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Abstract—We address the problem of cyber-physical access
control for connected autonomous vehicles. The goal is to bind a
vehicle’s digital identity to its physical identity represented by its
physical properties such as its trajectory. We highlight that simply
complementing digital authentication with sensing information
remains insecure. A remote adversary with valid or compromised
cryptographic credentials can hijack the physical identities of
nearby vehicles detected by sensors. We propose a cyber-physical
challenge-response protocol named Cyclops that relies on low-
cost monocular cameras to perform cyber and physical identity
binding. In Cyclops, a verifier vehicle challenges a prover vehicle
to prove its claimed physical trajectory. The prover constructs
a response by capturing a series of scenes in the common Field
of View (cFoV) between the prover and the verifier. Verification
is achieved by matching the dynamic targets in the cFoV (other
vehicles crossing the cFoV). The security of Cyclops relies on
the spatiotemporal traffic randomness that cannot be predicted
by a remote adversary. We validate the security of Cyclops via
simulations on the CARLA simulator and on-road real-world
experiments in an urban setting.

Index Terms—cyber-physical trust, V2V communications, au-
thentication, trajectory verification.

I. INTRODUCTION

Connected autonomous vehicles (CAVs) fuse information
collected from onboard sensors and vehicle-to-everything
(V2X) communications to perform crucial autonomy opera-
tions such as cooperative perception [1], path planning [2],
platooning [3], [4], collision avoidance [5], and others. Sensing
modalities such as Radar/LiDAR and cameras are typically
limited to line-of-sight (LoS) and have sampling rates con-
strained by the hardware/software stack. V2X messages com-
plement sensory information by communicating the physical
state (location/velocity/acceleration) of nearby agents, as well
as their intent of motion (future acceleration, steering, and tra-
jectory). For instance, cooperative adaptive cruise controllers
(CACCs) deployed in autonomous platooning applications can
reduce the platooning distance from 3 seconds to as low as
0.5 seconds at highway speeds, thus increasing a platoon’s fuel
efficiency and improving the traffic density without compro-
mising safety [6].

The reliance on over-the-air data for decision-making opens
CAVs to new vulnerabilities. False data injections could lead to
deadly accidents and heavy monetary losses due to decreased
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Fig. 1: A remote attack without cyber-physical identity binding. The
adversary claims the existence of a phantom vehicle P and sends false
messages to a victim vehicle. Alternatively, the adversary hijacks the
physical identity of C which is sensed by V .

traffic efficiency and cargo loss [7], [8]. To combat such
threats, wireless standards such as the IEEE 1609.2 [9] and
the more recent 3GPP TS 33.185 for Cellular Vehicle-to-
Everything (C-V2X) [10] recommend the use of a public key
infrastructure (PKI). However, digital authentication does not
validate the physical identity of a message originator. As a
result, remote adversaries with valid or compromised cryp-
tographic credentials can inject false V2X messages without
being physically present in the environment.

An example of this attack is shown in Fig. 1. A remote
attacker M embeds a phantom vehicle P with public key
pkP and certificate certP , into V’s environment. Phantom ve-
hicle P advertises a physical state tuple (pP (t), v⃗P (t), a⃗P (t)),
representing P ’s position, velocity, and acceleration at time
t. Moreover, P claims the intent to switch to V’s lane.
Note that V may need to react to P ’s claim before sensors
can validate P ’s existence. In a more advanced attack, the
remote adversary hijacks the identity of an existing vehi-
cle C that is leading V . The attacker claims to have a
digital identity pkP , certP (which can be cryptographically
validated) but hijacks C’s physical trajectory by advertising
tuple (pC(t), v⃗C(t), a⃗C(t)). We emphasize that a physical-
identity hijacking attack cannot be prevented by sensing, since
a vehicle with (pC(t), v⃗C(t), a⃗C(t)) can be sensed. Moreover,
remote attacks can scale to many locations, as the adversary
is not bound to be physically co-present.
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Some known primitives such as distance bounding [11] and
proximity verification [12], [13] can be integrated into security
protocols to provide cyber-physical access control. However,
they come with significant limitations. First, they only verify
location, leaving other physical properties such as velocity, ac-
celeration, and trajectory unauthenticated. Moreover, distance
bounding and proximity verification are crude estimators and
do not allow for inferring information such as lane and relative
positioning. In many instances [14]–[16], they are limited to
small distances that are not usable for vehicular applications.
Finally, they may require custom hardware and a custom PHY
layer to remain secure [17].

More recent solutions that focus on vehicular applications
aim at verifying the physical properties of vehicles [18]–
[21]. These include secure localization and tracking [19] or
motion verification approaches [21], [22] which validate the
data consistency between a vehicle’s claim and environment
data (e.g., RF signal characteristics). However, verification is
still crude. In the context of platooning applications, physical
access control is applied during the vehicle admission phase
[22]–[26]. To be admitted into a platoon, a prover must first
prove that she follows the platoon at the following distance.
The Convoy protocol proposed by Han et al. uses the vertical
acceleration due to road surface variations to correlate the
prover’s and the verifier’s trajectories [23]. However, an ad-
versary can pre-record the vertical acceleration caused by road
surface variations ahead of time, making Convoy vulnerable to
pre-recording attacks. Xu et al. mitigated pre-recording attacks
by proposing a proof-of-following (PoF) protocol that exploits
large-scale fading correlation in ambient LTE signals to estab-
lish physical proximity. Both the Convoy and the PoF protocols
cannot establish the relative vehicle ordering, exact distance,
or trajectory. Dickey et al. added relative ordering and lane
verification by proposing the Wiggle protocol. In Wiggle, the
prover is challenged to perform a series of perturbations of
her physical trajectory to validate her trajectory claim. Such
perturbations are not always possible depending on the traffic
flow and may impact the user experience.

To address the limitations of prior methods, we propose
Cyclops, a cyber-physical challenge-response (CPCR) protocol
that relies on the vision modality to bind a vehicle’s digital
identity with its physical one. Specifically, we make the
following contributions:

• We develop Cyclops, a CPCR protocol executed between
a prover and a verifier vehicle to thwart remote attacks.
Cyclops draws security from the spatiotemporal random-
ness in nearby traffic to verify the prover’s claimed tra-
jectory. The prover and the verifier synchronously capture
scenes in their common field-of-view (cFoV) using low-
cost monocular cameras. Matching objects in the cFoV
are used to validate the prover’s claimed trajectory.

• We propose a fuzzy scene-matching algorithm that ac-
counts for the practical uncertainties in the camera’s
extrinsic properties and limitations of object detection and
depth estimation to generate a security advantage for a
truthful prover compared to a remote adversary.

• We implement Cyclops in the CARLA open-source vehi-
cle simulator to define the protocol’s security parameters.
We further conduct real-world experiments in an urban
setting to demonstrate the security of Cyclops to remote
attacks and highlight practical challenges. The code for
implementing the core primitive of Cyclops is available
at the following repository [27].

II. SYSTEM AND THREAT MODELS

System Model. We consider the interaction between
two vehicles via V2V messages. One vehicle acts as the
verifier V whereas the other acts as the prover P . The
prover and the verifier have digital IDs IDP :(pkP , certP ) and
IDV :(pkV , certV ), respectively where pkX is the public key
of X = (P,V) from a public/private key pair (pkX , skX), and
certX is the key certificate of X. Such primitives are already
defined in vehicular standards (e.g., 3GPP TS 33.185 [10]).
Moreover, each party has a physical identity represented by
a vector LX = (ℓX(t1), ℓX(t2), . . . , ℓX(tn)) , which indicates
X’s physical trajectory in time. Note that X’s physical identity
is not static but evolves with time as a vehicle moves through
space. In this work, we focus on a vehicle’s trajectory as
the main physical identity representation. Generally, other
attributes can be attached such as vehicle class, color, license
plate, velocity, acceleration, and lane. The main motivation for
using ephemeral properties to represent the physical identity
is because those properties are relevant to the autonomous
navigation of the verifier relative to the prover. Moreover, once
the physical identity of the prover has been linked to the digital
identity, the prover can be tracked via sensors.

Camera Model. Both the prover and the verifier are
equipped with monocular cameras. The cameras have intrin-
sic and extrinsic properties described by the parameter set
CX =

(
f
(x)
X , f

(y)
X , zX , ℓX , ψX , ωX , ϕX

)
, where f

(x)
X and

f
(y)
X are the camera’s horizontal and vertical focal lengths, zX

is the sensor size, ℓ⃗P (i) = (xX , yX) are the real-world camera
coordinates, and ψX , ωX , and ϕX are the camera’s pitch, roll,
and yaw, respectively. The vehicles have enough processing
power to execute off-the-shelf object detection algorithms such
as YOLO [28] to analyze camera frames and identify objects
(vehicles, pedestrians, buildings, etc.). Advancing computer
vision algorithms is beyond the scope of this work.

Threat Model. We consider a remote adversary M who
communicates with the verifier through a C-V2X interface
or a long-range V2V interface (e.g., by following afar). The
adversary has a digital ID, IDM = (pkM , certM ) and claims
a physical identity represented by trajectory LM . The goal of
M is to convince the verifier that she follows LM , which is
related to V’s trajectory LV . The adversary can impersonate a
phantom vehicle or hijack the physical identity of an existing
vehicle in the vicinity of V. Finally, the adversary is aware of
the statistical model that governs the traffic flow around the
verifier. Direct knowledge of detailed traffic model statistics
captures the best-case scenario for a remote adversary.
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Fig. 2: (a) The verifier challenges the prover to identify targets in the cFoV and (b) the four phases of the Eye primitive.

III. THE EYE PRIMITIVE

A. Overview

To bind the digital identity of a prover vehicle P with
P’s physical identity, we rely on dynamic spatiotemporal
environment features extracted through the visual modality.
We call the main primitive extracting randomness from traffic,
the Eye. The main idea of the Eye is shown in Fig. 2(a).
The Eye resembles a game of “I Spy” where the verifier V
challenges the prover P to identify random features (e.g.,
objects) within the common surrounding environment traveled
by V and P . Whereas object detection can be implemented
using various modalities (e.g., LiDAR, Radar, multi-camera
systems), we adopt a low-cost solution using only a single
monocular camera per vehicle.

The Eye primitive consists of the four phases shown in
Fig. 2(b). Initially, the prover claims to follow a trajectory
relative to the verifier. The prover’s claim is digitally signed,
allowing the authentication of P’s digital identity. The verifier
challenges the prover to steer its camera to a desired direction
where P and V can observe cFoV. The prover and the
verifier synchronously capture scenes in their FoV. The prover
provides the captured images to the verifier as proof of her
physical identity. In the next phase and for a given pair of
scenes captured by each party, the verifier computes the cFoV
in the image domain. Subsequently, the verifier applies object
detection to identify targets in the cFoV. Finally, in the scene-
matching phase, the verifier matches the targets detected in the
prover’s scenes to those in his scenes. A proof-of-trajectory
test is performed by matching scene pairs over time.

The security of the Eye is anchored on the spatial and
temporal randomness of traffic, which typically consists of
other vehicles passing by in adjacent lanes. A remote adversary
is unable to construct scenes with objects in the cFoV at the
right time. We now describe the phases of the Eye primitive
in detail. We focus on the case where the prover leads the
verifier on the same lane, but the same approach can be applied
to other vehicle configurations, as long as the prover and the
verifier have a cFoV. Such configurations are the most relevant
for vehicle safety, as V2V messages from vehicles near the
verifier directly impact the verifier’s control algorithms.

B. Scene-Capture Phase

In the scene-capture phase, V challenges P to capture a
set of scenes in the V’s FoV to prove her claimed trajectory.
The challenge consists of a 4-tuple ⟨t0, T, s, ϕP ⟩ where t0 is
the start time of scene capturing, T is the duration, s is the
scene sampling rate, and ϕP is the camera yaw for the prover’s
horizontal FoV. Moreover, the challenge is timestamped to
allow for loose synchronization between V and P. The angle
offset ϕP is used to control the cFoV between the prover and
the verifier, whereas the sampling rate s is used to control the
frequency of scene capturing. A carefully tuned sampling rate
will reduce the computational overhead of verification while
also providing scenes with lower correlation.

Let the number of scenes captured over T be n = sT . The
prover and the verifier collect sets

SP = {sP (1), sP (2), . . . , sP (n)},
SV = {sV (1), sV (2), . . . , sV (n)},

respectively. Each scene sP (i) consists of the image frame
imP (i), a timestamp t(i), and the camera’s properties rep-
resented by CP . Upon the completion of the scene capture
phase, P sends SP to V .

C. Common Field of View Inference Phase

We describe the remaining phases for two scenes sP (i) and
sV (i), captured at time t(i) and therefore, drop the index i
from our notation. The same analysis applies to all scene
pairs. Given two scenes sP and sV , the verifier determines
the cFoV as the intersection between the FoVs of P and V .
The individual FoVs are modeled using real-world boundary
lines projected onto the ground plane. Let yleftV (x), yrightV (x)
represent the left and right boundary lines of V’s FoV. These
lines are illustrated in Fig. 3(a) and expressed by

yleftV (x) =
sin(ϕV + θV

2 )

cos(ϕV + θV
2 )

(x− xV ) + yV ,

yrightV (x) =
sin(ϕV − θV

2 )

cos(ϕV + θV
2 )

(x− xV ) + yV .

The angular FoV (aFoV) θV represents the observable
area through the camera and is calculated by θV =
2 tan−1 (zV/2f(x)

V ). Similarly, the verifier describes the FoV
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Fig. 3: Calculation of the cFoV using their cameras’ intrinsic and extrinsic properties. (a) Real-world FoV of V , (b) cFoV with a camera
yaw of ϕV and ϕP and, (c) cFoV when ϕV = 0 and ϕP = π (line-of-sight).

in the prover’s scene sP using lines yleftP (x) and yrightP (x).
The verifier computes the real-world polygon Πworld =
{π1,world, ..., π4,world} defined by the intersection of the two
FoVs. Two examples of the cFoV polygon are shown in Fig. 3.
In Fig. 3(b), we show the cFoV for general camera yaw
values ϕP and ϕV . In Fig. 3(c), we demonstrate the special
case where P’s and V’s cameras are aligned to the LoS path
(ϕV = 0 and ϕP = 180◦).

In the next step, the verifier translates the polygon coor-
dinates in the image domain in both images imV and imP

obtained from scenes sV and sP , respectively. To transform
each vertex from real-world coordinates to camera coordinates,
the verifier applies the extrinsic camera matrix. Then, the
intrinsic matrix transforms the camera coordinates into image
coordinates. A detailed explanation of the transformation from
the real-world coordinates to the image coordinates is given
in [29]. At the end of this process, the verifier has projected
the cFoV polygon vertices in Πworld onto the image frames
in scenes sP and sV .

D. Scene-Matching Phase

In the scene-matching phase, V matches targets in the cFoV
between P and V . Scene matching is a two-step process. In
the first step, objects are detected on each image frame. In the
second step, the objects detected in scene sP are translated
into the image coordinate system of scene sV .

Object Detection. To identify targets on a scene s, we
applied a pre-trained YOLOv5 model which was tuned for
vehicle detection [28], [30]. YOLOv5 performs classifica-
tion and bounding-box regression, identifying, and boxing
any vehicles captured in the input frames. For a scene s,
each detected vehicle is assigned a label, stored in the set
O = {o1, o2, . . . , ok}. The label for the ith object is defined
as oi : {ci, (ui, vi), wi, hi}, where ci represents the vehicle
class, (ui, vi) represents the pixel coordinates of the bounding
box center, wi represents the bounding box width (in pixels),
and hi represents the height (see Fig. 4). Upon completion of
this phase, the verifier obtains two sets of objects OP and OV

corresponding to scenes sP and sV .
Target Matching. To match the targets in OP and OV ,

the verifier can apply a perspective transformation to translate

verifier

prover

w

h
(u, v)

Fig. 4: Detecting objects in an image frame using YOLOv5.

objects to the same coordinate system [31]. To achieve this,
a bounding box in the prover’s image domain is converted
to real-world coordinates using an inverse projection matrix
based on the camera’s intrinsic and extrinsic parameters. The
real-world coordinates are re-projected onto the ego vehicle’s
image plane using V’s camera parameters. Applying a perspec-
tive transformation comes with many challenges in practice.
The transformation accuracy is sensitive to the precise knowl-
edge of the camera’s extrinsic properties which vary with the
camera’s mounting stability, road surface, and GPS precision.
Moreover, an accurate transformation requires accurate depth
estimation, which is poor with monocular cameras.

Region Partitioning. To address these challenges, we pro-
pose a fuzzy scene-matching algorithm. The main idea is
demonstrated in Fig. 5. The cFoV is partitioned into regions
which are mapped to the image domain of sP and sV . The
bounding box corresponding to each object in OP (OV ) is
placed in the corresponding region in sP (sV ). Each scene
is then encoded using a binary vector, where the bit bi
representing region Ri is set to 1 if a bounding box is identified
to belong in Ri. Scene matching is performed by computing
a correlation metric between the respective binary vectors.

To partition the cFoV into regions, the verifier divides it to
the left and right sides of the road. The second step involves
the horizontal segmentation of the real-world cFoV. Specif-
ically, the verifier identifies ground points that partition the
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Fig. 6: The cFoV is partitioned into four regions.

verifier-to-prover line into equidistant segments. The ground
points are projected to the camera’s image domain (similar
to the process for the polygon projection). Assuming a level
alignment between the camera and the road, a horizontal line
through the x pixel coordinate of ground points represents the
cFoV region partition in the image domain. Figure 5 shows
the partition of the cFoV into four regions R1, R2, R3 and
R4. Fig. 6 shows the partition of the cFoV to four regions in
the image domain. Although the regions are equal in the real
world, they appear unequal in the image domain due to the
image perspective.

Scene Encoding and Matching. To assign an object oi
to a region, we utilize the bottom edge in the bounding box
representing oi. We preferred the bottom edge as it was found
to be the most accurate compared to other choices such as
the center of the bounding box or the intersection-over-union
(IoU) area. As illustrated in Fig. 6, the center of the bounding
box and the IoU metric would fail to correctly localize the
target on the right lane. Each scene is encoded to a bit
sequence B of length M where bit bi corresponds to region
Ri. If at least one vehicle is detected at Ri, the corresponding
bit is set to one. Otherwise, bi is set to zero. At the end of this
process, the verifier has constructed two bit sequences BP and
BV based on the prover’s and the verifier’s scenes sP and sV ,
respectively. Scene matching is performed by comparing the

sequence IoU against a minimum similarity threshold τ ≤ 1.
If the IoU exceeds τ , the scenes are considered to match.

γ = I

(∑
i I(bV (i) = bP (i) ∧ bV (i) ̸= 0)∑

i I(bV (i) ̸= 0 ∨ bP (i) ̸= 0)
≥ τ

)
. (1)

The similarity threshold τ can be less than one to account for
cases of vehicle misdetection that inevitably occur on region
boundaries, or due to the inaccuracy in the knowledge of the
extrinsic camera properties. We study the selection of τ in
the evaluation section. For the example in Fig. 5, the verifier
computes BV = 0110 and BP = 0110, leading to γ = 1.

In our context, we prefer the IoU metric over the Hamming
distance to deal with the low sequence entropy under sparse
traffic conditions. In such conditions, most scenes are empty
(without targets), which is reflected with zeros in the scene’s
bit sequence encoding. An adversary familiar with traffic
pattern statistics could achieve a low Hamming distance by
simply guessing an all-zero scene. The use of the IoU metric,
on the other hand, focuses on vehicle presence, offering a
more secure measure of similarity. Because it excludes scenes
without vehicles, it forces the adversary to guess the location
(region) and time (scene) that nearby vehicles are in the cFoV
making it much harder to guess the right sequence of scenes.
Note that the IoU metric excludes all empty scenes (no vehicle
presence in the cFoV).

IV. THE CYCLOPS PROTOCOL

The Cyclops protocol incorporates the Eye primitive to
bind the prover’s digital identity to her physical identity. We
describe the protocol’s phases in detail.

A. Digital Identity Verification Phase

In this initial phase, the prover claims a trajectory LP =
(ℓX(t1), ℓX(t2), . . . , ℓX(tn)) via a V2V message. The trajec-
tory could be represented by an explicit series of locations or
by a state vector ⟨ℓP (t1), v⃗P , a⃗P ⟩ which indicates the current
location ℓP (t1), velocity v⃗P , and acceleration a⃗P .

1) For a trajectory LP , the prover chooses a random nonce
rP and computes m1 ← sigskP

(IDV , rP , Lp). The
prover sends IDP , LP , rP , and m1 to the verifier.

2) The verifier checks if verpkP
(IDV , rP , Lp,m1)

?
=

true. If so, V “accepts”. Otherwise, V “rejects”.

B. Eye Primitive Phase

The verifier challenges the prover by executing the Eye
primitive on a series of scenes captured over the trajectory
LP . Specifically, the following steps are executed.

5) The verifier chooses the start time of scene capturing
t0, the scene capture duration T , the sampling rate
s, and the prover’s angle offset (camera yaw) ϕP
for P’s horizontal FoV. The verifier computes m2 ←
encpkP

(t0, T, s, ϕP ) and m3 ← sigskV
(IDP ,m2) The

verifier sends IDV ,m2,m3 to the prover.
6) The prover authenticates V by checking if

verskV
(IDV ,m2,m3)

?
= true. The prover decrypts m2

and captures scenes SP = {sP (1), sP (2), . . . , sP (n)}.
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Prover P Verifier V
Given:

IDP , ⟨pkP , skP ⟩ , certP , pkV , IDV , pkCA IDV , ⟨pkV , skV ⟩ , pkP , certV , pkCA

Digital Identity Verification:
m1 ← sigskP

(IDV , rP , Lp)
IDP ,rP ,LP ,m1−−−−−−−−−−−→ Verify: verpkP

(IDV , rP , Lp,m1)
?
= true

Eye Primitive:
m2 ← encpkP

(t0, T, s, ϕP )
m3 ← sigskV

(IDP ,m2)

Verify: verpkV
(IDV ,m2,m3)

?
= true.

IDV ,m2,m3←−−−−−−−−
Decrypt: t0, T, s, ϕP = decskP

(m2)
Capture: SP = {sP (1), sP (2), . . . , sP (n)} Capture: SV = {sV (1), sV (2), . . . , sV (n)}
m4 ← encpkV

(SP )
m5 ← sigskP

(IDV ,m4)
Physical Identity Verification:

IDP ,m4,m5−−−−−−−−−→ Verify: verpkP
(IDV ,m4,m5)

?
= true

Decrypt: SP = decskV
(m4)

Compute Γ from SP and SV

Verify: I
(
(
∑K

i=1 I(H(wi)/k≥α))
K ≥ β

)
?
= true

Fig. 7: The Cyclops protocol.

The prover computes m4 ← EpkV
(SP ) and

m5 ← sigskP
(IDV ,m4). The prover sends IDP ,m4,

and m5 to the verifier.
7) The verifier validates the signature on m4 by checking

verpkP
(IDV ,m4,m5)

?
= true which verifies that SP

was provided by P, therefore binding IDP with SP .

With the completion of the scene capture phase, the verifier
has received SP and collected SV using his own camera.

C. Physical Identity Verification Phase

During this physical identity verification phase, V validates
that P follows the claimed trajectory by evaluating SP .

8) The verifier applies the cFoV and scene-matching
phases of the Eye primitive on all scene pairs
(sP (i), sV (i)) , i = 1..n and obtains a binary vector Γ
of length n. In Γ, γi = 1 if the ith scene pair passes the
target matching test in eq. (1) and zero otherwise.

9) The verifier partitions bit sequence Γ into K = n/k
words of k bits each. Each word corresponds to k scene
pairs. The verifier executes an independent test on each
word by checking if the Hamming weight of each word
(normalized to the word length) is larger than a threshold
α. Finally, the verifier “accepts” if β fraction of word
tests are passed.

I


(∑K

i=1 I (
H(wi)/k ≥ α)

)
K

≥ β

 ?
= true (2)

In eq. (2), H(wi) denotes the Hamming weight of the
ith word.

An example of applying the physical identity verification test
on Γ is shown below. Sequence Γ is divided into K words

w1, w2, . . . , wK of size k, and the Hamming weight test is
applied to each word. If a fraction β of Hamming weights
exceeds α, the prover passes verification.

Γ = γ1, γ2, . . . , γk︸ ︷︷ ︸
H(w1)/k≥α

, . . . , γN−k, γn−k+1, . . . , γn︸ ︷︷ ︸
H(wK )/k≥α︸ ︷︷ ︸

≥β

.

Partitioning the n scenes into K groups and performing K
tests (as opposed to a single test on all n scenes) allows the
verifier to further decorrelate scenes post collection. This is
because correlated scenes will be grouped under a smaller
set of words (ideally a single word) thus affecting a single
or limited number of tests. In the evaluation, we study the
test performance under various combinations of k, α, and β
to fine-tune the test parameters. The information flow diagram
of Cyclops is shown in Fig. 7.

V. SECURITY ANALYSIS

A. Remote Adversary

To pass the verification of the Cyclops protocol, a remote
adversary M must pass the digital and physical identity
verifications. Since the adversary holds valid cryptographic
credentials, digital identity verification is passed by presenting
message m1 signed with pkM . To pass physical identity
verification, M must present a scene vector SM that matches
the scene vector SV collected by the verifier. Because the
adversary is remote, she cannot capture scenes in the FoV
of the verifier and, therefore, she has to guess those scenes.

Modeling M’s Guessing Strategy. We model the adver-
sary’s guessing strategy for SM as a finite weighted random
walk over a Markov chain representing the known traffic
distribution in V’s environment. Specifically, let the cFoV be
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partitioned into |R| regions as detailed in Section III-D. Each
scene is encoded to a binary vector B of length |R|, indicating
the presence or absence of a target in each region. We let the
2|R| candidate scenes represent 2|R| states in a Markov chain
with a probability transition matrix P. Matrix P captures the
probability of transitioning from state sx to state sy in the next
time step, given the traffic model. The time step is determined
by the scene collection sampling rate s.

Generally, the Markovian property does not hold, as a
transition from the current state to another depends on prior
states. For instance, a vehicle present in region ri of one lane
is more likely to transition to region ri+1 of the same lane if a
transition from ri−1 to ri happened in a recent time step. This
is because the previous recent transition indicates a vehicle
traveling at a higher relative velocity leading to correlated
transitions. However, if the number of regions is relatively
small and the time step is large enough, then a Markovian
assumption can be made where the next scene (state) only
depends on the previous scene. Under this assumption, the
scene transition can be represented as an |R|-dimensional
Markov chain G(V,E). Figure 8 shows the digraph for the
cFoV partition to the left and right lanes (2 regions).

𝑃𝑉

cFoV

R1
R2

00 01

10 11

Fig. 8: A 4-state Markov chain representing a cFoV partition to
two regions. Transitions to all scenes including self-transitions are
possible with probability that is dictated by the traffic model.

Knowing G(V,E), the strategy of the adversary is to decide
on a finite walk WM of length n that maximizes the number
of collisions between WM and the weighted random walk WV

of the verifier. A collision occurs when both walks are in the
same state (scene) at the same time step. The total number of
collisions in n steps is simply

C(n) =

n∑
i=1

I (wV (i) = wM (i)) .

where wV (i) and wM (i) are the states of WV and WM

after the ith step. To pass verification, the minimum number
of collisions between WM and WV must meet the physical
identity verification test in Step 9 of the Cyclops protocol.

C(n) ≥ (βK)(αk). (3)

This is because to pass a single test, the prover must success-
fully guess (collide) in αk scenes, and a total of βK tests of k
scenes each must be passed. Note that passing (βK)(αk) tests
does not guarantee passing verification because the arrange-
ment of those tests in words is important. The relationship
in eq. (3) provides a lower bound. To maximize the collision
probability, the adversary can follow a path that starts from

𝒞ℳ𝒱
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ℳ

capture 
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ℳ

𝑀
𝐼𝐷𝑀, 𝑟M , 𝐿𝐶 , 𝑠𝑖𝑔𝑠𝑘		(	)

𝐼𝐷V , 𝑒𝑛𝑐𝑝𝑘 		 𝑡0, 𝑇, 𝑠, 𝜑Μ , 𝑠𝑖𝑔𝑠𝑘 		(	) 𝐼𝐷M , 𝑒𝑛𝑐𝑝𝑘 		(𝑡0, 𝑇, 𝑠	𝜑Μ), 𝑠𝑖𝑔𝑠𝑘 		(	)
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Fig. 9: A MitM attack against the Cyclops protocol.

the most probable state and transitions to the state with the
highest transition probability. However, this strategy can lead
to scene patterns that can be easily categorized as adversarial.
For instance, if the highest transition probability from a given
state is the self-transition probability, the scene pattern stops
in a terminating state.

A stealthier strategy is to generate a weighted random walk
WM that follows the probability distribution of each state.
Such a walk will resemble WV without having deterministic
patterns. To find C(n) under a weighted random walk model,
one could apply combinatorial analysis, but this method does
not scale with the number of dimensions [32], [33]. Some
results are known for infinite graphs (e.g., walks on Zd

with uniform probability) [32], but our walk model is finite
and follows a general distribution over a finite state graph.
Intuitively, the number of collisions is inverse to the number
of dimensions and the entropy of the distribution. We evaluate
C(n) in simulation and real-world experimentation and use
parameters α and β to achieve the desired security levels.

B. Man-in-the-Middle Adversary

The adversary M could also attempt to act as a man-in-
the-middle (MitM) between V and another vehicle C near V ,
with the intent of hijacking C’s physical identity. By hijacking
another vehicle’s physical identity, the adversary can then
inject false navigation messages (e.g., intent to brake, change
lanes) and impact the control decision-making at the verifier.
The MitM attack can be launched as shown in Fig. 9. The
adversary receives a trajectory claim LC from C and uses the
same trajectory claim to V. The verifier validates M’s digital
identity and challengesM to capture scenes starting at time t0,
using ϕM . The adversary decrypts the challenge and constructs
a new challenge for C with the same t0, T, s, and ϕM . The
verifier and C synchronously capture scenes in their respective
FoVs. The C responds to the challenge with encpkM

(SC).
The adversary decrypts to recover SC and constructs a new
response for V by signing it using her own private key. The
verifier performs the physical identity verification test between
SV and SC . As C follows the claimed LC , the adversary passes
the test and successfully hijacks the physical identity of C.

The MitM attack is preventable if the prover’s and verifier’s
identities are known to each other. In this closed membership
scenario, C specifies messages for V and vice versa. The
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adversary cannot generate a valid signature to challenge C.
Moreover, the response from C is encrypted with V’s public
key, and therefore M cannot obtain SC . In an open member-
ship scenario where the verifier is not specified, the attack is
feasible. This vulnerability can be addressed by incorporating a
commitment scheme with a delayed opening phase that renders
the scenes relayed from C toM stale. The key idea is to force
the prover to commit to the captured scenes without revealing
them to the verifier. This commitment is then opened with a
delay to perform verification. A MiTM adversary spoofing a
verifier cannot open the commitment of C due to the hiding
property. The delayed opening phase forces M to commit to
V without knowing SC , or commit late with scenes that are
not aligned with those of V. Due to space limitations, we omit
the details of such protocol.

VI. EVALUATION

In this section, we evaluate the correctness and soundness
of the Cyclops protocol. We use the CARLA Open Urban
Driving Simulator [34] to determine the test parameters and
then verify the security of Cyclops in a real-world setting. The
protocol parameters are shown in Table I.

TABLE I: Parameters of the Cyclops protocol.

Notation Definition
|R| Number of regions per scene
τ Scene similarity threshold
k Number of scenes per word
α Normalized Hamming weight threshold for word comparison
K Number of words tests in the Cyclops protocol
β Minimum fraction of word tests to pass verification

A. Cyclops Parameter Selection

CARLA Simulation Setup. CARLA is an open-source sim-
ulator tailored for autonomous vehicle research. The platform
supports a flexible sensor suite and full control of all static
and dynamic actors. We deployed two vehicles designated as
V and P which traveled in the middle lane of a highway.
Both vehicles were equipped with monocular cameras with a
FoV of 105 degrees. The prover led the verifier with cameras
oriented to the LoS similar to the topology in Fig. 3(c).

Traffic in each lane was generated according to two traffic
models. In the first model termed the Uniform Traffic Model,
an event consisting of up to two vehicles spawning in the left
lane and up to two vehicles spawning in the right lane with uni-
form probability. Upon triggering the vehicle spawning, each
target vehicle was given a throttle to pass through the cFoV
thereby simulating the natural flow of traffic. We captured 10
minutes of events across seven discrete distances dref between
the prover and the verifier. The sampling rate was set to 10 fps,
culminating in a total of 6,000 scenes per distance. The second
model termed the Urban Traffic Model was developed from
data collected during our on-road experiments in an urban
environment. We used the scenes collected during experiments
and calculated the traffic distribution (Markov model). We
generated scenes according to this distribution for 10 minutes
and captured scenes for each P − V distance.

B. Cyclops Protocol Parameter Selection

Evaluation of Scene Matching. We first evaluated the
accuracy of the scene-matching algorithm when the cFoV is
divided into 1, 2, and 4 regions under the Uniform Traffic
Model. Of all the scenes captured, we excluded scene pairs
where both scenes were empty. Figure 10(a) shows the scene
matching rate as a function of τ . The threshold for a single
region was set to τ = 1, for two regions to τ = 0.5, 1, and
for four regions to τ = 0.25, 0.5, 0.75, and 1. The highest
matching rate is achieved for |R| = 1 because the detection of
any number of vehicles within the cFoV is sufficient for scene
matching. As the number of regions increases, the matching
rate slightly drops due to the limited resolution in the bounding
box localization. We further observe that imperfect matching
(τ < 1) does not lead to significant gains in the matching
rate. This is attributed to the fact that bounding boxes are well-
localized between the left and right lanes with errors primarily
occurring when vehicles are at the boundaries of regions in
the same lane (either between regions in the same lane or at
the cFoV boundaries). From Fig. 10(a), we set τ = 1 when
|R| = 1 and τ = 0.5 for |R| = 2, 4.

In Fig. 10(b), we show the scene matching rate as a function
of the distance dref between the V and P. We observe
that the matching rate increases with distance because the
cFoV becomes larger and bounding boxes are localized more
accurately. Performance plateaus at 40m (and even slightly de-
creases at 45m) due to loss of vehicle detection accuracy when
the prover is too far away from the verifier. As expected, tests
with four regions provide the worst matching rate, however,
they also yield the highest randomness because the adversary
must guess the existence or absence of vehicles in each of
the regions. For typical following distances and |R| = 1, 2
the matching rate remains above 0.75 which is sufficient to
differentiate between a legitimate prover and an adversary.

Selecting α, β, K, and k. To select the remaining test
parameters, we evaluated the overall Cyclops passing rate
under benign and adversarial scenarios. The adversary was
implemented using the guessing strategy described in Sec-
tion V. The adversary guessed scenes according to a walk
on the Markov chain generated from the traffic distribution
which was assumed to be known. The verification test was
applied to each of those sequences and results were averaged
over 100 sequence realizations. Figure 10(c) shows the passing
rate as a function of threshold α for tests containing 30 scenes
when all scenes are grouped under a single test (therefore
β = 1). It is noted that for α > 0.5 the adversary’s passing
probability becomes close to zero for all partitions of the cFoV
into regions. At the same time, a legitimate prover passes
with a probability above 80%. One and two regions yield
the highest passing rate, but four regions yield the strongest
security (lowest passing rate for the adversary). To improve
the test performance, we re-arranged the 30-scene tests to 5
groups of 6 scenes each and fixed α = 0.5. Figure 10(d)
shows the passing rates of the adversary and a valid prover.
By selecting β = 0.4, a valid prover passes the test with a
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(a) (b) (c) K = 1 and k = 30 (d) K = 5, k = 6, and α = 0.5

Fig. 10: Scene matching and verification test passing rates under the uniform traffic model based on CARLA simulations.

(a) K = 1 and k = 60 (b) K = 4 and k = 15 (c) K = 6 and k = 10 (d) K = 10 and k = 6

Fig. 11: Passing rate for a valid prover and a remote adversary for the real traffic model when |R| = 1 and τ = 1.

probability around 90% for |R| = 1, 2 and 80% for |R| = 4,
whereas the adversary’s probability is driven to zero.

Urban Traffic Model. To further validate the parameter
selection, we repeated our CARLA simulations when traffic
was generated according to the urban dataset collected during
our on-road experiments. Figure 11 shows the passing rate for
a valid prover and a remote adversary for different K and k.
We have set |R| = 1 and τ = 1 because only one adjacent
lane was consistently available in our on-road experiments. We
observe that for each K, k combination, we can find a value
of β (α in the case of K = 1) that drives the passing rate of
the adversary to zero while maintaining a high passing rate
for a valid prover. For instance, when all scenes belong to a
single test (Fig. 11(a)), we can set α = 0.33 and for K = 4
(Fig. 11(b)), we can set α = 0.33 and β = 0.5. The same
values can be used for K = 6 and K = 10, as is evident
from Figs. 11(c) and 11(d). It is interesting to note that when
setting α = 0.33 and β = 0.5 the test requires less than
50% of the scene pairs between a valid prover and a verifier
to match. Although 50% matching is low from a computer
vision standpoint, it is sufficient to create a security advantage
for the valid prover compared to a remote adversary.

Several threshold choices emerge from the simulations. One
viable set is to use (τ, α, β) = (1, 0.33, 0.5) whereas another
is to use (τ, α, β) = (1, 0.5, 0.4) (α = 0.3 when k = 10).
Moreover, utilizing multiple short tests as opposed to one
long test provides stronger security guarantees due to post-
collection data decorrelation. We examine the use of these
value sets to the scenes collected from real-world experiments.

C. Evaluation in Real-World Experiments

Experimental Setup. For our real-world on-road experi-
ments, we used an Infinity G35 representing V and a Honda

Civic acting as P . Two iPhone 12 Pros were mounted on
the rear of V and the rear-view mirror of P facing forward,
respectively. Both devices ran the Sensor Logger application,
which was configured to capture telemetry data, including
phone orientation. The prover led the verifier in varying
traffic conditions in an urban setting (location is not dis-
closed to maintain author anonymity). Images were geotagged
and timestamped to allow for scene synchronization and the
measurement of the relative distance. We set |R| = 1 and
τ = 1 because the number of adjacent lanes varied with
the roads traversed. Some representative scenes captured from
the testbed are shown in Figs. 4 and 6. The two vehicles
captured scenes for a total of 9 minutes at a 30 fps rate.
The scenes were later downsampled to 10 fps to match the
sampling rate used in the simulations. We further applied
a scene filtration method that excluded scenes where the
verifier and prover were stopped at a traffic light, recorded
empty scenes, or the verifier’s YOLO classifier lost track of
the prover. Tracking of the prover was employed since the
verification test involves multiple scenes over a period where
the prover could sometimes be undetectable due to blockage
from other vehicles. We applied a simple intersection-over-
union measure for the prover’s bounding box between two
successive frames (1/30s apart) to keep track of the prover.
If the IoU exceeded 92%, the frame was accepted, otherwise,
the frame was rejected.

Evaluation. Figure 12(a) shows the passing rate for a valid
prover and a remote adversary when 100 scenes are used
in a single test. The pairs of scenes used in the test were
increased from 60 scenes in simulations to 100 frames in the
urban experiments to achieve better performance. However, we
observe that for K = 1 there is no good choice for α that will
simultaneously achieve a low passing rate for the adversary
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(a) K = 1 and k = 100 (b) K = 10 and k = 10

Fig. 12: Passing rate for a valid prover and a remote adversary for
the real-world on-road experiments.

and a high passing rate for any legitimate user. We further
explored the setting where K = 10 and k = 10 to increase
the number of tests that the adversary must pass. Figure 12(b)
shows the passing rate as a function of β for different (K, k)
pairs. We observe that both sets of thresholds determined
from the CARLA simulations ((τ, α, β) = (1, 0.3, 0.5) and
(τ, α, β) = (1, 0.5, 0.4)) provide adequate security while
maintaining the protocol correctness.

We highlight that the real-world evaluations did not achieve
the same performance as the CARLA simulations due to
challenges in the precise tracking of the camera coordinates in
the real world (GPS resolution and camera movement due to
road conditions), which impacted the cFoV and the region
calculations. Despite these challenges, the desired level of
security was achieved at the expense of longer delays due
to the longer scene collection times.

VII. CONCLUSION AND FUTURE WORK

We developed Cyclops, a CPCR protocol that binds a
vehicle’s digital with its physical identity, represented by
its physical trajectory. In Cyclops, a prover and a verifier
synchronously capture scenes as they travel over the claimed
trajectories using low-cost monocular cameras. Identity bind-
ing is achieved by matching targets in the cFoV between the
prover and the verifier. Security against a remote adversary
who aims at spoofing phantom vehicles or hijacking the
identity of nearby vehicles is drawn from the spatiotemporal
randomness of traffic.

Future work. Cyclops can be improved in several ways.
The use of monocular cameras presented computer vision chal-
lenges in the accurate matching of targets due to perspective
distortions and poor depth estimation in angles away from
the forward direction. The proposed fuzzy matching algorithm
maintained security, however, it led to longer verification
times. More accurate target localization using other modalities
(LiDAR, Radar, or multi-camera systems) can dramatically
reduce the number of scenes required for verification (even to
one scene). Moreover, Cyclops only relies on vehicle targets
(bounding boxes) without analyzing other image features such
as buildings, pedestrians, license plates, trees, etc. Those
features can drastically increase the scene entropy, leading
to stronger security. Finally, a deeper security analysis can
be performed, by exploring the Markovian properties (or lack

of) of various traffic models, their collision probabilities, and
using entire target trajectories as states.
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