarded by a basic password (1****6), ren-
dering it susceptible to unauthorized access.

2At the request of the manufacturer we have obscured the passwords and
change the commands. Although their form and function remains the same.

4

Fig. 2: Firmware Upload Page

• Exposed Debug Thread and APIs The device features
a wirelessly accessible socket debug routine on port 22.
Additionally, an API, which enables extensive control
over the device, including the transmission and reception
of arbitrary CAN messages as well as OTA updates
with no protection, is exposed via Bluetooth and WiFi
on port 23 via the Telnet protocol. The API endpoints
and parameters pertinent to the security vulnerabilities
discussed in this paper are outlined as follows, though
this is not an exhaustive list:

– CONFIGURE/ACTIVATE/DEACTIVATE Com-
mands: These commands are instrumental in con-
figuring the device, encompassing tasks such as
disabling unused interfaces and modifying default
passwords. While these parameters were present in
the firmware, their application within the reverse-
engineered Android applications was minimal or
non-existent.

– INITIATEUPDATE/COMPLETEUPDATE Com-
mands: These commands are utilized for conducting
OTA updates on the ELD. It is critical to note that, in
contrast to the web-based update mechanism which
requires a password, these commands do not require
any form of authentication for OTA update initiation.

– DATASTREAM Command: This command acti-
vates the streaming of raw CAN messages to a con-
nected device. Enabling this setting is a prerequisite
for utilizing the ELD to dispatch arbitrary CAN
messages onto the connected CAN bus.

– Arbitrary CAN Message Transmission: Unlike the
other commands that employ ASCII-based words,
the commands for sending arbitrary CAN messages
consist of specific non-printable hexadecimal char-
acters. These commands, along with the DATAS-
TREAM command, were absent from all the Android
applications from the resellers which we examined
through reverse engineering, suggesting a reliance on
the obscurity of these features as a form of security
measure, though such a strategy was not explicitly
confirmed. The following list delineates the initial

Fig. 3: Table top lab setup

character of each command, the corresponding CAN
bus, and the format of the CAN ID (standard 11-bit
or extended 29-bit IDs):
∗ 0xF4: can1, extended.
∗ 0xF5: can1, standard.
∗ 0xF6: can2, extended.
∗ 0xF7: can2, standard.
∗ 0xF8: can3, extended.
∗ 0xF9: can3, standard.

• Firmware Security Flaws The device lacks enforcement
of firmware signing for authenticity, relying only on
rudimentary integrity checks via checksums and hashes,
which are inadequate for assuring firmware security.
Digitally signed firmware is a better alternative.

1) Criteria for Successful Exploitation:
• Proximity for Wireless Access Attackers must be within

the wireless range to leverage WiFi and Bluetooth vulner-
abilities for actions like sending arbitrary CAN messages
or uploading malicious firmware.

• Exploiting Default Settings
– Bluetooth Access With a predictable Bluetooth iden-

tifier and a ”Just Works” pairing mode, attack-
ers can connect to the device if the driver is not
currently connected [21]. Post-connection, the API
allows them to either upload malicious firmware or
manipulate CAN messages.

– WiFi Access The device’s WiFi, identifiable by a
predictable SSID and protected by a weak password,
grants network access. Once connected, attackers can
either utilize the /upload.php endpoint on the internal
web server for firmware uploads or exploit the API
on port 23 via Telnet for sending/receiving CAN
messages or firmware manipulation.

5

C. Analysis Techniques

1) Firmware Extraction and Acquisition: The initial phase
of our research involved gathering information from public
sources such as reference manuals, official documentation, and
various online forums, which provided foundational knowl-
edge about the ELD’s operation and potential security is-
sues [20], [22], [18]. Using this background information, we
proceeded with the firmware extraction from the ELD using
ESPTool.py from Espressif [23]. The extraction process was
facilitated by a serial to USB converter, which connected to the
programming port on the ELD. Additionally, newer firmware
versions were obtained from the update servers, the addresses
of which were identified through reverse engineering of the
mobile applications associated with the ELD using JADX,
a popular Dex to Java decompiler [24]. The discovery of
credentials and webpage endpoints was achieved by running
the GNU strings command on the firmware, providing
further insight into embedded information in the binary files
[25].

2) Firmware Analysis Methodology: Our analysis of the
ELD’s firmware involved a suite of tools, each contributing
to understanding of its structure and potential vulnerabilities.
Ghidra, a software reverse engineering tool, played a central
role in this analysis [26]. The integration of ESP32-specific
plugins into Ghidra was crucial as these plugins enabled the
intake of firmware, creation of memory maps, and disassembly
of the assembly code, specifically tailored to the ESP32 archi-
tecture [27], [28], [29]. Complementing Ghidra’s capabilities,
Binwalk was used to examine and extract the contents of the
firmware images [30].

3) Network Analysis: The network footprint of the ELD,
including open network ports and services, was mapped out
using Nmap [31]. The analysis revealed various open ports
and the services associated with them, providing insights into
the network-based aspects of the ELD’s security architecture.

4) Observation of Default Credential Usage: A signifi-
cant finding in our research was the ease of access to the
ELD’s default WiFi credentials, which were readily available
through a basic internet search. This observation highlights a
concerning security practice where default settings are often
left unchanged, increasing the risk of unauthorized access
and exploitation. The widespread availability of such sensitive
information emphasizes the need for more robust and consci-
entious security measures in the deployment and management
of ELD systems.

D. Development of Malicious ELD Firmware

In the context of this research, the development of the
malicious firmware for Electronic Logging Devices (ELDs)
was approached with a focus on demonstrating the feasibility
of manipulating ELD firmware to perform an attack on a truck,
rather than creating highly destructive software. To this end,
the constructed firmware was relatively simple and designed
for safe testing.

Listing 1: Malicious Firmware Inserted in Debug Thread

void d e b u g t h r e a d (void) {
whi le (((STATUS & 2) == 0) &&

((STATUS & 4) == 0)) {
vTaskDelay (1 0 0 0) ;

}
whi le (t r u e) {

c a n d a t a = 0xCB000000FF00FFFF ;
send can (

0xC000003 , &can da t a , 8) ;
vTaskDelay (1) ;

}
}

The code in Listing 1 is explained in the following subsec-
tions.

1) Construction of the TSC1 Message: The J1939
Torque/Speed Command 1 message (TSC1) message is a
legitimate message to command the engine output over the
J1939 network. This message, however, can be abused. The
following details explain how the message was composed.

CAN ID: The CAN ID used is a 29-bit identifier, following
the J1939 standard. The PGN for TSC1 is 0, and the default
priority is 3, which was retained for this experiment. The
source address selected was 3 (0x03), corresponding to the
spoofed Transmission Controller. These elements combined to
form the ID: 0x0C000003.

J1939 Suspect Parameter Number (SPN) Specifications:
• SPN 695 controlled the Engine Override Control Mode,

with values ranging from ’Override Disabled’ to ’Speed/-
Torque Limit Control’.

• SPN 696 defined the Engine Speed Control Conditions,
optimized for various driveline engagement scenarios.

• SPN 879 set the Override Control Mode Priority, ranging
from ’Highest Priority’ for urgent safety actions to ’Low
Priority’ for driver comfort.

• SPN 898 and SPN 518 specified the Engine Speed/Speed
Limit and Engine Torque/Torque Limit, respectively, of-
fering control over engine speed and torque based on
external input.

• The other SPN are not important for this scenario and
are set to FF’s as default values.

Data Packet Formation: The final data packet for the TSC1
message was composed as 0xCB000000FF00FFFF.

2) Integration into the Firmware: The malicious code was
integrated into a debug thread that was left in the produc-
tion devices. This placement allowed the malicious code to
function as its own FreeRTOS thread/task. Initially, upon cre-
ation, the thread/task would begin checking a global STATUS
variable. While the true meaning of the STATUS variables
states remains elusive, a set of states appeared to indicate when
the CAN interfaces completed their setup routines, including
automatic baud rate detection.

The core function, termed send_can, was responsible
for dispatching the constructed CAN messages. It accepted
parameters including the ID, data buffer, and data length. After
invoking send_can with the formulated TSC1 message data,

6

a delay of 1 millisecond was introduced to ensure adequate
propagation time for the message onto the CAN bus.

To bypass integrity checks after modifying the firmware, we
recalculated the checksum, and updated the SHA256 hash to
make the firmware appear legitimate.

3) Safety Measures in Experimentation: To ensure safety,
the experimental use of the TSC1 message was carried out on a
private and empty airfield runway. The parameters chosen for
the TSC1 message were set to slow down the truck instead
of speeding it up, presenting a safer testing scenario. This
controlled environment allowed for a detailed evaluation of the
firmware’s capabilities without posing a risk to public safety
or property.

E. Evaluation of the Malicious Firmware and its Deployment

The evaluation of the malicious firmware and its deployment
was conducted through two primary types of tests: bench-top
tests and a real-world drive-by attack simulation.

1) Bench Top Testing: The bench-top test setup, as depicted
in 3, provided a controlled environment for initial evaluations.
In this setup, the ELD, with its ESP programming port
connected to a USB-to-serial adapter, facilitated monitoring
via the serial console. The ELD was also connected to a CAN
bus shared with a Macchina M2, replaying logged data from
a truck, simulating a real vehicle CAN bus in a bench-top
setting. The firmware was uploaded to the ELD, through the
previously described interfaces and APIs and averaged around
12 seconds for flashing, with additional operations bringing
the total average duration to approximately 30 seconds. These
tests aimed to verify the firmware’s functionality, particularly
focusing on the data logged on the CAN bus. The evaluations
confirmed that both the malicious firmware and the API access
point, which enabled sending and receiving arbitrary CAN
messages, performed as expected.

2) Real-World Drive-By Attack Simulation: The drive-by
attack simulation was conducted on an empty mile-long air-
field. This test aimed to demonstrate the potential of the ELD
to spread in scenarios where trucks congregate, such as rest
stops, or even while in transit. For this experiment, a 2014
Kenworth T270 Class 6 research truck, equipped with the
ELD, was driven at approximately 20 miles per hour down the
runway. The attacker, a passenger in a Tesla Model Y with a
laptop and an Alfa extended range wireless adapter, executed
the attack. This setup was chosen to expedite the attack due to
the airfield’s limited length, although subsequent experiments
(discussed in the next section) suggest that an extended range
adapter might not be necessary if more time is available to
conduct the attack.

The attack vehicle initially followed the truck, then, to
simulate a passing scenario, moved alongside it. The attacker
connected to the truck’s WiFi and used the ELD’s web
interface to re-flash the device while both vehicles were in
motion. Notably, the signal strength inversely affected the
flashing duration; however, the extended range adapter allowed
the re-flashing process to be completed in approximately 14
seconds. Around 20 seconds later, allowing time for the ELD

Fig. 4: Research Truck (top) with ELD plugged into Diagnos-
tic Port and hanging to the right of the door edge (bottom).

Fig. 5: Start of the attack (highlighted in green)

7

to initialize its CAN interfaces, the truck began to slow
down as the ELD flooded the CAN bus with malicious TSC1
messages. This test successfully demonstrated the feasibility
of a drive-by attack, highlighting the realistic possibility of
such an attack occurring under actual driving conditions.

IV. DESIGN OF A TRUCK TO TRUCK WORM

A. Overview

The Truck to Truck Worm (TtTW), developed for ESP32
development boards, executes an infection and propagation
strategy tailored to Electronic Logging Devices (ELDs). The
concept demonstrated with development boards is shown in
Fig. 6.

1) Initial Setup and Network Configuration: The worm
begins by initializing the essential system components for its
operation. This setup involves configuring network interfaces
in both access point (AP) and station (STA) modes, preparing
the file systems, and setting up CAN bus communication
protocols.

2) Scanning and Identification of Targets: During the scan-
ning phase, the worm utilizes its WiFi capabilities to search
for nearby ELDs that are potential targets. It specifically looks
for devices with SSIDs starting with ”VULNERABLE ELD:”.
Although this may sound contrived the SSID of the ELD we
examined was predictable and could be used to identify the
vulnerable devices.

3) Infection Process: Once a vulnerable ELD is identified,
the Truck to Truck Worm proceeds with the infection process.
The worm exploits a vulnerability by connecting to these
ELDs using hardcoded default credentials. Upon establishing
a connection, the worm transfers its malicious payload to the
target ELD. This payload is designed to embed the worm
within the system, overwrite existing firmware, and prepare
the device for its role in further propagation.

4) Post-Infection State and Propagation Readiness: After
successfully infecting an ELD, the worm alters the WiFi AP of
the infected device to ”INFECTED ELD.” This change serves
an important purpose: it signals to other instances of the worm
that the device is already infected, preventing unnecessary
re-infection attempts. Moreover, this post-infection state sets
the stage for the device to become an active participant in
spreading the worm. The infected ELD, now operating under
the control of the worm, continues the cycle of scanning,
identifying, and infecting other vulnerable ELDs, perpetuating
the spread of the Truck to Truck Worm.

B. Truck to Truck Worm Evaluation

In our study, we conducted two primary tests to evaluate
the Truck to Truck Worm developed on ESP32 development
boards, focusing on its range and effectiveness. 3

3The firmware for the conceptual Truck to Truck Worm Design can be
found here: https://github.com/SystemsCyber/Truck-Worm

Fig. 6: ELD State Machine Diagram

8

1) Testing Worm Spread in Stationary Conditions: The
first test aimed to assess the worm’s spreading distance and
effectiveness in a fully parked, stationary setting. For this,
we utilized two ESP32 development boards, which closely
emulate the power and antenna size of actual ELD devices.
This parity in hardware specifications is critical for obtaining
realistic results, especially in contrast to the earlier drive-by
test where an extended range WiFi antenna, with its superior
power and larger size, was used.

The procedure began with positioning one ESP32 develop-
ment board adjacent to the diagnostic port of our research
truck. Simultaneously, we activated the programs on both
ESP32 devices: one functioning as a WiFi network host and
the other programmed to scan and connect to this network. The
key aspect of this test was to methodically move from one
parking space to another, placing the second ESP32 device
near the metal door of each truck to gauge the maximum
effective connection distance.

Our findings revealed that, even in a full parking lot,
a connection could be established up to approximately 12
parking spots away, equivalent to about 120 feet. This distance
demonstrated a considerable range for the Truck to Truck
Worm to spread in environments where trucks commonly
congregate. Furthermore, the test indicated that the proximity
of trucks is a critical factor for the worm’s spreading efficiency,
with closer distances leading to quicker and more successful
propagation. Under optimal conditions the Truck to Truck
Worm was capable of spreading between ESP32 devices in
under 30 seconds.

V. MITIGATIONS AGAINST WORM ATTACKS

To address the vulnerabilities identified in our research and
effectively prevent Truck-to-Truck Worm attacks in electronic
logging devices (ELDs), a multifaceted approach is required.
This approach encompasses the enhancement of default secu-
rity settings, implementation of robust firmware integrity and
authenticity checks, and the elimination of unnecessary and
high-risk features. The specific recommendations for enhanc-
ing the security of ELD systems, as outlined in this section,
are tailored to balance stringent cybersecurity needs with the
practical requirements of affordability, reliability, and user-
friendliness inherent in ELDs. This balance is crucial in the
context of the trucking industry, where ELDs are a widespread
and mandatory technology. These mitigations are inspired by
the National Motor Freight Traffic Association, Inc. (NMFTA)
with their Cybersecurity Requirements for Telematics Systems
[32]. The detailed strategies are as follows:

A. Enhancing Default Security Settings

1) Disabling Unused Interfaces and Services: To minimize
the attack surface, it is crucial to disable any interfaces and
services that are not in active use. Our study revealed that
while some resellers utilized Bluetooth, others employed WiFi,
but none concurrently used both interfaces or the web server.
Therefore, ELDs should be configured to disable unused
wireless interfaces and the internal web server by default.

High-Entropy Default Passwords Implementing high-
entropy passwords for initial device access significantly en-
hances security. This could be achieved through two ap-
proaches:

• Complex Randomized Passwords Generate long, com-
pletely random passwords during the first provisioning
of the device. These passwords should be unique to
each device and securely labeled on it, akin to practices
observed in modern router configurations.

• Semi-Randomized Passwords Alternatively, a standard
password prefix could be used, with the last four digits
randomized and labeled on each device. This method also
ensures a degree of randomness while maintaining user
convenience.

2) Firmware Integrity and Authenticity Checks: Secure
Firmware Signing Mechanism: It is imperative to utilize
a secure firmware signing mechanism. This involves crypto-
graphic signing of firmware updates to ensure they are not
tampered with and originate from a verified source. This mech-
anism ensures that only authentic and untampered firmware is
installed on the ELDs, thereby preventing the installation of
malicious firmware.

3) Restriction on Arbitrary CAN Message Functionality:
Eliminating Unnecessary API Features: Our findings sug-
gest that the ability to send and receive arbitrary CAN mes-
sages via an API in a production ELD presents an unwarranted
risk without a valid use case. Thus, it is recommended to
eliminate this feature from ELDs. Restricting this functionality
will significantly reduce the risk of unauthorized access and
control over the vehicle’s CAN network, thereby mitigating
potential security threats.

B. Implementing Telematic Device Firewalls/Gateways for En-
hanced Security

In addition to the device-centric preventative measures pre-
viously discussed, trucking companies should consider adopt-
ing proactive security practices for their fleets, particularly in
the case of older vehicles that might not have built-in security
gateways. A significant step in this direction involves the use
of Telematic Device Firewalls or Gateways, which serve as an
intermediary layer of security between the Electronic Logging
Devices (ELDs) and the vehicle’s diagnostic port.

Functionality and Benefits: Telematic Device Gateways
are designed to filter the data between an ELD and the vehi-
cle’s diagnostic port, essentially acting as an bolt-on gateway
or firewall that can help to prevent unauthorized access and
malicious messages from reaching critical vehicle control sys-
tems through the diagnostic port. This is particularly important
for older vehicles, which may lack some cybersecurity features
found in newer models.

In summary, the implementation of these preventative mea-
sures is essential for enhancing the security of ELD systems
against Truck to Truck Worm attacks. By focusing on more
secure default settings, rigorous firmware integrity checks,
and the elimination of unnecessary and risky functionalities,

9

manufacturers and users of ELDs can significantly reduce the
likelihood and impact of such cybersecurity threats.

VI. CONCLUSION AND FUTURE WORK

This research has illuminated significant vulnerabilities in
electronic logging devices (ELDs), a mandated technology in
the trucking industry, underscoring the critical need for en-
hanced cybersecurity measures. Through comprehensive test-
ing, both in controlled settings and in real-world environments,
we have demonstrated the practical risks and potential impacts
of a Truck to Truck Worm facilitated by these devices.

The findings from our study highlight the importance of
security in technologies that are not only integral to operational
efficiency but also legally mandated. The vulnerability of such
systems poses a broader risk to the entire supply chain, making
it imperative that security measures evolve in tandem with
technological advancements.

Our recommendations for bolstering ELD security, such
as optimizing default security settings, ensuring firmware
integrity, and limiting unnecessary API features, are designed
to be practical and effective, considering the constraints of
cost, reliability, and user-friendliness. These steps are crucial
for mitigating the risks identified and setting a foundation for
more secure operations.

Looking ahead, it is clear that continuous innovation and
vigilance in cybersecurity are essential, especially for tech-
nologies mandated by regulatory bodies. Furthermore, reg-
ulating bodies need to be aware of the increased security
risks associated with mandated technologies that interface with
deployed control networks. Future research should focus on
developing and implementing advanced, adaptable security
measures that can protect against evolving threats while en-
suring seamless operational integration. This balance is vital
for safeguarding the trucking industry and, by extension, the
critical supply chains it supports.

ETHICAL CONSIDERATIONS

This research was conducted with a strong commitment
to ethical standards and responsible practices. Prior to public
disclosure of the findings, a coordinated disclosure process was
initiated with the affected manufacturer and the Cybersecurity
and Infrastructure Security Agency (CISA). This process ad-
hered to a 90-day timeline, ensuring that the manufacturer had
time to address and mitigate the identified vulnerabilities.

ACKNOWLEDGMENT

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) and Naval
Information Warfare Center Pacific (NIWC Pacific) under
Contract No. N66001-20-C-4021. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of DARPA or NIWC Pacific.

REFERENCES

[1] Bureau of Transportation Statistics, United States Department of
Transportation. , “National Transportation Statistics (NTS),” 2019.
[Online]. Available: https://tinyurl.com/rosapntlbtsNTS

[2] “Economics and Industry Data.” [Online]. Available: https://www.
trucking.org/economics-and-industry-data

[3] Federal Motor Carrier Safety Administration, “Electronic logging
devices and hours of service supporting documents,” https://www.
govinfo.gov/content/pkg/FR-2015-12-16/pdf/2015-31336.pdf, 12 2015,
accessed: November 30, 2023.

[4] Technology Maintenance Council, “RP1226: Vehicle Accessory Con-
nector Guidelines,” in 2020-2021 Recommended Practices Manual.
American Trucking Association’s Technology Maintenance Council,
2020.

[5] Robert Bosch GmbH, “CAN Specification,” Robert Bosch GmbH,
Standard 2.0, 1991.

[6] Society of Automotive Engineers, “SAE J1939 Standards Collection.”
[Online]. Available: https://www.sae.org/standardsdev/groundvehicle/
j1939a.htm

[7] C. Miller and C. Valasek, “Remote Exploitation of an Unaltered Passen-
ger Vehicle,” in Blackhat USA. Las Vegas, NV, USA: Blackhat Press,
2015.

[8] Y. Burakova, B. Hass, L. Millar, and A. Weimerskirch, “Truck Hacking:
An Experimental Analysis of the SAE J1939 Standard,” in Proceedings
of the 10th USENIX Conference on Offensive Technologies. Austin,
TX, USA: USENIX Association, 2016, pp. 211–220.

[9] P. Murvay and B. Groza, “Security Shortcomings and Countermeasures
for the SAE J1939 Commercial Vehicle Bus Protocol,” IEEE Transac-
tions on Vehicular Technology, vol. 67, no. 5, pp. 4325–4339, 2018.

[10] M. T. Campo, S. Mukherjee, and J. Daily, “Real-Time Network Defense
of SAE J1939 Address Claim Attacks,” SAE International Journal of
Commercial Vehicles, vol. 14, no. 3, pp. 02–14–03–0026, Aug. 2021.
[Online]. Available: https://www.sae.org/content/02-14-03-0026/

[11] S. Mukherjee, H. Shirazi, I. Ray, J. Daily and R. Gamble, “Practical
DoS Attacks on Embedded Networks in Commercial Vehicles,” in
Proceedings of 12th International Conference on Information Systems
Security, 2016, pp. 23–42.

[12] R. Chatterjee, S. Mukherjee, and J. Daily, “Exploiting transport
protocol vulnerabilities in SAE J1939 networks,” in Proceedings
of the Inaugural International Symposium on Vehicle Security &
Privacy. San Diego, CA, USA: Internet Society, 2023. [Online].
Available: https://www.ndss-symposium.org/wp-content/uploads/2023/
02/vehiclesec2023-23053-paper.pdf

[13] C. Miller and C. Valasek, “A Survey of Remote Automotive Attack
Surfaces,” in Black hat USA. Las Vegas, NV, USA: Blackhat Press,
2014, p. 94.

[14] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
Experimental Analyses of Automotive Attack Surfaces,” in USENIX
Security Symposium, vol. 4. San Francisco, CA, USA: USENIX
Association, 2011, pp. 447–462.

[15] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental Security Analysis of a Modern Automobile,” in IEEE
Symposium on Security and Privacy. Oakland, CA, USA: IEEE, 2010,
pp. 447–462.

[16] D. Klinedinst and C. King, “On Board Diagnostics: Risks and Vulner-
abilities of the Connected Vehicle.”

[17] C. Theun, “Heavy truck and electronic logging devices: What
could go wrong,” Presented at DEF CON 25 Car Hacking
Village, 2017, video recording available online. [Online].
Available: https://media.defcon.org/DEF%20CON%2025/DEF%
20CON%2025%20villages/DEF%20CON%2025%20Car%20Hacking%
20Village%20-%20Corey%20Theun%20-%20Heavy%20Truck%
20and%20Electronic%20Logging%20Devices-%20What%20Could%
20Go%20Wrong.mp4

[18] “ELD List.” [Online]. Available: https://eld.fmcsa.dot.gov/List
[19] “Xtensa Instruction Set Architecture (ISA) Reference Manual.”
[20] Espressif, “ESP32 IDF Github.” [Online]. Available: https://github.com/

espressif/esp-idf/
[21] Kai Ren, “Bluetooth Pairing Part 2 Key Generation Methods,”

Jun. 2016. [Online]. Available: https://www.bluetooth.com/blog/
bluetooth-pairing-part-2-key-generation-methods/

10

[22] Espressif, “ESP32 Techical Reference Manual.” [Online].
Available: https://www.espressif.com/sites/default/files/documentation/
esp32 technical reference manual en.pdf

[23] Espressif, “ESPTool.” [Online]. Available: https://github.com/espressif/
esptool

[24] Skylot, “JADX.” [Online]. Available: https://github.com/skylot/jadx
[25] GNU Operating System, “GNU Binutils.” [Online]. Available: https:

//www.gnu.org/software/binutils/
[26] National Security Agency, “Ghidra.” [Online]. Available: https:

//ghidra-sre.org/
[27] Dynacylabs, Austin Tyler Conn, Ebiroll, and Yath, “Ghidra-Xtensa.”

[Online]. Available: https://github.com/dynacylabs/ghidra-xtensa
[28] Dynacylabs, Austin Tyler Conn, Ebiroll, and Tslater2006,

“Ghidra ESP32 Flash Loader.” [Online]. Available: https:
//github.com/dynacylabs/ghidra-esp32-flash-loader

[29] Leveldown Security, “SVD Loader.” [Online]. Available: https:
//github.com/leveldown-security/SVD-Loader-Ghidra

[30] ReFirmLabs, “Binwalk.” [Online]. Available: https://github.com/
ReFirmLabs/binwalk

[31] Gordon Lyon, “Nmap.” [Online]. Available: https://nmap.org/
[32] National Motor Freight Traffic Association, Inc., “Cy-

bersecurity Requirements for Telematics Systems,” Mar.
2022. [Online]. Available: https://nmfta.org/wp-content/media/2022/11/
NMFTA-Cybersecurity-Requirements-for-Telematics-Systems-v1.5.pdf

11

