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Abstract—Object detection is a crucial function that detects
the position and type of objects from data acquired by sensors.
In autonomous driving systems, object detection is performed
using data from cameras and LiDAR, and based on the results,
the vehicle is controlled to follow the safest route. However,
machine learning-based object detection has been reported to
have vulnerabilities to adversarial samples. In this study, we
propose a new attack method called “Shadow Hack” for LiDAR
object detection models. While previous attack methods mainly
added perturbed point clouds to LiDAR data, in this research, we
introduce a method to generate “Adversarial Shadows” on the
LiDAR point cloud. Specifically, the attacker strategically places
materials like aluminum leisure mats to reproduce optimized
positions and shapes of shadows on the LiDAR point cloud. This
technique can potentially mislead LiDAR-based object detection
in autonomous vehicles, leading to congestion and accidents
due to actions such as braking and avoidance maneuvers. We
reproduce the Shadow Hack attack method using simulations
and evaluate the success rate of the attack. Furthermore, by
revealing the conditions under which the attack succeeds, we
aim to propose countermeasures and contribute to enhancing
the robustness of autonomous driving systems.

I. INTRODUCTION

In the past few years, the risk of LiDAR (Light Detection
and Ranging) sensor attacks in autonomous vehicles has
received a lot of attention. These attacks involve the spoofing
of sensor readings, potentially causing the object recognition
systems of autonomous vehicles, which are based on machine
learning models, to misidentify objects. Of particular concern
is the method known as “LiDAR spoofing attack,” in which
malicious signals are injected to trick sensors into recognizing
non-existent objects or missing real ones [1, 2]. These attacks
target sensors, sensor data processing mechanisms, and ma-
chine learning models, and develop methods to manipulate
system output using specific input patterns. These attacks
represent a new threat to autonomous vehicle sensor systems,
and highlight the urgent need to enhance the security of sensor
technology and improve the robustness of machine learning
models.

This study proposes a new attack vector for sensing systems
using LiDAR, named “Shadow Hack,” with the aim of under-
standing its threats and developing effective countermeasures.
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Fig. 2. Attack Overview. Adversarial shadows on the LiDAR point cloud are
caused by the LiDAR invisible sheet set up by the attacker, resulting in false
detection by the autonomous vehicle.

The concept of this attack lies in exploiting the “shadows”
naturally formed in the point cloud data captured by LiDAR
sensors (see Figure 1). LiDAR sensors produce point cloud
data indicating the presence of objects, but this data also
includes the shadows formed behind the objects. Typically,
these shadows are ignored in the output of object detection
models, but their presence provides important clues for object
detection. The Shadow Hack takes advantage of this property
of “shadows” by intentionally creating them to fool object
detection systems and cause them to malfunction. For example,
by placing objects such as an aluminum leisure mat in the
environment, false shadows can be created in the point cloud
data captured by LiDAR sensors, causing the object detection
models to detect non-existent objects (See Figure 2).

In this study, we use AWSIM, an advanced autonomous
driving simulator, to verify the effectiveness of the shadow
hacking attack. AWSIM is a simulator designed to evaluate the
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Fig. 3. The alminum sheet does not appear as point clouds.

performance of Autoware, an open-source autonomous driving
framework, and provides high-quality, realistic graphics using
the Unity3D game engine. It allows developers to place custom
3D object models and simulate three-dimensional measure-
ments from LiDAR sensors on those objects. Researchers can
use this setup to mimic complex real-world environments, col-
lect three-dimensional point cloud data measured by LiDAR,
and then apply object recognition models to this data. This
simulation environment provides an ideal platform to recreate
various scenarios of the Shadow Hack attack and accurately
measure its impact.

To evaluate the effectiveness of the Shadow Hack attack, our
experiments will use two prominent models for point cloud
recognition: PointPillars, a representative voxel-based model,
and Point-RCNN, a representative point-based model. These
models, differing in their approaches, are ideal for assessing
the impact of the Shadow Hack attack across various modeling
techniques. The experiments will involve applying the Shadow
Hack attack to these object detection models to measure the
attack’s success rate and evaluate the resilience of each model.
This comparative approach will help in understanding the
vulnerabilities and strengths inherent in current point cloud
recognition technologies used in autonomous driving systems.

The Shadow Hack attack demonstrated a 100% attack
success rate against the PointPillars object detection model
when deployed around a stationary autonomous vehicle in an
obstacle-free environment. Furthermore, in 10 urban scenes,
the average attack success rate against PointPillars was 58%,
indicating a certain level of resilience to this type of attack.
Conversely, the PointRCNN model remained impervious to the
attack, highlighting its robustness against the Shadow Hack
attack.

II. BACKGROUND AND RELATED WORK

A. LiDAR’s Limitations in Detecting Certain Materials

LiDAR, a sensor that uses infrared laser pulses to measure
distance, faces challenges in detecting certain materials. The
basic mechanism of LiDAR is to emit a laser pulse and
calculate the distance to an object based on the time it takes for
the reflected light to return. While this process is effective for
generating point cloud data, it has limitations when it comes
to detecting certain materials.

The primary limitation occurs with materials that have
unique interactions with near-infrared light, which is com-
monly used in LiDAR systems. Transparent materials, such
as certain types of glass, pose a challenge because they allow
near-infrared light to pass through rather than reflect it back
to the sensor. Similarly, materials that absorb near-infrared
wavelengths, such as some plastics and fabrics, also hinder
accurate detection. In addition, light-scattering surfaces, such
as aluminum leisure sheets, interfere with accurate measure-
ment by scattering the laser pulses in different directions.

In situations where these materials are present, the LiDAR
system may not receive a reflected pulse, resulting in a lack
of data points in the point cloud for these objects. This
phenomenon creates “shadows” that indicate either the absence
of an object or the presence of a material that is difficult for
LiDAR to accurately measure. Figure 3 shows a clear example
of the limitations of LiDAR material detection. An aluminum
leisure sheet on a road is clearly visible in the camera image,
but invisible to LiDAR, which fails to detect and represent
it in the point cloud due to the light-scattering surfaces. This
lack of reflection creates a “shadow” effect in the data and
serves as a stark reminder of the impact material properties
have on LiDAR’s sensing capabilities. In this paper, we define
“Shadow Materials” as substances that, like aluminum leisure
mats, create “Shadow” on LiDAR point clouds because they
cannot be measured by LiDAR.

B. LiDAR-based Object Detection in Autonomous Vehicles

Autonomous driving systems rely heavily on object de-
tection using LiDAR point clouds for environmental aware-
ness. LiDAR, which is effective even in low light, detects
objects in 360 degrees, surpassing camera-based detection.
Object detection models using point clouds are categorized
as either point-based or voxel-based. Point-based models,
such as PointRCNN [3], extract features directly from point
clouds. Voxel-based models, such as PointPillars [4], segment
the cloud into voxels for feature extraction. Due to their
faster processing, voxel-based models such as PointPillars
and CenterPoint [5] are preferred in autonomous systems.
This is evidenced by their use in leading autonomous driving
software such as Autoware [6], highlighting their importance
in advancing automotive technology.

C. Related Work on the Adversarial Attacks on LiDAR-Based
Object Detection

Previous adversarial attacks on LiDAR object detection
models have induced misclassifications by placing objects with
specific shapes in specific locations [7, 8] or by injecting false
point clouds through direct laser interference [1, 2]. In con-
trast, our research introduces a new technique named Shadow
Hack, where placing Shadow Materials in the environment
creates artificial shadows in the point cloud data. This attack
aims to fools object detection models by exploiting these
shadows to cause misidentification of objects.

Shadows in LiDAR point clouds have previously been con-
sidered in the context of defending against attacks. Typically,
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the area behind an object is not measured by LiDAR due to
the lack of returned laser pulses, resulting in a shadow. In
attacks where lasers are used to inject false points into the
LiDAR data [1][2], an adversarial object is injected, so no
shadow appears behind the ghost object. The Shadow-Catcher
framework proposed by Hau et al. [9] exploits this shadow
property to detect LiDAR spoofing attacks. Our approach,
which reduces rather than adds point cloud data, naturally
includes shadows, making them undetectable by Shadow-
Catcher’s detection method.

III. THREAT MODEL AND ATTACK SCENARIO

A. Threat Model

Figure 2 outlines the attack strategy for a shadow hack.
The attacker selects a position along the route where the
target autonomous vehicle is expected to travel. The goal is to
fool the vehicle’s LiDAR object detection system into falsely
detecting non-existent objects by strategically placed shadows.
The attacker is assumed to have knowledge of the type of
LiDAR system used in the target vehicle and the expertise
to optimize the placement of shadows in a way that exploits
the object detection model. This level of understanding can be
gained by analyzing publicly available vehicle specifications
or by reverse engineering similar models.

B. Attack Scenario

In this subsection of the paper, we will present two attack
scenarios for the Shadow Hack attack.
a. Induced Sudden Stop in Clear Visibility In the first
scenario, the attack targets a leading autonomous vehicle
in a convoy. Although there is no actual obstacle ahead,
the vehicle misperceives an obstacle due to the attacker’s
strategically placed shadows. This misperception, especially in
clear conditions where the vehicle is maintaining high speed,
leads to an abrupt stop. Such sudden braking increases the risk
of rear-end collisions by following vehicles.
b. False Evasive Action on Multi-Lane Roads The second
scenario involves an attack on an autonomous vehicle traveling
in the leftmost lane of a multi-lane road. The vehicle is tricked
into detecting a phantom obstacle, causing it to initiate an
evasive maneuver, typically veering to the right. This sudden
lane change can result in a collision with vehicles in the
adjacent lane.

Both scenarios are facilitated by the attacker placing
Shadow Materials, such as aluminum leisure mats, on the
road in advance. Shadow Materials create artificial shadows
in the LiDAR point clouds. The stealthy nature of this attack
is enhanced by the fact that the attacker doesn’t need to be
physically present at the accident scene and doesn’t need to
directly interfere with the target vehicle itself.

IV. SHADOW HACK

A. Attack Model

As shown in Figure 4, we establish the parameters of the
Shadow Hack attack through a formulation using the variables
listed in Table I. To successfully execute the attack, the
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Fig. 4. Overview of variables
and parameters of Shadow Hack
Attack

TABLE I
NOTATIONS OF VARIABLES

Symbol Description

dx x-axis distance: target ↔ shadow
dy y-axis distance: target ↔ shadow
θ angle of the shadow

(xt, yt) coordinates of the target
w shadow width
l shadow length

attacker must perform advanced optimization of several key
factors: the shadow’s width w, its length l, the distances dx and
dy along the x- and y-axes, respectively, between the attack
target and the shadow, and the shadow’s angle θ around the
vertical axis. This preparation is essential to ensure that the
target autonomous vehicle will be induced to make a false
detection at the coordinates (xt, yt).

B. Shadow Hack Attack Framework
The Shadow Hack attack framework is a methodical process

crafted to deceive autonomous vehicles through the physical
manipulation of point cloud data. This framework is divided
into the following three distinct steps:
Step 1: Acquisition of Point Cloud Data. This initial step in-
volves the collection of data critical to the attack. The attacker
identifies a specific location, (xt, yt), along the expected route
of the target autonomous vehicle. Here, the attacker collects
point cloud data, referred to as Xbenign. This data collection
is carefully done using the same LiDAR sensor as the target
vehicle to ensure data authenticity and increase the likelihood
of a successful attack.
Step 2: Optimization of the Adversarial Shadow. Following
data collection, the next phase focuses on the creation of
the adversarial shadow. Using the Xbenign data collected,
the attacker simulates and generates an adversarial shadow.
This phase is critical because it involves fine-tuning the
shadow’s location, represented by the coordinates dx, dy , and
its orientation, represented by the angle θ. The goal is to
manipulate the target vehicle’s object recognition system into
falsely perceiving an object. The details of this optimization
process will be described in Section IV-C.
Step 3: Real-World Implementation. The final step is the
practical implementation of the Adversarial Shadow. The
attacker places Shadow Materials such as an infrared-cut film
or an aluminum sheet at the location of the simulated shadow.
These materials are chosen for their inability to be detected
by LiDAR, rendering them invisible in the point cloud data
and effectively creating a “shadow.” As the target vehicle
traverses the predetermined location (xt, yt), it encounters this
artificially created shadow, resulting in the false detection of
a non-existent object.

C. Optimization of the Adversarial Shadow
This section outlines our approach to optimizing a shadow

designed to fool the object recognition models of autonomous
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Fig. 5. Workflow of the Adversarial Shadow Optimization

vehicles. Figure 5 illustrates the workflow of optimization
process. The goal is to precisely identify the most effective
position (dx, dy) and angle (θ) for the shadow that would cause
the model to erroneously detect a non-existent object; i.e., a
false positive. It is important to note that this optimization
process must be performed for each unique scene, as the
effectiveness of the shadow may vary depending on specific
environmental and situational conditions.
Step 1: Determining the Shadow’s Location. The first step
focuses on finding the optimal location for the shadow. Starting
with an initial point dx−init, dy−init in the designated attack
area closest to the vehicle, the process involves modifying
the benign point cloud data Xbenign. This modification is
achieved by removing ground points to simulate the shadow
(a rectangle of dimensions W,L), creating a modified point
cloud Xadv−d. This new point cloud is analyzed using the
object recognition model to evaluate the effect of the shadow.
The coordinates dx, dy are varied within the attack area to
determine the location that induces the highest false detection
rate. The location with the highest false detection confidence
is selected as the optimal position, dx−adv, dy−adv .
Step 2: Optimizing the Shadow’s Angle. After determining
the shadow’s location, the focus shifts to optimizing its angle.
The shadow, which is kept in a W × L rectangular shape,
is rotated at various angles θtmp around a vertical axis. Each
rotation changes the configuration of the point cloud Xadv−θ,
which is then tested with the object recognition model. The
angle θtmp is varied from 0◦ to 90◦ to find the orientation
that most effectively triggers a false detection. The angle that
gives the highest confidence of a false positive is finalized as
the optimal angle, θ.

V. EVALUATION

A. Experimental Setup

In this subsection, we detail the point cloud collection meth-
ods and object detection framework used in our experiments
(see Figure6).
Point Cloud Collection. For point cloud collection in our
experiments, we adopt AWSIM [10], a simulator developed
specifically as a simulation environment for Autoware [6], an
open source autonomous driving platform. AWSIM accurately
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Fig. 6. Experimental Flow

emulates real-city LiDAR systems, including measurement
noise to produce point clouds with realistic variance. However,
AWSIM does not implement intensity measurement, so inten-
sity is not considered in object detection in the experiments
in this section. In order to publish LiDAR point cloud data as
a ROS2 [11] topic, we developed a custom ROS2 node that
saves the topic as a PCD (Point Cloud Data) file, allowing
the collection of point cloud data. The LiDAR used is the
Ouster OS1-64, positioned at a height of 1.73 m, based on the
setup used to collect the KITTI dataset [12]. The point cloud
collection was performed in two environments: a featureless
map (Flat) to evaluate the attack success rate in a noiseless
environment, and urban environments (City 1 - 10) to evaluate
the rate amidst typical urban noise such as sidewalks and trees
(See Figure 7).
Object Detection. For 3D object detection from point clouds,
we use OpenPCDet [13], which provides several pre-trained
models and allows object detection from point clouds using
any of these models. Point cloud-based object detection can be
divided into two approaches: Voxel-based, where point clouds
are divided into units called voxels for feature extraction
and detection, and Point-based, which relies on features of
individual points within the cloud. In this study, we evaluate
using the Voxel-based PointPillars and Point-based Point-
RCNN models, both of which are prominent and have pre-
trained models available in OpenPCDet, trained on the KITTI
dataset.
Definition of Attack Success. In the authors’ country, the
speed limit on public roads is set at 60 km/h for standard
vehicles. Consequently, the required stopping distance at this
speed is determined to be 44 meters. In addition, the typical
width of a lane on a public road is 3.5 m. Therefore, if
an object is falsely detected within 44 m in front of an
autonomous vehicle and within a width of 3.5 m, it is very
likely to trigger emergency braking or steering. Thus, in this
paper, we define a successful attack as the appearance of
a bounding box indicating a non-existent vehicle within the
defined attack success area of 44 m ahead and 3.5 m wide.
The bounding box of the misdetected object nearly coincides
with the location of the adversarial shadow, as shown in
Fig. 4, where a successful attack is defined as a misdetection
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TABLE II
SCENE-WISE ATTACK

SUCCESS RATES OF SHADOW
HACK ON POINTPILLARS

Scene Success Rate
Flat 1.00

City 1 0.60
City 2 0.44
City 3 0.04
City 4 0.66
City 5 1.00
City 6 0.88
City 7 0.96
City 8 0.04
City 9 0.20

City 10 0.98

TABLE III
SCENE-WISE ATTACK

SUCCESS RATES OF SHADOW
HACK ON POINTRCNN

Scene Success Rate
Flat 0.00

City 1 0.00
City 2 0.00
City 3 0.00
City 4 0.00
City 5 0.00
City 6 0.00
City 7 0.00
City 8 0.00
City 9 0.00

City 10 0.00

occurring within 0 < dx ≤ 44,−1.25 ≤ dy ≤ 1.25.

B. Experimental Procedure

The experimental procedure has three steps: 1. Collect the
point clouds, 2. Optimize the shadows, and 3. Evaluation of
the attack success rate. In step 1, we collect 51 consecutive
LiDAR frames in a stationary state using AWSIM, both in an
unobstructed environment (Flat) and in urban environments
(City 1–10), as shown in Fig. 7. In Step 2, shadow loca-
tion optimization is performed on the first frame only. The
coordinates and angles of the optimized adversarial shadow
are used to create shadows by removing point clouds in the
remaining 50 frames. In step 3, the success rate of the attack
is determined by feeding these 50 frames into the object
detection model, calculating the number of frames where the
attack was successful, and dividing it by the total number of
frames, which is 50.

C. Results

Shadow Hack attack on PointPillars in urban environments
achieve an average attack success rate of 58% when the vehicle
is stationary. Table II shows the scene-wise attack success rates
for Shadow Hack on PointPillars, while Table III presents
the attack success rates for PointRCNN. Figure 8 displays
the object detection results for PointPillars before and after
attacks for both Flat and City 1-10 scene point clouds, with
the detected car positions marked by green bounding boxes.
Notably, the attack success rate for PointPillars in the Flat
scene reaches 1.00, indicating the effectiveness of generated
Adversarial Shadows across all frames. In contrast, in City
scenes, the average attack success rates in the ten scenes are
0.58, demonstrating that attacks are successful in more than
half of the frames. These results indicate the stability of attacks
on PointPillars when the vehicle is stationary. On the other
hand, PointRCNN exhibits a 0.00 attack success rate for both
Flat and City 1-10 point clouds, suggesting the ineffectiveness
of attacks. The difference in attack success rates between
PointPillars and PointRCNN can be attributed to differences
in their object detection methods, as discussed in detail in
Section VI-A.

VI. DISCUSSION OF RESULTS AND FUTURE WORK

A. Discussion of Results

The results in Section V-C show that differences between the
attack target model and the surrounding environment affect the
attack success rate. We believe the variations in attack success
rates across target models are due to differences in their
processing. The attack shadows have a significant impact on
the object detection results in methods that perform inference
on point clouds containing shadows. On the other hand, attack
shadows do not affect the results when methods that remove
shadows prior to object detection are implemented in the
object detection model, resulting in a low attack success rate.
PointRCNN, with a low attack success rate of 0%, performs
object detection in its processing pipeline after removing the
ground point cloud. PointPillars, achieving an attack success
rate of 58%, performs object detection on point clouds con-
taining shadows, without ground removal in the processing
pipeline.

The findings in Section V-C indicate that Shadow Hack is
more successful in open environments with fewer obstacles
surrounding the vehicle, with the attack success rate for
PointPillars being 100% in flat environments, 60% in world 1,
and 44% in world 2. This paper has fixed the shadow’s shape
while optimizing its position and angle. By advancing our
optimization methods, such as adapting the shadow’s shape
based on the loss metrics of machine learning models, we aim
to enhance attack success rates in more complex environments.

B. Future Work

In this paper, we evaluate the feasibility of the Shadow
Hack attack, which exploits the influence of shadows on object
detection in LiDAR point clouds.
Attack Capabilities on Moving Autonomous Vehicles. The
observed occurrence of false positives in the object detection
model as a result of the attack implies the effectiveness of
attacks on autonomous driving systems. However, in practice,
autonomous vehicles perform object detection while in motion.
The experiments conducted in this paper were limited to
assessing attacks when LiDAR was stationary. When LiDAR is
in motion, the shape of shadows cast by the Shadow Materials
fixed to the ground also changes. To successfully achieve
attacks on moving targets, it becomes necessary to consider the
changes in shadow shapes when generating shadows. There-
fore, the development of the Shadow Hack attack method for
autonomous vehicles, specifically considering the variations in
measurement points, and the evaluation of attack success rates
under such conditions, remain future research challenges.
Impacts on Autonomous Driving Systems. In this pa-
per, we focused on assessing the robustness of standalone
LiDAR object detection models against attacks employed
in autonomous vehicles. The results presented in Section
V demonstrate that the Shadow Hack attack induces false
positive detections in more than half of the frames in LiDAR
object detection models. However, the actual impact of these
false positives on autonomous driving systems has not been
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Fig. 7. LiDAR point cloud measurement in AWSIM simulation for each scene. The red points represent the point cloud measured by LiDAR.
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Fig. 8. Object detection results by PointPillars in 11 scenes. The top images show the detection results before the attack, while the bottom images show the
results after the attack. In the after attack images, the Adversarial Shadow is erroneously detected as an object.

evaluated. Therefore, it is imperative to assess the behavior of
autonomous vehicles when subjected to Shadow Hack attacks
in both simulation and real-world scenarios, providing an end-
to-end evaluation of the system.

In the simulation, instead of acquiring and subsequently
removing point clouds as done in this paper, we implemented
materials in AWSIM that do not appear as point clouds
to replicate the Shadow Hack attack. We then operated an
autonomous vehicle equipped with Autoware in AWSIM.
The evaluation focused on whether the AWSIM autonomous
vehicle, when subjected to the Shadow Hack attack, would
come to a stop in response to false positive detections of
objects in its path or continue driving.

In the real world, we also recreated the attack using Shadow
Materials such as infrared-cut film on autonomous vehicles
equipped with Autoware, mirroring the approach taken in
AWSIM. The assessment aimed to determine whether the
autonomous vehicles would engage in control actions such
as stopping or evading in response to the attack.
Extension of the Shadow Optimization Process. In this
paper, the Shadow Hack attack’s shadow generation method
optimizes the shadow’s position through exhaustive search
while fixing the angle. However, there is potential for opti-
mization expansion. For instance, angle optimization can be
performed for top-ranked positions with high confidence in
false positive detections during the position search, ultimately
selecting the position and angle with the highest confidence
for the false positive detection. Additionally, varying the
shadow’s shape and quantity could further enhance the attack
success rate. Therefore, we plan to conduct future comparative
evaluations of different shadow optimization methods for the
Shadow Hack attack.
Countermeasure. As a countermeasure to the Shadow Hack
attack, there are three approaches:

The Multi-Sensor Fusion Object Detection Model utilizes
data from both LiDAR and cameras for object detection. This
approach helps mitigate the risk of False Positives induced
by the Shadow Hack attack, as models like Frustum Point-
Nets [14] first identify potential object regions using images
before conducting point cloud-based object detection.

Point Cloud Missing Data Detection and Automated Re-
covery Mechanism is a mechanism to detect and fill missing
points, known as “shadows,” as a preprocessing step for point
cloud object detection models. This approach aims to nullify
the effects of the Shadow Hack attack by identifying and
compensating for anomalies, such as Adversarial Shadows,
which create abnormal ground conditions not encountered in
regular measurements.

Object Detection Model with Tracking Integration utilizes
tracking instead of per-frame detection. While our evaluation
in this paper focused on attacks inducing false object detec-
tions at a single distance, we did not assess the robustness of
distances between shadows and vehicles. Assuming shadows
are distance-sensitive, a tracking-based model may reduce
false detections since shadows might only be falsely detected
at specific distances. Further investigation is needed to evaluate
Tracking Object Detection as a countermeasure.
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