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Abstract—With the increasing interest in autonomous vehicles
(AVs), ensuring their safety and security is becoming crucial.
The introduction of advanced features has increased the need
for various interfaces to communicate with the external world,
creating new potential attack vectors that attackers can exploit
to alter sensor data. LiDAR sensors are widely employed to
support autonomous driving features and generate point cloud
data used by ADAS to 3D map the vehicle’s surroundings.
Tampering attacks on LiDAR-generated data can compromise
the vehicle’s functionalities and seriously threaten passengers and
other road users. Existing approaches to LiDAR data tampering
detection show security flaws and can be bypassed by attackers
through design vulnerabilities. This paper proposes a novel
approach for tampering detection of LiDAR-generated data in
AVs, employing a watermarking technique. We validate our
approach through experiments to prove its feasibility in real-
world time-constrained scenarios and its efficacy in detecting
LiDAR tampering attacks. Our approach performs better when
compared to the current state-of-the-art LiDAR watermarking
techniques while addressing critical issues related to watermark
security and imperceptibility.

I. INTRODUCTION

Autonomous driving technology refers to the partial or
complete replacement of human driving activity with an au-
tomated system based on electronic and mechanical devices.
With advancements in technology, new commercially available
vehicles are becoming increasingly rich in terms of driver
assistance features. These features often require different in-
terfaces to communicate with the external world, potentially
providing new entry points for the attackers. The implementa-
tion of autonomous driving technology can deliver numerous
benefits to society, including improved safety, reduced traf-
fic congestion, enhanced vehicle management, and increased
transport availability for individuals unable to drive [10].
Safety is a crucial aspect of autonomous driving, as the system
must make accurate decisions in every situation to ensure the
safety of both the driver and the environment. To make such
decisions, vehicles are required to obtain precise and various
data on their surroundings. LiDAR sensors, using laser beams
to generate a point cloud representation of the surrounding
environment, are considered essential for generating effective
and precise data for autonomous driving. LiDAR data are
combined with data from other sensors, such as cameras [27]

in Advanced Driver Assistance Systems (ADAS) to provide a
comprehensive understanding of the environment and control
the vehicle’s actions. The advantages of LiDAR point clouds in
relation to camera images, however, are multiple, from depth
perception to darkness visibility and weather dependency. The
transmission of data from the LiDAR Electronic Control Unit
(ECU) to the ADAS depends on the on-board networks of
the vehicle, which lack integrated security measures and have
been the target of many attack demonstrations [4], [16], [8] in
the last decade. Attackers can inject frames into the network,
spoofing the transmitted LiDAR data by inserting or removing
points in the point cloud, potentially taking control of the
Autonomous Vehicle (AV) actions.

To mitigate this issue, this research work aims to develop
a solution to verify the integrity of LiDAR-generated point
clouds to ensure that the ADAS does not act on tampered
information. The proposed solution is based on watermark-
ing, which utilizes the imperceptible displacement of selected
points in the LiDAR scan to conceal a secret message. This
message is then extracted and verified at the receiver side,
providing a lightweight integrity check that can be performed
in parallel with the inference operations on the scan and can
recognize the areas of the point cloud under attack.

The results on attacks injected on the widely-exploited
KITTI Dataset [11] indicate that the proposed approach has
high efficacy in detecting and locating manipulations on the
LiDAR-generated point clouds while respecting time con-
straints and applying imperceptible modifications that do not
impact the inferential procedures in ADAS.

Our main contributions are the following:

• A publicly available1 novel approach for detecting
attacks against LiDAR point cloud scans, based on
fragile watermarking.

• An evaluation of the proposed approach to prove
its feasibility in real-world time-constrained scenarios
and its efficacy in detecting LiDAR tampering attacks.

• A comparison with state-of-the-art techniques for Li-
DAR tampering detection based on watermarking,
highlighting their limitations and shortcomings.

II. PRIMER ON WATERMARKING

Data hiding techniques are a set of security measures that
are used to protect confidential information from unauthorized

1The implementation of our approach, alongside all of our experiments, are
available online at https://github.com/necst/LiDAR watermarking.
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access or alteration. These techniques involve concealing infor-
mation inside data with minimal modifications to their features.
The adjustments made in the data must be imperceptible in the
expected usage of the data, where the modified data has to pro-
vide the same information as the original. The receiver should
be capable of extracting hidden information and utilizing it
while performing necessary operations on data. While there
are multiple categories of data hiding techniques [24], namely
steganography, reversible data hiding, and watermarking, we
focus on the latter, the only one of the three where the final
goal is not to hide the information. Watermarking conceals
information inside data, but the peculiarity is that the hidden
message is known by the sender and the receiver and is used
by the receiver to detect any modifications made to the shared
multimedia data. Specifically, the receiver extracts the secret
message from the multimedia and compares it to the known
message. Without discrepancies, the receiver can infer that data
have not been altered. If discrepancies are found, the receiver
can affirm that the data are not the same as the original ones
and may further identify the specific elements where the two
versions do not match. The primary goal of the communication
remains the multimedia data itself, with the secret message
serving solely to safeguard its integrity.

Watermarking is widely used nowadays for various ap-
plications, such as copyright protection, tampering detection,
metadata insertion, or media authentication [25]. A water-
marking technique comprises two essential phases: embedding
and extraction. The embedding phase, which is executed on
the sender side, involves making minor alterations to the
exchanged multimedia data to conceal secret information.
Each modification conceals a fragment of information, which
unveils the complete secret when combined with others. On
the receiver side, the extraction phase deciphers the hidden
information by associating specific features in the multimedia
data with the meaning assigned during the embedding phase.
These fragments of information are then merged to disclose
the complete secret.

Compared to encryption, watermarking provides various
advantages. First, watermarking enables parallel data process-
ing, as the integrity check can be performed concurrently with
other necessary operations. In contrast, encryption necessitates
a decryption step before any operations can be carried out,
which may be time-consuming and impact performance. Sec-
ondly, watermarking can locate specific regions within the data
that have been tampered with during an attack. This facilitates
targeted solutions, preserving the integrity of the remaining
data. In contrast, encryption often results in complete data loss
when tampering is detected. While Message Authentication
Codes (MACs) partially solve the disadvantages of a full
encryption process (albeit not being able to identify the region
under attack), watermarks are embedded within the data and
do not require additional storage or bandwidth to be stored
and shared, both potentially limited resources in automotive
environments.

A. Watermarking Properties

Watermarking is a versatile technique that can be applied
to various scenarios, owing to the various properties that make
it suitable for different purposes. The main properties can be

(a) Original (b) Watermarked

(c) Tampered (d) Detected tampered areas
Fig. 1: Example of a tampering detection process based on
fragile watermark for digital images from [22].

divided in [20], [9], [25] robustness (or fragility), blindness,
imperceptibility, and visibility.

1) Robustness or Fragility: Digital watermarks can be
classified as either robust or fragile. Fragile watermarks are
particularly useful for content authentication, as they are
designed to detect any intentional or unintentional modification
made to transmitted data. They are called ”fragile” because of
their high susceptibility to data alteration, as small modifica-
tions made to the original data can fully or partially break
the watermark. This characteristic is particularly relevant to
our research scope. An example of a fragile watermarking
approach applied to images is illustrated in Figure 1.

On the contrary, when applied to images, ”robust” wa-
termarks can withstand various modifications that may oc-
cur during distribution, such as cropping or compression.
Compared to fragile, robust watermarks are challenging to
remove without significantly altering the data quality. They are
commonly employed in multimedia content to authenticate its
origin and ownership. These watermarks are typically invisible
to the human eye and can only be retrieved using specific
watermarking software.

2) Blindness: Blindness refers to the process of extracting
hidden information from watermarked multimedia data. The
type of watermark used can be categorized as blind, non-blind,
or semi-blind depending on the additional information required
by the receiver to extract the hidden data accurately. In the case
of a non-blind watermark, the receiver must have access to
the original multimedia data in order to extract the watermark
successfully. On the other hand, a blind watermark does not
require any information about the original data to extract
the watermark. A semi-blind watermark combines elements
of both blind and non-blind techniques, where the receiver
has partial access to the original data. This may include
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Fig. 2: Overview of the approach interaction with the attacker
and vehicle on-board network.

partial information about certain regions of the image or some
statistical properties of data.

3) Imperceptibility: Imperceptibility in watermarking
refers to the ability of the watermark to introduce a minimal
level of distortion to the original data. The marked data should
be similar enough to the original data that any operation
performed on the two will result in nearly identical outcomes.
The importance of imperceptibility lies in the need to ensure
that the marked data is not significantly altered or distorted, as
this can compromise the quality and integrity of the original
content.

4) Visibility: A watermark can be classified as visible or
invisible based on its detectability in the marked data. If the
watermark is easily identifiable in the marked data, such as a
company logo overlaid on a video, then it is considered visible.
On the other hand, if the watermark cannot be easily detected
in the marked data, it is classified as invisible.

III. APPROACH

Our goal is to develop a methodology to ensure the
integrity of LiDAR data point clouds in real-time contexts
that require rapid or parallel processing of information while
being able to detect which elements of the point cloud have
been tampered with. The proposed methodology involves a
technique of fragile watermarking. The LiDAR ECU embeds a
hidden message within the generated point cloud and transmits
the resulting marked point cloud to ADAS. ADAS then extracts
the message from the received point cloud and compares the
extracted information with the known one, as both entities
share the same information generation technique. In the event
of any discrepancy, ADAS can detect the specific area that has
been tampered with.

A. Threat model

We consider an attacker capable of feeding spoofed LiDAR
point clouds to the receiving device, which is the ADAS
in the context of autonomous driving. In the context of
autonomous driving, we assume that the attacker has already
gained access to the on-board network and can communicate
with the ADAS as if it was the LiDAR ECU. Multiple works in
the state of the art discuss the feasibility of obtaining access
to an on-board ECU, both through physical interaction [4],
[15] and remotely [16], and another vast amount of research
has been done on studying injection and masquerade attacks
on automotive on-board networks [17], [8]. Specifically, we
distinguish the attacks that can be performed in the following
main categories:

• Injection attack: the attacker generates a false point
cloud and feeds it to the ADAS.

• Replay attack: the attacker collects one or more point
clouds sent by the LiDAR ECU and replays them in
a different time slot.

• Object insertion attack: the attacker intercepts a Li-
DAR point cloud and inserts points representing a
custom element before injecting it. Note that the at-
tacker can ideally use an object obtained by a previous
message.

• Object removal attack: the attacker intercepts a Li-
DAR point cloud and removes points representing an
element before injecting it.

It is important to clarify that we do not consider an attacker
whose sole goal is disrupting the communication between the
LiDAR and the ADAS since watermarking does not address
DoS and similar attacks. We also assume that the attacker’s
knowledge of the inference process of ADAS enables them to
manipulate scans by adding or removing elements in a way
that can influence the object detection results.

B. Information generation

While not being the core focus of our work, the process
of generating information to hide is a critical aspect of the
security of the watermark. Given the attacks discussed in
Section III-A, the hidden message has to be non-predictable
to avoid spoofing, and dynamic to avoid replay or insertion
attacks. A known solution in the state-of-the-art is the Time-
based One-Time Password (TOTP) algorithm [19], a variant
of the Hash-based One-Time Password (HOTP) by M’Raihi et
al. [18]. The algorithms employ a cryptographic hash function
fed with a key and a counter to generate a sequence of pseudo-
random numbers. The algorithm’s security is based on the
security of the hash function used to generate the pseudo-
random numbers and the secrecy of the key, which must be
known and stored confidentially by all the communicating
parties. While in the HOTP algorithm, the dynamicity of the
generated hidden message is ensured by the use of the counter,
which must be synchronized between communication parties,
in the TOTP algorithm, the counter value used to feed the hash
function along with the key is replaced with a value that is
dependent on the current timestamp. To ensure synchronization
between the sender and receiver, the clock of both parties has
to be synchronized, and the receiver has to know when to
calculate the key to use with the point cloud received at each
timestamp. We consider a time-step parameter that should be
defined at design time, which is known by each party and
is used to determine when to generate a new hidden message.
Ideally, this parameter should be equal to or lower than the time
required by the LiDAR to generate a new scan to guarantee that
all watermarked scans contain different concealed information,
lowering the chances of replay attacks.

C. Watermarking process

Our goal is to propose a watermark process that is: Fragile,
since the watermark is susceptible to unwanted modifications
so that tampering can be detected. Invisible, since it can apply a
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(a) Representation of the point cloud as seen through the watermarking
process.

(b) Division of the space in regions over the Y-axis, T is the thickness
of each region. The blue rectangle represents the region mean (M) in
relation to the Y-axis.

Fig. 3: Division of the space in the watermark process.

small enough displacement to points that it becomes challeng-
ing to distinguish between the original and the watermarked
point clouds. Imperceptible, as ADAS inference operations on
the watermarked point cloud produce results that are almost
identical to those obtained with the original point cloud, and
finally Blind, since the receiver does not need to acquire the
original point cloud to extract the watermark.

Similarly to previous works [3], [14], the proposed fragile
watermarking approach involves dividing the point cloud’s 3D
space into several regions, where each region represents a
hidden information bit. The value of these bits is regulated
during the watermark embedding phase.

Our watermarking process comprises three distinct water-
marking operations that are independently applied to each of
the three axes (X, Y, Z). For each axis, we approximate the
point cloud space as a parallelepiped, allowing the space to
be partitioned into identical regions. The space is divided
into small parallelepipeds with uniform thickness (T), as
represented in Figure 3.

The selection of an appropriate value T defining the height
of each region for each of the axes is a crucial factor in
determining the optimal settings for the watermarking algo-
rithm. A tradeoff between three elements, the imperceptibility
of the watermark, the effectiveness of the tampering detection
process, and the computational efficiency, is necessary. In fact,
a higher value of T would lead to fewer regions, thereby
reducing the time and resource requirements of the algorithm.
However, this would come at the cost of a deterioration in

M (region mean)

T (region height)

A

C

B

points average height

(a) Region before watermark embedding phase.

M (region mean)

T (region height)

A

C

B

points average height

(b) Watermark embedding process.

M (region mean)

T (region height)

C

B

points average heightA

(c) Region after watermark embedding phase.

Fig. 4: Division of the space in the watermark process.

tampering detection performance and in watermark impercep-
tibility. Conversely, a lower T value results in smaller point
displacements to correct the average height value of each
region, providing greater precision in detecting the tampering
attacks and increasing the watermark imperceptibility.

Watermark embedding. During the watermark embedding
phase, for all regions defined before, a bit is extracted from the
sequence of generated bits that compose the hidden message,
and a corresponding region is selected from the point cloud
space. The selection process starts with regions in the X
coordinate and then moves on to those in the Y and Z
coordinates.

To embed information in each region, we calculate the
average height of the points inside the region and compare it
with half the height of the region itself (region mean ”M”). If
the calculated average is greater or equal to M, the embedded
information is a binary 1; otherwise, it is a binary 0. If the
information does not correspond to the desired value, it is
corrected by applying a positive or negative displacement of
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value M to each point in the subregion where the current
average lies. Note that by displacing the points of a positive or
negative M, we ensure that the average point height becomes
equal to or higher than M itself in any configuration of points
inside the region while never exceeding the boundaries of the
region. Figure 4 illustrates an example of this operation. Re-
peating the process for all regions in the three axes, each point
is considered part of three regions, one per axis. Therefore,
modifying a single point affects three bits of information.

Figure 4a provides a 2D representation of a region con-
taining three points. The average value of the points in the
region M is depicted by the black line, while the current
calculated average is illustrated by the red one. The objective
is to embed a bit with a value of 1 in that region; thus, the
current average value needs to be corrected. Figure 4b shows
the process of embedding, which involves shifting the positions
of points ”A” and ”B” upwards of a value M. The results of the
embedding process are depicted in Figure 4c, where the new
current average position is coherent with the bit information
that needs to be embedded.

There is a possibility for a region to contain no points.
The probability of this occurrence increases as the T parameter
decreases. If an empty region is encountered during a round,
the algorithm moves to the next region but does not move to
the next bit in the bit sequence. The reason behind this choice
(instead of ignoring the bit in the empty region) derives from
the necessity of avoiding object removal attacks. In fact, if
the empty region does not affect the rest of the process, the
attacker may remove points without being detected. Moreover,
by inserting the hidden bit in the next non-empty region, any
manipulation that involves an empty region can potentially
break the entire watermark. If the attacker inserts points in the
empty region, it anticipates, in the extraction process, the use
of the next bit of the hidden message, creating a shift in the bit
sequence reading order. The attacker is, therefore, forbidden
from emptying a region containing points, inserting points in
an empty region, or changing region order in the point cloud.

Watermark extraction. Similarly to the watermark injection
phase, the watermark extraction phase is carried out in rounds.
In each round, if the region is not empty, the receiver computes
the hidden bit of the region and compares it with the current
bit of the known hidden message. If the two values correspond,
then the region is considered not tampered with, and the
process proceeds to the subsequent round. If the values do not
correspond, the region is flagged as tampered, and the process
proceeds to the subsequent round. Note that even in the case
where the region is considered tampered, it is possible to detect
which areas of the point cloud were subjects of the attack by
completing the evaluation of all regions.

IV. EVALUATION

Our evaluation aims to demonstrate our system’s real-
world effectiveness, ensuring that it does not affect the normal
functioning of the LiDAR object detection process and demon-
strating its attack detection capabilities. To ensure that it does
not introduce excessive degradation on the results of inference
operations on point cloud data, we test the imperceptibility
of the watermarked point cloud by evaluating the shift in the
bounding boxes generated by the object detector. Moreover,

TABLE I: Hardware specifications

Specifications
CPU Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz
GPU Intel(R) Iris(R) Plus Graphics
RAM 16 GB

we test the timing overhead generated by the algorithm to
ensure it does not exceed the requirements. To evaluate the
attack detection capabilities of our system, we test it against
object insertion and object removal attacks, as discussed in
Section III-A, and evaluate its performance in detecting them.

We report the results of two different T parameter values
that, upon empirical analysis, we deem valid for the automotive
application. The first has a flat T value of 10 cm, while the
second varies depending on the distance from the LiDAR
sensor. Specifically, regions between -20m and +20m were
assigned a T value of 10cm, while regions in the remaining
space were assigned a doubled T value of 20cm. As a result,
displacement values for points in larger regions were doubled,
becoming 10cm or 4cm depending on their proximity to the
average.

A. Evaluation Setup

We use data obtained from the KITTI dataset [11] to vali-
date the implementation of our proposed solution. The KITTI
dataset is widely recognized in the autonomous driving domain
and contains various types of data obtained from different
sensors, including a LiDAR Velodyne HDL-64E rotating 3D
laser scanner.

Each Velodyne scan in the KITTI dataset is a binary file
that contains a list of points collected in that particular frame.
Each point is represented with four floating point values, where
the first three are used to locate the point in space and represent
the respective values of the point in each coordinate (X, Y,
Z). The last value is the reflectance value, which represents
the power of the received reflected laser beam for that point,
but this is not useful for our purposes. The number of points
in each frame varies, but the authors estimate an average of
120,000 points per frame.

To properly implement and test our solution, we determine
the maximum and minimum values that a point could assume
in each coordinate. The maximum and minimum values for X
and Y were around +80 meters and -80 meters, respectively.
The maximum and minimum values for Z were around +33
meters and -2 meters, respectively.

We execute our tests on a machine with Intel(R) Core(TM)
i7-1065G7 CPU, Intel Iris graphics, and 16 GB memory,
and on Google Colab (timing analysis was performed fully
on our Windows machine. Given that currently marketed
vehicles mount Intel Core, NXP i.MX CPUs and NVIDIA
Drive, AMD Radeon GPUs for infotainment, and ADAS
systems, we find our hardware comparable with automotive
ones). The watermark embedding and extraction code and
the experiments were compiled and executed via the CLion
interface. To evaluate the effectiveness of our approach, we
use the PointPillars [12] object detector, a well-established 3D
object detection algorithm frequently utilized in autonomous
driving and robotics applications. The OpenPCDet framework,
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an open-source framework based on PyTorch for 3D point
cloud object detection tasks, used for the implementation of
a variety of state-of-the-art detection algorithms [26], was
employed to implement the object detector.

B. Imperceptibility evaluation

The purpose of the imperceptibility evaluation is to ensure
that the results of the operations performed on the original
and tampered scans are nearly indistinguishable. To conduct
this test, we employ the object detector to conduct inferences
on both scans and compare the outcomes. We test the results
on the bounding boxes and not on the point cloud directly
to ensure that the modifications generated by our system do
not limit the usability of the data. We calculate the difference
between each value of the bounding box in the original scan
and its corresponding value in the marked scan to carry out the
comparison. We conduct the experiment on 16 distinct scans
of the test set, and the worst results obtained for each bounding
box variable comparison are presented in Table II.

The obtained results indicate that the bounding boxes ex-
tracted from the tampered scan exhibit only slight differences
with respect to the original bounding boxes. The vertices of
the bounding boxes may be shifted by less than 10cm in each
coordinate, while the length of bounding box sides may vary by
a maximum of approximately 10cm. The largest shift observed
for the rotational value of a bounding box is approximately 3
degrees. For the automotive application, the acceptable angular
resolution of short- and long-range LiDAR is respectively 1° at
30 meters and 0.15° at 300 meters [28], [7], obtaining an error
of approximately half a meter, which is significantly higher
than the differences generated by our approach. Nonetheless, if
necessary, a modification of the T parameter could lower such
differences at the cost of time or computation requirements.
For example, for applications that have fewer computation
constraints but require higher precision, such as mapping for
virtual reality, the value of T could be increased to lower the
differences.

C. Timing evaluation

A timing evaluation is a fundamental procedure aimed at
measuring the computational efficiency of the watermark em-
bedding and extraction algorithms in a soft real-time context.
We execute each algorithm multiple times, specifically forty,
and calculate the time required for each operation. We compute
both the average and the worst-case scenario; the results are
presented in Table III.

The results indicate that the watermark embedding and
extraction algorithms are able to meet the required time
constraints, as the LiDAR sensor rotates at a frequency of 10Hz
[11], and thus the watermarking operations must be performed
in less than 0.1 seconds. A modification in the value of the T
parameter, which defines the thickness of each region, would
impact the timing requirements of the algorithm. Depending
on the application, the hardware capabilities of the sender and
receiver, and the real-time requirements of the context at hand,
it is possible to choose the most fitting T value.

D. Object insertion attack evaluation

To evaluate the effectiveness of the proposed approach in
defending against insertion attacks, we develop an implemen-
tation of the attack described in Section III-A. The attack
involves selecting an object in the marked point cloud and
creating a copy of it to be inserted into the same scan at a
different position. This technique was chosen because it is
a reliable form of tampering in which the object detection
algorithm correctly identifies the newly inserted objects. To
perform the attack, the attacker inputs the marked point cloud
into the object detection algorithm used by the ADAS system.
Then, the attacker chooses one of the detected objects and
retrieves the respective bounding box values. The attack takes
the bounding box values and marked point cloud as input,
along with three numerical values indicating shifts in the
position applied to the three different coordinates of points in
the point cloud for the selected object (X, Y, Z). It utilizes
the bounding box information to select points representing
the respective object in space and inserts new points into the
scan that are identical to those points but shifted by the three
numerical values inserted at the start. The output of the process
is the newly tampered scan.

To test the correctness of the proposed approach, we
utilize the tampered scans as input to the watermark extraction
process and consider the tampering as detected when one or
more regions in space corresponding to the inserted object
coordinates are marked as tampered or when, due to an empty
space being filled during tampering, an entire section of the
point cloud is considered tampered.

We conduct the experiment on 14 different scans from
the test set, selecting all visible objects for each scan and
duplicating the object in a thousand different positions within
the scan for a thousand output point clouds. The final results,
as shown in Table IV, demonstrate that the proposed approach
is successful in up to 98% of cases. It is important to note that
these results are dependent on various factors, particularly the
T value, object detector, and LiDAR sensor used to capture
the scan.

TABLE IV: Tampering detection results comparison.

accuracy
insertion attack (T = 10) 0.986
removal attack (T = 10) 0.941
insertion attack (T varies) 0.983
removal attack (T varies) 0.930

E. Object removal attack evaluation

The purpose of the object removal test is to evaluate the
effectiveness of the proposed approach in defending against
removal attacks as described in III-A. To conduct this test, we
follow similar steps to those taken for the object insertion at-
tack. We input the marked scan in the object detector, selected
one of the detected objects, and collected its corresponding
bounding box values. Subsequently, we identify the points in
the point cloud that correspond to the selected object (i.e., the
points within the respective bounding box) and remove them
from the scan. The resulting output is a new point cloud from
which the points corresponding to the selected object have
been removed.
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TABLE II: Imperceptibility test results comparison.

X Y Z L W H R
max difference (T = 10) 0.0872 m 0.0593 m 0.0592 m 0.1154 m 0.0716 m 0.0708 m 0.0528 rad
max difference (T varies) 0.1723 m 0.0951 m 0.0702 m 0.2641 m 0.0724 m 0.0871 m 0.0719 rad

TABLE III: Timing test results comparison.

maximum average
embedding (T = 10) 0.05637 s 0.039231 s
extraction (T = 10) 0.03803 s 0.031571 s
embedding (T varies) 0.04959 s 0.041437 s
extraction (T varies) 0.03745 s 0.031418 s

To test the accuracy of our approach, we employ the
watermark extractor to determine whether at least one region
of space corresponding to the object’s position was marked as
tampered. We perform the object removal test on 25 different
scans from the test set, utilizing all the objects detected in each
scan. There were 68 objects in total. The algorithm detected
64 object removal attacks, resulting in an accuracy of 94%.
It is important to note that the accuracy of the approach may
vary considerably based on the T value, object detector, and
LiDAR sensor used to capture the scan.

V. RELATED WORKS

The problem of detecting tampering with LiDAR scans in
AVs has already been studied in the literature. The choice of
using watermarking instead of other techniques (e.g., encryp-
tion, HMACs) to ensure the integrity of LiDAR point cloud
data stems from the low computational costs of watermarking
and from the capability of watermarking algorithms to recog-
nize the region under attack and not consider the point cloud
data as a single entity while being considered a strong security
mechanism.

The solutions proposed by Bahirat et al. [1] and by Ponto
et al. [21] involve checking for inconsistencies in the point
cloud’s characteristics to detect tampering attempts. Indeed,
an attacker attempting to manipulate the point cloud could
implement changes that are unfeasible, such as inserting points
in a position that is unreachable by sensor beams or inserting
point clouds of new elements with different densities. How-
ever, these approaches guarantee no protection against object
removal and replay attacks and rely on the assumption that the
attacker cannot tamper with the data in a way that is coherent
with the characteristics of an authentic scan.

An alternative solution, proposed by Liu et al. [13], is to
compare the data obtained from LiDAR point clouds with data
obtained from other sensors, such as cameras and radar. If
the object detection results of LiDAR data differ significantly
from those of the other sensors, then the point cloud is con-
sidered to have been tampered with. However, this approach
has limitations, such as the difficulty of identifying which
sensor has been compromised in the event of detecting any
inconsistency. Additionally, the concept of using a broad range
of data to perform an integrity check is inherently flawed, as
these data must be used in conjunction to generate a more
precise perception layer, and redundant information could be
essential in case any sensor is unavailable due to a malfunction.

There are also approaches based on fragile digital wa-
termarking techniques. ALERT (Authentication, Localization,

and Estimation of Risks and Threats), proposed by Bahi-
rat et al. [2], uses a dynamic watermark that changes in
every frame and is derived from the depth map obtained
from stereo data. The depth map information is embedded
in the point cloud watermark, while the metadata needed to
extract the point cloud watermark is hidden in the stereo
data watermark. In ADAS, the first step is to extract the
stereo data watermark and derive the metadata and depth map
information. Then, the metadata are used to extract the hidden
point cloud information, which is subsequently compared with
the generated depth map to verify correctness. The dynamic
nature of the watermark enhances the security of LiDAR data.
However, there are several drawbacks to this approach. Firstly,
the security of LiDAR data is dependent on the security of
camera data. Therefore, a single attack against camera data
could compromise the security of both sensors. Secondly, the
approach is inefficient in terms of computation and timing, as
the point cloud watermark extraction requires the extraction of
the camera watermark first, rendering the approach unfeasible
for real-time applications. Lastly, the approach does not offer
protection against replay attacks, as an attacker could simply
resend the same corresponding camera and point cloud frames
to break security.

An alternative approach, described by Changalvala et
al. [3], proposes a technique based on 3D Quantization Index
Modulation (QIM) data hiding [5], [6]. The method involves
dividing the point cloud space into fixed-size voxels and
quantizing the points inside each voxel to a single point that
is one of its vertices. All points in the point cloud that fall in
a given voxel are approximated to a single point, positioned in
a specific location inside the region, depending on the hidden
value to hide. Specifically, each voxel is imagined to contain
a cube with eight vertexes. During the watermark embedding
phase, the positions of the vertices are then mapped to prede-
fined positions inside the respective voxel to hide information.
Depending on the vertex in which the approximated point
is positioned, it is possible to embed 3-bit long information
in each voxel. On the receiver side, the same quantization
step is performed, and the hidden information is extracted
by analyzing the displacement of vertices with respect to the
original position. This information is then compared with the
known one to verify the integrity of the scan and locate any
tampered region.

A final solution, described by Long et al. [14], relies on
two separate operations: watermark verification and similarity
detection. The authors execute similarity detection between
two consecutive LiDAR scans to detect the non-overlapping
areas of the new scan. The newly arrived LiDAR scan is
compared with the previous one using Hausdorff distance [23].
Only regions that have changed more than a certain threshold
are chosen to embed the watermark.

The watermarking process involves dividing the point cloud
space into concentric adjacent spherical rings, with the LiDAR
sensor at the center. Each spherical ring corresponds to a
single bit of hidden information obtained by analyzing the
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position of the average radius of points inside it. For each
region, the points chosen in the previous step that fall in such
region are moved towards or away from the center point of
the spherical ring to embed the watermark. The watermark
embedding process is based on adjusting the average radius of
points within each ring by applying a shift in points’ position
to embed a hidden bit each. In the extraction phase, the same
space division is applied, and by inspecting the value of the
average radius of points in each ring, it is possible to extract
the embedded bit of information.

A. State-of-the-art comparison

While we report a tabular comparison with the afore-
mentioned literature in Table V, we focus our comparison
on the two works in the state of the art, to the best of
the authors’ knowledge, that approach LiDAR data tampering
detection through watermarking without requiring additional
data sources: Changalvala et al.’s 3D data hiding technique [3]
and Long et al.’s spherical rings technique [14].

On computation and timing. The authors of [3] do not
execute a timing analysis, while the authors of [14] report an
average of 0.01 s for embedding and 0.096 s for extraction and
detection, similar to our results. More interestingly, changing
the dimension of the region under analysis (in order to increase
the accuracy and imperceptibility of the algorithm) leads to dif-
ferent computation costs: assuming that the computation cost
for a single region is approximately similar, in our approach,
changing the dimension of the regions linearly increases the
number of regions under consideration. While [14] behaves
similarly, [3] has a cubic increase in voxels in relation to their
side dimensions, as shown in Table V.

On region tampering detection capabilities. The authors
of [3] do not explicitly report detection rates, while the authors
of [14] report an accuracy of 0.93 to 0.98 and a false positive
rate of 0.08 to 0.31, depending on the driving conditions. Our
approach has similar accuracy but has generated 0 false pos-
itives throughout our evaluation. It is relevant to understand,
on top of the detection rates, the capabilities of each approach
to detect the areas that have been tampered with. In the case
of [3], given that each voxel is evaluated by itself, in the ideal
conditions, the algorithm should be capable of delimiting the
region under attack with an error of under a voxel. In the case
of [14], however, the detection process is executed on each
spherical ring; hence, in the best-case scenario, the defense
mechanism is capable of defining a range of distances from
the LiDAR sensor at which the attack was implemented. In
our approach, a modified point affects three regions, one per
axis. In the best-case scenario, where all three regions change
the watermark value, the tampered area is delimited by a cube
of height T. In case only one of the regions changes value,
the detected area is a cuboid. It is important to note that an
attack usually modifies multiple points affecting many regions,
increasing the ease of delimiting an area of attack.

On the effectiveness against strong attackers. A water-
marking technique for tampering detection must be effective
even against strong attackers, where for strong, we define an
attacker that has knowledge of the defense system and its
functioning (while not knowing the hidden message to embed)
and significant computational capabilities. We have found two

vulnerabilities in the techniques presented in the state-of-the-
art that make them avoidable by a strong attacker.

In the case of [3], the vulnerability lies in the lack of
handling of empty voxels. While the authors do not explicitly
mention how they handle empty voxels, two approaches are
available, as we mentioned in Section III-C: if the algorithm,
upon encountering an empty voxel, ignores it and skips the
related hidden information, then the attacker can easily imple-
ment object removal attacks. If the algorithm, instead, does
not skip the related information, it is trivial for the attacker
to recover it from the first successive non-empty voxel and
repeat this process for the whole injection to empty a number
of voxels equal to those created to balance the total hidden
information in the point cloud. This vulnerability highlights
one of the strengths of our approach. Since each point is
related to three different regions, each with its own hidden
information, although the attacker may recover the information
embedded in a specific region, he cannot modify it without the
risk of modifying the rest of the regions affected by the change.

In the case of [14], the vulnerability lies in the single
dimension of the detection process. In fact, since the water-
mark is embedded in the distance of a set of points from the
center point of the spherical ring, the attacker can theoretically
move the points where he prefers as long as he maintains the
distance of each point from the center of the ring; for example
moving them from in front to behind the vehicle, to remove an
obstacle, or vice-versa. Again, this vulnerability highlights the
strength of our approach of using multiple dimensions, which
do not enable the attacker to hide in the dimensions that are
not evaluated by the detection approach.

VI. CONCLUSIONS

In this paper, we proposed a novel solution to the problem
of LiDAR data tampering. Our solution involves embedding
a fragile watermark in the LiDAR point cloud to recognize
the areas of the point cloud that have been tampered with.
We validated our approach, demonstrating its feasibility in
real-world scenarios by analyzing its timing requirements and
imperceptibility. We evaluated its effectiveness in detecting
injection and removal attacks, obtaining promising results.
Finally, we compared our work with current state-of-the-art
LiDAR watermarking approaches, discussing strengths and
shortcomings. Future works will focus on better evaluating the
detection capabilities of our approach, specifically focusing on
delimiting the tampered areas in sub-optimal scenarios.
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