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Abstract—The evolution of vehicles has led to the integration
of numerous devices that communicate via the controller area
network (CAN) protocol. This protocol lacks security measures,
leaving interconnected critical components vulnerable. The ex-
pansion of local and remote connectivity has increased the attack
surface, heightening the risk of unauthorized intrusions. Since
recent studies have proven external attacks to constitute a real-
world threat to vehicle availability, driving data confidentiality,
and passenger safety, researchers and car manufacturers focused
on implementing effective defenses. intrusion detection systems
(IDSs), frequently employing machine learning models, are a
prominent solution. However, IDS are not foolproof, and attackers
with knowledge of these systems can orchestrate adversarial
attacks to evade detection. In this paper, we evaluate the effective-
ness of popular adversarial techniques in the automotive domain
to ascertain the resilience, characteristics, and vulnerabilities of
several ML-based IDSs. We propose three gradient-based evasion
algorithms and evaluate them against six detection systems. We
find that the algorithms’ performance heavily depends on the
model’s complexity and the intended attack’s quality. Also, we
study the transferability between different detection systems and
different time instants in the communication.

I. INTRODUCTION

Modern vehicles heavily depend on Electronic Control
Units (ECUs) for various safety-critical functions, ranging
from cruise control to infotainment. These ECUs communicate
using the CAN bus, the standard for in-vehicle communication.
A significant security concern is the lack of encryption and
authentication in the CAN protocol, making it vulnerable
to attacks. This issue was prominently highlighted in the
2015 by Miller and Valasek, who remotely controlled a Jeep
Cherokee [21], [22]. Additionally, vehicles now connect with
external networks via technologies such as Bluetooth and 5G,
increasing exposure to external threats. A common solution to
contrast these threats are Intrusion Detection Systems (IDS).
IDSs monitor bus traffic to detect potential intrusions, mainly
through: frequency-based detectors, analyzing patterns like
packet timing or sequence, and payload-based detectors, ex-
amining packet content for irregularities. Machine Learning
(ML) models are increasingly employed for this purpose due
to their ability to handle large, diverse data sets, as discussed in
Rajapaksha et al. and Longari et al. [28], [19]. However, these
ML systems are vulnerable to adversarial examples [31], de-

liberately crafted inputs that cause misclassifications. Current
research on adversarial threats, however, mainly focuses on
computer vision, with relatively few specialized studies in the
automotive sector.

This paper aims to ascertain the feasibility of existing
adversarial evasion attacks against automotive IDSs; specifi-
cally, we aim to test the resilience of relevant deep learning
(DL) models against gradient-based attacks adapted to the
automotive domain. To this end, we hypothesize a knowledge-
able malicious actor, capable of impersonating an electronic
control unit (ECU) on the network, attempting to exploit these
advantages by morphing his predefined attack sequence to
simultaneously inject it and remain undetected. The attacker
iteratively queries a copy of the target IDS, if it does not detect
the current intrusion, they can proceed with the injection,
otherwise, they apply a perturbation according to one of three
novel algorithm variants (two derived from basic iterative
method (BIM) [13] and one from [23]) and repeat this process.

We conduct our experiments on a dataset of real CAN
traffic augmented with synthetic attacks to explore the effec-
tiveness of the existing evasion attacks against payload-based
IDSs, considering an attacker with different capabilities and
knowledge of the target IDS under attack. In particular, we test
a white-box scenario where the attacker has full knowledge
of the target IDS, a grey-box scenario where the attacker
has no access to the target IDS but can exploit a surrogate
model trained on the same dataset, and finally we evaluate
the feasibility of precomputing the adversarial samples to
inject them when given requirements on bus traffic are met.
In addition, we assess the effectiveness of the adversarially
perturbed attacks on the vehicle by comparing the shape of
the original and adversarial attacks signals. We find evasion
possible but challenging in all scenarios, given the domain
constraints and the need to keep the temporal coherence of
the original packets through the perturbations. Most notably,
we also discover that when attacking a complex model with
slow algorithm convergence, a white-box attack could perform
worse than a transfer attack originally targeting a simpler
substitute model.

Our contributions are the following:

• We design and implement three variants of the popular
BIM [13] and DeepFool [23] evasive perturbation
algorithms, customized to handle CAN signals;

• We implement and benchmark six different IDSs
based on state-of-the-art designs against a publicly
available dataset;
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• We evaluate the transferability and re-usability of the
newly introduced adversarial techniques to explore the
feasibility of such attacks under different conditions.

II. CAN SECURITY PRIMER

The CAN protocol [11] is the industry standard for intra-
vehicle communication. The significant features that led to
its widespread use are low cost, high interference resilience,
robust error detection, and handling of many short messages
with a multi-master system suited for real-time applications.
CAN packets are up to 108 bits long and have fixed structure.
Only the ID field (11 or 29 bits), identifying the sending
interface, and the Data field (up to 64 bits), containing the
actual payload of the message, are relevant for the purpose of
this paper. In standard CAN traffic, packets with a given ID are
always sent by the same ECU and carry information regarding
the same signals. They are commonly sent periodically by the
ECU with updated signal values. We refer the interested reader
to the CAN standard for further details [4].

Security challenges. CAN specification is over 30 years old
and does not implement any intrinsic security mechanism: it
does not natively support neither encryption nor authentication,
it lacks defenses against remote access attacks and, nowadays,
it handles an unforeseen variety of data related to the move-
ment, position and general status of the car [1]. An attack can
take place after a malicious actor has physical access to the
on-board diagnostics (OBD) port or remote access through any
vulnerability in the multitude of connected applications that
run on modern cars. Common attack categories are injection,
drop, and masquerade attacks.

Injection attacks consist in sending CAN data frames with
crafted ID and payload. Through injection attacks, it is possible
to implement a denial of service of the network by flooding it
with high priority messages or to implement data manipulation
attacks by spoofing ID and payloads of other ECUs.

Drop attacks require the attacker to have injection capabilities,
but also to either exploit bootloops or diagnostic features, or
to have control of the bus at bit level [8], [17], and consist in
forcing an ECU to stop sending its own CAN packets.

Masquerade attacks require the attacker to be capable of
implementing both drop and injection attacks, and consist in
replacing an existing packet with one with the same ID but
with a modified payload, thus appearing as the same packet
with different signal values. This means that detection based
on frequency cannot recognize such attacks. The necessity
to mask injection attacks stems from the presence of both
the tampered and the legitimate packet on the bus, which -
especially for safety-related tasks - leads to the ECU discarding
both packets and ignoring the command [22].

III. RELATED WORK

Intrusion detection is a wide research topic deeply studied
in the past literature [9]. We refer the reader to [14] for an
overview of automotive IDSs. In this section, we focus on
relevant works in the adversarial machine learning field.

Adversarial machine learning is the branch of machine
learning (ML) that studies attacks against ML algorithms.

Goodfellow et al. [31] proved that it is possible to induce
a classification error by applying small perturbations to the
input of a deep learning model in many realistic settings;
inputs crafted in this way are called adversarial examples [10].
These techniques could be exploited by a malicious attacker
in several ways and with different goals [3]: (a) Exploratory
attacks are an attempt to investigate a model that appears
as a black-box, probing its response to different inputs to
extract as much knowledge as possible, (b) Evasion attacks
are the most common and were the first to be investigated.
The adversary tries to adjust the inputs they want to inject
to cause a misclassification. (c) Poisoning attacks are any
kind of contamination of the training data. In many real-
world cases, this implies evading some check, generally by
human experts or by a previous version of the system un-
der attack, to cause a mislabeling when included in a later
training dataset. This research field, originated from the field
of computer vision, has also been applied to security-critical
applications dealing with network or transaction monitoring
and malware recognition [30], [25]. Previous research has
shown interesting properties of adversarial examples: Papernot
et al. [26] showcase the transferability of adversarial attacks
by training an oracle – a substitute network – to attack instead
of the actual target. Longari et al. [16] design such an oracle-
based approach for our domain of interest, developing a greedy
algorithm for a black-box adversarial attack on automotive
IDSs; however, this work resorts to Hamming distance to
evaluate the distortion introduced in the perturbed packets,
not fully capturing the actual semantic distance and do not
consider attackers with different degrees of knowledge of the
target system. An immediate way to improve the resilience
of DL models in supervised or semi-supervised settings is
adversarial training, i.e. the inclusion of labeled adversarial
examples in the training set [33]. Another solution is to select
resilient input features, Papernot et al. [27] suggest training
a first model and then approximating it with a second one,
made more resilient thanks to the knowledge deriving from
the confidence scores and class similarity insights produced
by the first. In network intrusion detection, Li et al. [15]
attack the in-vehicle Ethernet monitored by an long short-
term memory (LSTM) IDS classifier [12] with fast gradient
sign method (FGSM) and BIM, resulting in a recall score
of at most 2%; then the authors retrain the LSTM including
adversarial examples, thus approaching the baseline attack-free
score (∼ 98%). Similarly, Sauka et al. [29] performs several
tests against FGSM, projected gradient descent (PGD), and ,
successfully mitigating the attack through adversarial training.

IV. MOTIVATION AND THREAT MODEL

In the automotive domain, the implications of machine
learning models can directly influence the safety, efficiency,
and operational reliability of vehicles. With the rapid integra-
tion of AI technologies for intrusion detection, autonomous
driving, predictive maintenance, and personalized in-car expe-
riences, the security of these models has become a pressing
concern. Adversarial machine learning attacks pose a unique
threat to these systems, potentially disrupting their functioning
and leading to dire consequences. Studying adversarial ma-
chine learning attacks in this context is, therefore, a critical
necessity, enhancing our understanding of potential vulnera-
bilities and, consequently, contributing to building safer, more
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reliable automotive systems. More precisely, our interest is
to analyze the response of modern IDSs in the worst-case
scenario of a capable and knowledgeable attacker in order
to understand the robustness of existing solutions. From an
offensive standpoint, the possibility to algorithmically produce
evasive examples has an undeniable appeal and would repre-
sent a critical vulnerability in DL models. As progressively
more properties of evasive examples emerge in computer vi-
sion applications, our goal is to understand their transferability
to the automotive domain.

This paper advances prior techniques for creating adversar-
ial examples on CAN and addresses unique challenges in its
specific field. Unlike previous studies where adversarial exam-
ples are produced offline without considering the ongoing data
stream, this study focuses on the online creation of adversarial
samples. These samples must align with the requirements of
the vehicle data stream, meaning they should adapt to the
vehicle’s dynamics. Additionally, they should retain charac-
teristics of typical automotive cyber-attacks, which usually
involve several harmful packets to be effective. Essentially,
this study focuses on developing stealthy attacks that take into
account the history of transmitted data up to the point of attack
and involve the use of multiple disguised attack packets.

Attacker Model. We consider a single CAN channel moni-
tored by a network IDS, where the intent of the attacker is
to inject a sequence of malicious packets to achieve a range
of effects while avoiding detection. The attacker has either
white- or grey-box knowledge of the target IDS1. With full
white-box access, the attacker has full knowledge of the IDS:
model architecture, training data, and parameters. The attacker
can also compromise any ECUs on the bus. Thus, given the
lack of inherent security mechanisms, they can inject arbitrary
messages at any given instant and can intercept inbound
and outbound communications, effectively eavesdropping the
whole traffic on the channel. In the grey-box scenario, the
attacker has no access to the target IDS but has knowledge
of the training data and exploit surrogate machine learning
models trained on the same dataset. In brief, the adversar-
ial strategy consists in perturbing the predetermined set of
objective malicious sequences with our proposed algorithms,
trying to morph existing samples into evasive examples. For the
purpose of this evaluation, we make the following assumptions:

1. We assume an attacker with complete knowledge of the
system and the data transmitted on CAN, that - given the ex-
pected behavior of the nodes - can predict the packet sequences
being generated by the victim node, and query multiple times
the oracle IDSs in advance to obtain the adversarial sample
sequence. We provide an evaluation of the realism of such
scenario in Experiment VI-F.

2. The attacker has complete control over the compromised
ECUs, impersonating it. This is not unreasonable to assume
given the wide attack surface and the established methods to
perform complex attacks on CAN;

3. Since car manufacturers are usually very secretive about
the semantics of CAN messages, we will exploit reverse
engineering methods to extract signals in the traffic and treat
them as the intended values.

1Black box approaches are already discussed in [16].

V. APPROACH

In our approach, the attacker starts with an initial CAN log
containing some unperturbed injected messages as a baseline,
then her actual strategy is to morph these intended sequences
to be evasive by applying repeated modifications. An evasion
attack is the act of finding a subtle perturbation of the input to
cause its misclassification; we can formalize it more rigorously
as the optimization problem of finding the adversarial sample
x̃, undetected under the discrimination function F (x) while
minimizing the perturbation δ(x̃, x):

x̃ = argminx∗ [δ(x∗, x)] s.t. F (x∗) = 0 ∧ x∗ ∈ Dx (1)

In almost every application, the produced x̃ also needs to
satisfy some domain constraint (x∗ ∈ Dx). For example, in
the computer vision domain, it is customary for x̃ to contain
pixel intensities in the integer range [0, 255]. On the other
hand, when dealing with tabular data, features become inter-
connected and heterogeneous, with an intricate valid problem
space, and as a consequence finding a suitable adversarial
perturbation becomes harder [2], [7].

The algorithms we propose are derived from well-known
gradient-based techniques originally designed for computer
vision; the common rationale behind these kinds of techniques,
namely fast gradient method (FGM), BIM [13], and [23], is
to leverage the backpropagation algorithm against the model
under attack. The intuition is to push the original input
towards areas in the problem space with lower confidence, thus
approaching and eventually crossing the decision boundary by
exploiting the gradient ascent of an arbitrary loss function.
As it is uncommon for a malicious actor to have access to
the model for gradient computation, researchers developed
black-box techniques that attempt to fool a victim via iterative
queries aimed at approximating the discriminator in some
measure, like in the zeroth order optimization (ZOO) [6] and
HopSkipJump [5]. Figure 1 illustrates a single iteration of the
process. At each iteration, the chosen algorithms try to find an
optimal additive term and produce xt+1.

A. BIM-based algorithms

The original BIM iteratively applies the FGSM perturbation
described by (2).

xt+1 = clipX(xt − ϵ
∇xL(w, xt)

||∇xL(w, xt)||
) (2)

From a geometric point of view, this method produces a
perturbation directed towards a maximum of the loss function
L via approximation of the gradient ∇xL and constrained by
||xt+1 − xt||∞ ≤ ϵ, depending on the hyperparameter ϵ.

We implement two slightly different variants of the BIM
attack, namely the step decay BIM and the l2 BIM; both
versions of the algorithm include an adjustment procedure to
restrict the resulting value xt+1 to stay in the problem space.
We achieve this by clipping and rounding to the nearest integer
so that the features can be effectively represented in the actual
underlying bit vector. Besides this modification, the step decay
method differs from the simple BIM in the parameter ϵ: in
our implementation, it has not a fixed magnitude but rather
a geometrically decreasing value according to the update rule
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Fig. 1: Scheme of the attacker’s approach.

Algorithm 1: Proposed BIM step decay variant
begin

t← 0;
step← ϵ;
while t < max iter do

score← get_score(ids model, sample);
grad← gradientsample(score);
pert← step · sign(grad) ; // (2)
pert← −pert · tamper mask ; // minimizing
sample← clipmin,max(sample+ pert);
sample← round(sample);
step← step · decay ; // step decay
if get_score(ids model, sample) < threshold then

return sample ; // sample is now evasive
end
t← t+ 1;

end
return None ; // Abort computation

end

ϵt+1 = ϵt ∗ ω, introducing the hyperparameters ϵ0 and ω. The
reason for the introduction of step decay is that, similarly to
what happens with the learning rate decay during the training
of DL models [34], it may allow to reduce the number of
iterations by avoiding oscillation around an evasive point in
case of a highly non-linear decision boundary and big ϵ values,
possibly also resulting in a smaller perturbation.

xt+1 = clipX(xt − ϵ
∇xL(w, xt)

||∇xL(w, xt)||2
) (3)

Conversely, the l2 BIM simply uses the Euclidean norm
instead of the absolute value for the FGSM equation, resulting
in (3). In this case, ϵ quantifies the module of the perturbation
vector, which now completely orients itself according to the
gradient and constitutes the tighter bound ||xt+1 − xt||2 ≤ ϵ.
We deem this approach more suitable in our case - given
the higher dimensionality and feature inter-correlation in our
domain of interest - but also in general when dealing with
diverse features, as they apply small perturbations along all
dimensions. In both implementations, we choose as loss func-
tion the opposite of the anomaly score.

B. DeepFool-based algorithm

[23] is another iterative method that approximates the IDS
as an affine classifier w ·x+b = F (w, x), then the perturbation
δ tries to push the sample beyond the affine decision boundary,
which we assume to be the 0 plane for F .

xt+1 = xt + (1 + ϵ) · (−F (w, x)
∇xF (w, xt)

||∇xF (w, xt)||22
)) (4)

(4) illustrates the original computation, notice the over-
shooting factor 1 + ϵ: since the algorithm can’t converge

Algorithm 2: Proposed l2 BIM variant
begin

t← 0;
step← ϵ;
while t < max iter do

score← get_score(ids model, sample);
grad← gradientsample(score);
pert← step · grad

||grad||2
; // (3)

pert← −pert · tamper mask ; // minimizing
sample← clipmin,max(sample+ pert);
sample← round(sample);
if get_score(ids model, sample) < threshold then

return sample ; // sample is now evasive
end
t← t+ 1;

end
return None ; // Abort computation

end

Algorithm 3: Pseudocode for the DeepFool variant
begin

t← 0;
step← ϵ;
while t < max iter do

score←
get_score(ids model, sample)− threshold;

grad← gradientsample(score);
pert← score·grad

||grad||22
; // (4)

pert← (1 + ϵ)pert · tamper mask ;
// projection

sample← clipmin,max(sample+ pert);
sample← round(sample);
if get_score(ids model, sample) < 0 then

return sample ; // sample is now evasive
end
t← t+ 1;

end
return None ; // Abort computation

end

to a point precisely on the decision boundary, we attempt
to cross it by a small value ϵ instead - according to the
approximation - and cause the objective misclassification. In
our case, we do not deal with a sign-dependent decision value
like F (w, x), however, we can consider the reconstruction
error L(w, x) as a classification confidence score and apply
a shift by the thresholding value θ to obtain an analogous
zero-centered boundary F (w, x) = L(w, x)− θ. We apply the
same adjustment procedure to obtain valid samples that we
use for the BIM algorithms. This may hinder the algorithm
convergence; however, we mitigate this phenomenon by testing
different overshooting magnitudes. According to the evaluation
of the original paper, albeit more computationally complex,
should terminate in fewer iterations than simple BIM. The
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input windows contain malicious and legitimate packets for all
the models under test except the feed-forward neural network
(FFNN). Therefore, we apply the computed perturbation only
on the injected packages at each step via a simple projection
of the computed perturbation matrix. Also, note how the
algorithm interacts with the predictive detection approach: the
attacker morphs the target output, i.e., the most recent packet,
to be closer to the prediction. In case of successful evasion, the
input window will then slide to include the generated packet,
influencing the classification.

VI. EXPERIMENTAL EVALUATION

We aim to answer the following research question: What is
the effectiveness of existing adversarial evasion attacks against
payload-based automotive IDSs?. In the first experiment, we
evaluate a scenario in which an ideal attacker has full knowl-
edge of the target IDS, of the nodes behaviour, and the data
transmitted on CAN (i.e., white box scenario). Consequently,
they can predict the network traffic flow being generated by
the victim node and coherently inject attack sequences. This
experiment allows us to explore the effectiveness of such
attacks in the worst-case scenario. In the second experiment,
we assess the effectivness of the adversarially perturbed attacks
on the vehicle by comparing the shape of the original and
adversarial attacks signals. In the third experiment, we restrict
the assumptions on the attacker’s knowledge; they have no
access to the target IDS, but they can exploit a surrogate
model trained on the same dataset to generate evasive samples.
In other words, we evaluate the transferability of our attacks
in a grey-box scenario. Finally, we restrict the assumption
of the attacker’s computational capabilities. To emulate the
physical real-time constraints, we precompute the evasive
payload sequence allowing an attacker to inject it entirely when
given requirements on bus traffic are met.

A. Experimental settings

Signal extraction and preprocessing. As suggested in previ-
ous works [35], [19], the packet payloads undergo a heuristic
analysis, derived with slight improvements from the reverse
engineering of automotive data frames (READ) method [20].
This procedure allows us to identify bit ranges with distinct
semantic meanings. The analysis exploits the rate at which
the bits sent by a ECU change to infer information on
the fields, such as discriminating adjacent bits that act as a
counter or binary flags that are not tightly correlated with
neighbor bits. We process the attack-free data and identify five
range categories, summarized in Table I. We confirm previous
research results [18] related to using only physical and binary
ranges as features: this has shown to bring benefits in terms of
both reconstruction performance and model complexity in all
our baseline models when compared with directly feeding the
vector of non-constant payload bits. Specifically, we parse the
physical signals as integers and normalize them into the [0, 1]
interval by dividing each sample by the largest representable
number with the corresponding bit vector.

Dataset. For our evaluation, we use the C-1 ReCAN dataset,
containing real attack-free traffic from a Giulia Veloce car [35].
It comprises about two hours of city and highway driving logs.
However, it lacks instances of message injection. We generate

TABLE I: Bit ranges with semantic meaning identified

Type Description
Constant ranges Bits that stay constant across all considered traffic and are

excluded from the final feature vector representing the frames.
Physval ranges Sequences of bits that contain some kind of values, usually

corresponding to a physical signal like speed or wheel position.
Binary ranges Ranges containing an isolated, non-constant bit, interpreted as a

logical flag.
CRC ranges Application-level checksums for message integrity, detected

through their Gaussian random behavior.
Counter ranges Application-level counters, increasing by one with each subse-

quent frame.

synthetic attacks on the ReCAN logs through the CANtack
tool [24], performing different types of message injection to
obtain the following separate augmented sets:

Injection-replay attack. It adds packets to the flow of mes-
sages with an injection rate of 0.4 – i.e., the malicious payloads
are injected two and a half times slower than the average inter-
arrival time of normal frames. The payloads are sniffed from
previous legitimate sequences sent by the compromised ECU.

Full replay dataset. It is a masquerade replay attack: as
before, we take the injected payload from previously sniffed
traffic. This time, however, there are no packets added to the
communication. Instead, the tool tampers with the data that
would be normally sent to substitute the desired malicious
content. All the following attacks in this list replicate such
an impersonation strategy.

Continuous change dataset. A variant of the full replay attack
that gradually modifies the bits of one signal in the packets to
reach a (randomly) predetermined value. For each sequence of
25 packets, this strategy tries to seamlessly bring one of the
identified 9-bit fields to represent an arbitrary value.

Change to minimum dataset. It is a variant of the previous
one: instead of a random goal value, the target final signal is
a string of zero bits.

Fuzzy dataset. Fuzzing is a random attack whose purpose is
usually to probe and reverse engineer the victim system. All
the cyclic redundancy checks (CRCs), counters, and constant
bits are ignored in this implementation. The others, belonging
to physical and binary signals, are changed at each packet with
a pseudo-random value.

All the attacks are replay attacks at their core, but some
additionally tamper the sniffed signals according to a specific
strategy; moreover, all attacks consist of 10 sequences of
25 packets each, starting between 20 and 25 seconds from
the first timestamp in the dataset. In every dataset, separate
sequences are always over one minute apart, and the attacks
are generated independently for each considered CAN ID;
we choose 12 IDs following the reasoning and experiment
allocation of CANova [24]. We set the threshold value at a
percentile of the scores obtained from the thresholding set; we
chose the 98th percentile for all models with a false positive
rate (FPR) of at most 4.7%.

Evaluation metrics. In our experiments, we mainly make use
of the two most common detection metrics, true positive rate
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(TPR) and area under the curve (AUC)2, and, to better capture
the magnitude of the adversarial perturbations, we introduce
the aggregate perturbation (AP) metric that measures the mean
maximum perturbation of a single field in the packet. We
define the AP metric as shown in (5) , where N is the total
number of malicious packets in the test set, xi is the array
of features in the original i-th malicious packet, and x̃i is the
array of features in the corresponding adversarial packet. Note
that the term ||xi − x̃i||∞ is the infinity norm representing
the maximum variation introduced in a single feature of the
i-th packet to make it evasive. We compute this metric from
normalized values; hence it is always in the range [0, 1].

AP =

∑N
i=1||xi − x̃i||∞

N
(5)

B. Selected intrusion detection systems

Given that attacks that alter the frequency are easy to
detect, an adversarial attacker will implement masquerade
attacks that do not alter frequency of the network stream.
Therefore, to assess the effectiveness of evasion attacks against
IDSs in the automotive field, we select six commonly used [16]
architectures of payload-based anomaly detector.

FFNN. A one-to-one autoencoder with two fully connected
layers with 16 units each; note that this architecture is blind
to replay attacks as it considers a single packet at a time,
however, it is a simple solution to detect more obvious payload
tampering and is included to provide a baseline reference.

CANdito [18]. A window-to-window symmetrical autoencoder
with two fully connected (128 units each) and two LSTM
layers (64 cells each), it is the most complex among the
implemented networks.

LSTM predictors [32]. Two window-to-one predictors, we
implement a short variant with just two LSTM layers having 32
cells each, and a long variant with four LSTM layers, having
symmetrically 64 and 16 cells.

GRU-based predictors. Two window-to-one predictors anal-
ogous to the short and long LSTM variants, employing the
more lightweight gated recurrent units (GRUs) instead.

A final sigmoid-activated dense layer with one unit per
input feature follows each individual architecture to provide
an output with the correct dimensionality. While the predictor
models produce an anomaly score for one packet at a time,
with a rolling input window, the CANdito autoencoder re-
constructs the whole window, operating with non-overlapping
input sequences. We choose a window size of 40 (or 39 plus
one predicted frame for the predictor models).

C. Experiment 1: Ideal attacker

In this experiment, we compare the performances of all
six IDSs over all the available attacks, first establishing a
baseline and then morphing all the malicious frames with
each of the three proposed algorithms. Tables II, III and IV
show the aggregate results for the generated full replay and
continuous attack on the ReCAN dataset, meaning that the

2Note that we do not evaluate false positives since they are not affected by
evasion attacks.

shown AUC and AP values are an average over the 12 IDs.
The full replay attack (see Table II) is the ”hardest” among
the proposed scenario for the detectors: since the packets come
from legitimate traffic, the system can only leverage the seman-
tic discontinuity in the flow of messages for its classification.
In this scenario, the long predictive model performs slightly
worse than the respective short version, while CANdito widely
outperforms the other architectures in both baseline recall and
resilience to adversarial evasion attempts. This smaller number
of evasion points corresponds to smaller perturbations: we shall
discuss how the algorithms succeed for many input samples
that were already near the decision boundary. As expected,
the continuous change (see Table III) and change to minimum
attacks 3 bear almost identical evasion rates, with the former
being slightly harder to detect as a baseline (with a difference
of about 5% recall for the FFNN, 1% recall for CANdito
and 3% recall for the predictive models). In these attacks, the
intruder replays previous packets while tampering with just one
signal field – with a minimum length of 9 bits –, therefore,
the payload becomes progressively easier to detect the longer
the attack continues. Unfortunately, this behavior also causes
the proposed algorithms to strongly perturb that target signal,
often resulting in an example that is very similar to the
corresponding packet in the attack-free scenario, meaning that,
while the evasion is successful, the intended effect is lost. The
l2 BIM requires double the expected maximum perturbation
than in the previous scenario, making the step decay variant
preferable in many attack settings even thought it has the worst
performance in terms of TPR and AUC reduction. Despite
achieving good evasion rates in all the tests, the algorithm
also produced unfeasibly high perturbations for the predictor
models, being more suitable for the complex CANdito design.
In the injection replay scenario (see Table IV), the attacker
interleaves additional replayed packets to the normal traffic
so that the content is analogous to the full replay sequences,
but discontinuities are present at each injection. This is the
only attack against which the predictors outperform CANdito
in the baseline test; the experiment also stands out since the
long LSTM architecture results significantly more vulnerable
to adversarial perturbations than the other predictive models.
Here the step decay algorithm is preferable since it almost
matches the evasion rate of the other algorithms on the many-
to-one models while keeping the AP one order of magnitude
lower. The fuzzy injection is predictably the easiest to detect
due to the random generation of the malicious packets, with
the minimum AUC being 0.995 for the FFNN; this also makes
finding a suitable perturbation harder since the average packet
contains signals far from their regular distribution. The intent
behind the fuzzing attack is often to investigate the interaction
with the IDSs rather than to produce a specific effect.

D. Experiment 2: Perturbation effectiveness

Figure 2 shows some exemplary adversarial behaviors to
provide a qualitative assessment of the effectivness of the
adversarially perturbed attacks on the vehicle by comparing
the shape of the original with the adversarial attacks signals
In the plot, the dotted lines represent the intended content of
an injected sequence while the blue lines are the results of the

3Due to page limits, we do not report these results given the similarity to
the continous change ones.
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TABLE II: Full replay attack evasion results.

FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

TPR 0.0290 0.6615 0.3950 0.3857 0.3333 0.3030

B
as

e

AUC 0.5085 0.8556 0.7646 0.7429 0.7390 0.7165
TPR 0.0113 0.6250 0.1883 0.1347 0.1680 0.1577
AUC 0.5063 0.8540 0.6680 0.6394 0.6340 0.6631

l2 B
IM

AP 0.0085 0.0023 0.1165 0.1142 0.1082 0.1098
TPR 0.0100 0.6563 0.1837 0.1750 0.1780 0.1637

A
lg

or
ith

m
AUC 0.5063 0.8550 0.7489 0.7402 0.7412 0.7372

de
ca

y
B

IM

AP 0.0159 0.0159 0.0378 0.0402 0.0398 0.0368
TPR 0.0257 0.5729 0.1720 0.1610 0.1677 0.1707
AUC 0.5084 0.8532 0.6898 0.6516 0.6843 0.6946

D
F AP 0.0049 0.0076 0.4736 0.4835 0.4828 0.4990

TABLE III: Continuous change attack evasion results.

FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

TPR 0.6617 0.9196 0.8103 0.8047 0.7970 0.8023

B
as

e

AUC 0.8385 0.9774 0.9488 0.9537 0.9484 0.9509
TPR 0.3077 0.9146 0.3743 0.3367 0.3573 0.3743
AUC 0.7851 0.9773 0.8560 0.8312 0.8444 0.8560

l2 B
IM

AP 0.1177 0.0029 0.1921 0.2033 0.1821 0.1948
TPR 0.3903 0.9146 0.5730 0.5880 0.5143 0.5670

A
lg

or
ith

m

AUC 0.8035 0.9772 0.9312 0.9349 0.9290 0.9352

de
ca

y
B

IM

AP 0.0401 0.0098 0.0526 0.0524 0.0526 0.0528
TPR 0.4203 0.8844 0.3093 0.3113 0.3200 0.3350
AUC 0.8239 0.9764 0.8622 0.8634 0.8485 0.8745

D
F AP 0.1404 0.1477 0.4772 0.4974 0.4852 0.5112

TABLE IV: Injection-replay attack evasion results.

FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

TPR 0.0303 0.7273 0.7860 0.7777 0.7783 0.7857

B
as

e

AUC 0.5114 0.9001 0.9273 0.9180 0.9246 0.9210
TPR 0.0083 0.7193 0.4467 0.3783 0.4453 0.4330
AUC 0.5083 0.8988 0.8465 0.8221 0.8512 0.8433

l2 B
IM

AP 0.0136 0.0085 0.0979 0.1222 0.1046 0.1232
TPR 0.0000 0.7246 0.4580 0.4417 0.4457 0.4553

A
lg

or
ith

m

AUC 0.5056 0.8998 0.8883 0.8784 0.8849 0.8852

de
ca

y
B

IM

AP 0.0160 0.0100 0.0364 0.0367 0.0351 0.0351
TPR 0.0243 0.6578 0.4383 0.3437 0.4210 0.4247
AUC 0.5110 0.8952 0.9002 0.8534 0.8960 0.8946

D
F AP 0.0157 0.3339 0.3565 0.3588 0.3616 0.3739

adversarial perturbation and the green lines provide a baseline
reference depicting the normal signal in the attack-free state;
a red background highlights packets that have successfully
evaded the IDS and a grey background indicates the packets
that were already undetected.

Plot 2a. It captures a output sequence of the continuous
change attack against the short LSTM model for CAN ID
“0DE”. In some cases, especially where the AP metric exceeds
the 15% threshold, the evasive points are very close to the
reference normal traffic that the ECU would have transmitted
if it was not silenced. This is particularly true for the two
continuous experiments where the attack heavily manipulates
only one specific signal and replays the others: the adversarial
gradient ascent correctly captures the intra-packet dependency
and pushes the rogue signal to values that are consistent
with the context. This behavior is of course undesirable for
a malicious actor since, despite the success of the evasion
attempt, the meaning of the target payload is completely lost
and the result is almost identical to not carrying out any attack.

Plot 2b. It captures the l2 BIM output sequence of the fuzzy
attack against the long LSTM model for CAN ID “100”.
The algorithm fails to find a suitable perturbation for several

packets in the sequence; the purpose of this example is to show
how introducing a single point of discontinuity has a severe
impact on the classification of the predictive models. Following
the correctly flagged packets that the algorithm failed to morph
(with the white background) we can perturb the signal much
more easily towards values similar to the last received packet.
We did not observe the same behavior in CANdito, as the
initial fully connected layer and the target sequence reversal
force the model to not put too much weight only on the latest
packets during the reconstruction, besides differing in the non-
overlapping sliding window input.

Plot 2c. It captures the l2 BIM output sequence of the full
replay attack against the long LSTM model for CAN ID
“0FB”. Here the evasion is successful except for two packets
in the middle of the sequence. The evasion algorithm could
not find a suitable configuration that allowed to continue the
descent of the plotted value since the general behavior of the
ECU for those bits is to have a slowly varying signal, after
the first markedly monotonous messages, the IDS correctly
recognized an intrusion. Among the analyzed CAN IDs some
exhibited specific signals with a very regular behavior in terms
of periodicity or speed of variation, making the whole ECU
more vulnerable to some attack strategies than others, the
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TABLE V: Comparison of the baseline TPR of CANdito with the TPRs against the best performing white-box algorithm and
the LSTM transfer attack.

Full Replay Continuous
change

Continuous
to Minimum Fuzzy Injection Re-

play
TPR 0.6615 0.9196 0.9267 1.0000 0.7273Baseline
AP – – – – –
TPR 0.5677 0.8543 0.8848 0.9895 0.5588LSTM oracle l2 BIM
AP 0.1142 0.2033 0.2158 0.2936 0.1222
TPR 0.6615 0.9196 0.9110 1.0000 0.7272FFNN oracle l2 BIM
AP 0.0085 0.1177 0.1228 0.2111 0.0136
TPR 0.5729 0.8844 0.9162 0.9842 0.6578white-box
AP 0.0076 0.1477 0.1449 0.5508 0.2547

most notable example is ReCAN ID ’0FE’, that had very high
intercorrelation and very low variability rate, making it not
vulnerable to the proposed evasion approach.

E. Experiment 3: Attack Transferability

In the transferability grey-box experiment the attacker
has no access to the specific model architecture, rather they
use an oracle [26], a surrogate model trained on a dataset
representative of the actual training dataset (in this case they
are identical) to generate evasive input against in place of
an unknown detection model. Therefore, the attacker tries to
transfer the adversarial examples crafted for a specific IDS
implementation to whatever real world system is actually
operating on the target bus. We test the evasive packets
generated by for the CANdito model and by the l2 BIM variant
for the long LSTM and FFNN models against all the other
available architectures. For this test, we define the transfer rate
as the ratio between the evasive points that evade the target
model and all the evasive points produced with the current
oracle. The most notable result is that the transfer of evasive
examples from the LSTM to CANdito is more successful than
the direct white-box attack in all scenarios except the fuzzy
one. Table V showcases this behavior, we highlight in bold
the best performing evasion strategy. It is also notable that
in the injection replay and fuzzy scenarios the LSTM-based
adversarial examples are much closer to the original packets
than the ones produced with and white-box access. We find
reasonable to explain this phenomenon with the autoencoder
structure of CANdito: the window-to-window behavior causes
all the packets to be perturbed at once, with any modification of
the input reflected into the target output; this hinders a steady
convergence, resulting in very high number of iterations for all
the algorithms. Albeit the complexity of the model also lowers
the transfer rate from other oracles, its resilience to this type of
evasion favors the transfer attack over the white-box approach.

On the other hand, due to its low evasion rate and specific
examples, the CANdito oracle emerges as not suitable to carry
the proposed grey-box attack, with either a negligible transfer
rate or even a detrimental outcome from the attacking point
of view, with the evasive points resulting in higher TPRs for
different IDSs. The long LSTM transfers to other predictive
models on all the architectures, which behave similarly: the
transfer rate of roughly 40% of the adversarial examples for the
continuous change, change to minimum, fuzzy, and injection
replay attacks; the evasion for the full replay attack seems
more specific as we recorded a 18.3% mean transfer rate. Even

the FFNN oracle succeeds against the predictive IDSs for the
two continuous-type attacks, with an average transfer rate of
7.5% for the continuous change scenario and of 32.9% for the
change to minimum scenario. Moreover, this oracle performed
slightly better on short and GRU-based models.

F. Experiment 4: Attack Precomputation

While the grey-box experiment tightens the assumption
of the knowledge of the attacker, the precomputation test
restricts the time constraints for the malicious injection. Since
the current strategy requires repeated querying of a target
autoencoder or predictor, we test whether an attacker could
compute a sequence of adversarial packets in advance and
successfully inject it at a later time while avoiding detection.
In practice, this experiment takes all those sequences that are
fully evasive, i.e., exclusively composed of packets classified
as normal traffic, and tries to find similar points in the flow
of messages where they could equally evade the IDS. We also
consider as candidate injection points every point in the traffic
preceded by at least ten packets identical to the preamble found
at the original attack location. We exclude from this test the
FFNN model, as it performs classification independently of
the order or position of messages, and CANdito as, given
its superior resilience, there were not enough completely
evasive sequences to carry out the test. The results are widely
dependent on the specific CAN ID, with two clear clusters:

Cluster 1. IDs “1FB” and “104” have very slowly varying
physval signals, that for the duration of the traffic gravitate
around some common values rather than assuming any possible
bit configuration (albeit all configurations are valid and no bit
always remains constant). This behavior causes a relatively
high number of possible reinjection points, with a peak car-
dinality of nearly 1800 points found for a single sequence,
and a high success rate. In general, sequences similar to the
one in the view of Plot 2a transfer easily into spots in the
traffic with a longer matching preamble, as we observe a 95%
success rate with an average number of 38 identical preceding
packets, obtaining several hundreds of potentially fully evasive
sequences from 4 to 10 precomputed attacks, depending on the
ID, attack, and oracle;

Cluster 2. The remaining 10 IDs do not bring the same degree
of success as they provide way fewer injection points, with
many preambles without a match in the whole traffic flow;
once again, the few successful precomputed attacks require
a preamble almost identical to the original, with over 37
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(a)

(b)

(c)

Fig. 2: Exemplary plots of adversarially perturbed signals. On
the X-axis we represent the number of frames, while on the
Y-axis the value of the signal.

matching messages on average. In general, this precomputed
attack is feasible and reliable only within the trivial case of a
preamble that is close to the original IDS input window, with
more of the 90% of the successful reinjections differing only
for a couple of packets. This makes just a few specific devices
among the considered ECUs vulnerable to the approach under
testing, however, it is not possible to ascertain the impact of the
resulting risk with the current information about the function
and semantic associated with each affected CAN ID.

G. Discussion

The results of our evaluation provide insight on the re-
silience of the tested IDSs against adversarial attacks: we
observed that the introduced adversarial techniques were par-
tially effective in evading detection, raising concerns about
the robustness and reliability of IDSs in the presence of

adversarial examples in the automotive domain. In particular,
we found the proposed attacks to achieve a high evasion rate
against the predictive models while CANdito [18] proves to
be more resilient; however, both the success and the quality
of the adversarial samples highly depended on the starting
payload. The difficulty in evading the IDSs is influenced by
the previously mentioned constraints and specific challenges
of the automotive sector. In particular, adversarial attacks
require the injection of adversarial samples. In the examined
context, this implies injecting streams of altered data during
a transition period, where the IDS is analyzing both normal
and perturbed traffic. This significantly complicates evading
the entire sequence of packets scrutinized by the IDS, whereas
theoretically, a single packet would be easier to evade. We also
evaluated the transferability of adversarial techniques and the
feasibility of such attacks with varying levels of knowledge
about the target IDS and computational constraints. Albeit
transfer attacks proved to be harder than in the image domain,
the LSTM-based predictive model achieved a high evasion rate
on CANdito [18], exceeding the white-box adversarial perfor-
mance while exploiting a simpler oracle. Finally, we studied
whether an attacker can craft adversarial samples offline and
inject them later, satisfying the strict timing constraints of
CAN: for two of the twelve CAN IDs under analysis, this
technique was able to generate a large number of adversarial
samples, highlighting a potential vulnerability.

Limitations. A limitation of our study, derived from the lack
of availability of a real testing vehicle, is that it relies on
previously collected traffic data. This may lead to a potential
divergence from real-world situations. In practice, attacks in
the traffic can influence the control system of the vehicle,
thereby altering the actual traffic patterns, due to the feedback
loop in cyber-physical systems. This aspect may lead to results
that vary from those we have reported. Secondly, we lacked
proprietary information about the semantics and functioning of
the ECUs, making it difficult to evaluate the real-world conse-
quences of perturbations and train baseline models effectively.

VII. CONCLUSIONS

In this paper, we addressed the potential impact of adversar-
ial attacks on state-of-the-art automotive IDSs. We conducted
a thorough evaluation of known adversarial evasion attacks,
adapted to the automotive domain, against payload-based IDSs
using real CAN traffic augmented with synthetic but realistic
attacks. Our experiments involved designing and implementing
customized variants of the popular BIM and perturbation al-
gorithms to handle CAN packet signals. Evasion is achievable
yet difficult across all tested scenarios, considering the specific
constraints of the domain and the necessity to maintain the
temporal integrity of the original packets even when they
are altered. Interestingly, our findings also reveal that in
the case of attacking a sophisticated model characterized by
slow algorithmic convergence, an attack directly informed by
full knowledge of the target (a white-box attack) might be
less effective than a transfer attack, initially aimed at a less
complex substitute model. In future work, we aim to explore
more complex attacks from the image and malware domains.
We also highlight the need for a standardized benchmarking
procedure to support future research and ensure consistent and
realistic evaluations of automotive intrusion detection systems.
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Pérez, and S. Zanero, “Recan–dataset for reverse engineering of con-
troller area networks,” Data in brief, vol. 29, p. 105149, 2020.

10

https://doi.org/10.1145/3548606.3560618
https://doi.org/10.1109/TSE.1987.232894
https://doi.org/10.1007/978-3-031-34671-2_24
https://doi.org/10.1145/3338499.3357362
https://doi.org/10.1007/978-3-031-34671-2_10
https://doi.org/10.1109/TNSM.2020.3038991
https://illmatics.com/can%20message%20injection.pdf
https://illmatics.com/can%20message%20injection.pdf
https://doi.org/10.1016/j.cose.2023.103166
https://doi.org/10.1145/3613244
https://arxiv.org/abs/1312.6199

	Introduction
	CAN security primer
	Related Work
	Motivation and Threat Model
	Approach
	BIM-based algorithms
	DeepFool-based algorithm

	Experimental Evaluation
	Experimental settings
	Selected intrusion detection systems
	Experiment 1: Ideal attacker
	Experiment 2: Perturbation effectiveness
	Experiment 3: Attack Transferability
	Experiment 4: Attack Precomputation
	Discussion

	Conclusions
	References

