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Abstract—The increasing interest in Autonomous Vehicles
(AVs) is notable, driven by economic, safety, and performance
reasons. Despite the growing adoption of recent AV architectures
hinging on the advanced AI models, there is a significant number
of fatal incidents. This paper calls for the need to revisit the
fundamentals of building safety-critical AV architectures for
mainstream adoption of AVs. The key tenets are: (i) finding a
balance between intelligence and trustworthiness, considering ef-
ficiency and functionality brought in by AI/ML, while prioritizing
indispensable safety and security; (ii) developing an advanced
architecture that addresses the hard challenge of reconciling
the stochastic nature of AI/ML with the determinism of driving
control theory. Introducing Savvy, a novel AV architecture lever-
aging the strengths of intelligence and trustworthiness, this paper
advocates for a safety-first approach by integrating design-time
(deterministic) control rules with optimized decisions generated
by dynamic ML models, all within constrained time-safety bounds.
Savvy prioritizes early identification of critical obstacles, like
recognizing an elephant as an object, ensuring safety takes
precedence over optimal recognition just before a collision. This
position paper outlines Savvy’s motivations and concepts, with
ongoing refinements and empirical evaluations in progress.

I. INTRODUCTION

The Autonomous Vehicles (AVs) market is in steady
growth at a CAGR of 30%, hitting the market size of 2
Trillion USD by 2030. While the performance motivations
of AVs are obvious, e.g., through optimizing the driving
experience through situational awareness, the safety benefits
are little understood. A recent study by RAND [25] argues
that ”delaying full deployment of AVs until an extraordinarily
high level of safety is achieved in comparison to human
drivers could cost hundreds of thousands of lives over many
years” [52]. This study seems to call for an unregulated path
for the development and deployment of AVs, especially under
the later AI/ML-based paradigms, despite accidents in the way.
Unfortunately, the increasing global fatal incidents of AVs do
not look satisfactory or encouraging, urging the need to revisit
the fundamentals of building safety-critical AV architectures
and solutions.

Our claim is that we need to strike a balance between
intelligence and trustworthiness, that is, between the appeal-
ing efficiency and rich functionality brought in by AI/ML
paradigms, and the indispensable social duty of ensuring
safety and security of transportation. Technically, reconciling
the AI/ML stochastic nature with the determinism of driving
control theory has been a hard challenge, and subject of several
research attempts that we report ahead. We argue that the
balance must not exclude any of these paradigms. While we
adopt the ”Safety First for Automated Driving” (SaFAD) [7] in
this work, which is also promoted by the European Association
of Automotive Suppliers, a practical AV architecture must not
ignore efficiency and performance.

Current AV architectures capitalize heavily on the recent
advances in AI/ML. Unfortunately, AV architectures in pro-
duction like Tesla, Cruise, Waymo, or Udacity have gained bad
reputation given the increasing death incidents [8], [15], [47]
attributed to the failure of AI/ML systems in particular. The
investigations reported in Section II conclude that the majority
of these incidents are caused by the tendency to prioritize
performance at the expense of safety.

We conducted an analysis of real-world AV reported inci-
dents (details discussed in Section II) in order to understand
the current phenomena behind AV failures. Our conclusions
attribute these failures to two main reasons: (1) Confusion in
command and control, and (2) AI-based AVs are optimized for
better-precise-than-timely decision processes resulting in All-
or-Nothing dilemma. The two reasons are very related: the
system is often confused and cannot make a decision because
the AI system has not delivered early enough, or never, before
the incident. It seems that the AI system often tries to optimize
detection, recognition, and planning which often exceeds the
available time bounds. This has been raising concerns in the
research community for a decade now, which motivated several
academic works like Safe-AV [42], Sentinel [10], KARYON [5]
or E-GAS [30], to address this issue. These works have
built on early conceptual and architectural works, e.g., Timely
Computing Base [33], [49] and Simplex [41], [48]. In many
cases one could infer that safety-first fall-back mechanisms
did not always succeed, for example hand-over, on time,
to a module securing fail-operational behavior. Moreover, in
the best case when it succeeds to fail-operational, the AV
completely sacrifices the power and cost of the AI system.

The above observations inspired us to explore an innova-
tive mechanism, Time-aware Predictive Quality Degradation,
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TABLE I. A SAMPLE OF INVESTIGATED VEHICLE INCIDENTS WITH DIFFERENT LEVELS OF AUTONOMY, REFERRED TO COMMON POTENTIAL CAUSES.

ID Inci-
dent

Description Potential Causes

I1 Uber Volvo XC90 (Ari-
zona, 2018) [37], [42]

A modified Volvo XC90 struck and killed a pedestrian walking a bike and crossing a road at night. The
vehicle was equipped with a LIDAR unit, forward facing and side facing cameras, radars and Uber’s
developmental AV software. The car did not brake or attempt to slow down to avoid the collision.
Emergency braking and driver monitoring were disabled. NTSB report states that the vehicle’s sensors
detected the pedestrian 6 seconds before the accident; initially detecting her as an unknown object,
then as a vehicle, and finally as a bicycle; 1.3 seconds before impact, the vehicle’s software determined
that a braking action was required.

(1) Emergency braking and driver
monitoring were disabled. (2) Brak-
ing decision has been made 4.7 sec-
onds after first detection.

I2 Acura MDX (New-
foundland, 2018) [42]

Acura MDX equipped with Acura’s lane-keep assistance attempt to veer off of its lane and sometimes
into oncoming traffic. This was noticed after replacing vehicle’s windshield.

The camera, a crucial component for
lane-keep feature, was not calibrated
after windshield replacement.

I3 Tesla Model X (California,
2017) [42]

Tesla Model X (without LIDAR) while using Autopilot feature (cruise control and autosteer lane-keep)
crashed into a damaged crash highway attenuator and fatally wounded its driver. At three seconds
prior to the crash and up to the time of impact with the crash attenuator, the Tesla’s speed increased,
with no precrash braking or evasive steering movement detected.

(1) Attenuator has not been detected
yet. (2) No safety short circuit caused
the car to slow-down or stop. (3)
Sensors are not used effectively.

I4 Tesla Model S (California,
2018) [42]

Tesla Model S (with Autopilot enabled) was travelling on a freeway crashed into a stopped fire truck.
The Tesla was following another vehicle that swerved out of the lane to avoid the stopped fire truck,
while the Tesla sped up instead, and crashed into the truck.

(1) Cruise Control failed to detect
the stationary truck on time. (2)
Cruise Control detected but ignored
the truck.

I5 Tesla Model S (Florida,
2016) [42]

Tesla Model S with Autopilot engaged struck and passed beneath a coming tractor trailer that was
making a left turn infront of the Tesla from the westbound lanes of the highway across the two
eastbound travel lanes. NTSB reported that the Tesla’s automated vehicle control system did not
identify the truck crossing the car’s path or recognize the impending crash; consequently, the Autopilot
system did not reduce the car’s velocity, the forward collision warning system did not provide an
alert, and the automatic emergency braking did not activate. Tesla commented that the camera failed
to detect the truck due to ”white colour against a brightly lit sky” and a ”high ride height”, and that
the radar filtered out the truck as an overhead road sign to prevent false braking.

(1) Truck crossing has not been de-
tected on time. (2) Safety circuit has
not engaged the emergency braking.
(3) Sensors are not utilized effec-
tively. (4) Detection has been ig-
nored.

I6 Tesla Model S (China,
2016) [42]

Tesla Model S crashed into a slow moving (or parked) street sweeper and killed its driver. The police
concluded that the neither the driver nor the vehicle had attempted any braking or collision avoidance
manoeuvres. Tesla was equipped with a single forward facing radar, a single forward facing camera
and a set of 12 ultrasonic sensors. While the camera used DNN recognition models over MobileEye’s
EyeQ3 computing platform, the system required agreement between both the camera and the radar
before any action was taken.

(1) Camera system failed to detect
the sweeper on time; (2) Camera and
Radar both failed. (3) Detection of
Radar alone has been ignored.

I7 GM Cruise (San Francisco,
2022) [23]

Cruise vehicle operating in autonomous mode made a left turn in front of an oncoming Toyota
Prius and preformed hard brake at an intersection. NHTSA reported that the Cruise’s ADAS could
make ”unprotected left, cause ADAS to incorrectly predict another vehicle’s path or be insufficiently
reactive to the sudden path change of a road user.” Cruise said the software had to decide between
two different risk scenarios: hard brake or collide before the oncoming vehicle’s sudden change of
direction”.

(1) ADAS cannot predict path on
time. (2) Pre-defined decisions (turn
left) is not always reasonable.

TPQD: using dynamic ML models that can be tuned to provide
either richer or faster outputs based on the available safety-
critical time bounds. That is, to tune ML models to enforce
different richness levels or predictive quality dictated by the
available time-safety bounds. This allows to leverage the best
outcome an AI system can deliver within a given time interval.
We show in this paper that, in many scenarios, AI models
seem to be over-optimized to give rich predictive details, while
basic details can be good-enough for situations where time is
paramount. Based on these concepts, we propose Savvy, the
preliminary design of a new AV architecture that stands as
a sweet spot between performance and safety. Savvy ensures
the safety-first principle by combining the time-elasticity and
time-safety [49] enabled by the TPQD and the fail-operational
control mechanisms. This is possible using Dynamic AI
models that can be predictably tuned to deliver before the
safety-critical time expires. We are exploring Dynamic Neural
Networks that allow for model deformation using depth and
width adjustment [4], [21], [31], [46], [51] (early exiting,
skipping, pruning, etc.), choosing the adequate protocol using
Neural Architecture Search [57], [59], or parameter (Weights,
Space, or Channel) adjustments [6], [19], [29], [50], [53] at
inference time. We are currently implementing a proof of
concept of Savvy and driving an empirical evaluation of TPQD.

The rest of the paper is organized as follows. Section II
presents the motivations behind Savvy through analyzing AV
incident investigations. Section III introduces Savvy archi-
tecture, while Section IV analyzes the pros and cons of

Savvy. Section V discusses the related work and the paper
is concluded in Section VI.

II. THE CASE FOR Savvy

This work is driven by our concerns about the hundreds of
vehicle incidents [13], [40], [42] related to autonomous driving
features at any SAE level of driving automation, including
driving assistance, emergency brake, auto-steering, cruise con-
trols, etc. Analyzing dozens of these reported incidents (mostly
under investigations), we observed that despite their different
circumstances, the majority can be attributed to a common
set of potential causes conveyed in Table I, which stands
as a briefing of seven credible well-reported and investigated
incidents. We are inspired by these observations to explain the
design rationale behind Savvy (discussed in Section III):

A. Confusion in Command and Control

We observed that many incidents occur because of the con-
fusion in ”command and control” in the autonomous driving
(AD) system. In many cases, the control is either retained by
the data plane, i.e., ML-based system, or ”lost” because of
some confusion in the system or handover. While an ML-based
system does have promising potential, even for safety features,
it cannot fully retain AD control because (1) it is a probabilistic
solution, and (2) it does not oversee the entire vehicle state. For
instance, incidents I3 through I7 in Table I convey different AD
failures in detection or prediction. Worse, in some cases like
I1, I3, and I5, the vehicle ignored the sensing alerts and has
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not made any slow-down or braking reactions; either because
the AD system could not make that decision or because a last
moment handover was being done. The AD system should
have at least handed over the control to some safety-circuit in
such a hazardous situation. On the other hand, many incidents
like I1, I2, I4, and I6 are referred to the lack of overseeing
or handling the vehicle posture, e.g., features disabled, broken
or non-calibrated sensors/actuators, or radars sensing ignored.
The vehicle state should be retained by a reliable system that
can oversee the entire vehicle state as well as take over, not
get handed over the control in such critical situations where
ML fails to respond on time.

B. Better-precise-than-timely decision processes

In all incidents of Table I, the ML-based AD failed to
recognize an obstacle or predict a plan or a maneuver on time.
The term ”on time” here is key since no reports mentioned the
AD returning an ”invalid” or ”indeterminate” classification or
prediction, but rather AD has not delivered early enough before
the incident. Notice that in I1, for example, the AD system
recognized an unknown object 6 seconds before the incident
and took 4.7 seconds to determine a brake is required. I3 and I7
show that an obstacle has been detected, but the system was not
able to make a correct prediction or decision on time. Incidents
I3, I5, and I6 show that some sensors have not been considered
in decision making, maybe for some optimization (avoiding
false-negatives) or because the system could not make a timely
sensor fusion.

Our hypothesis is that ML-based solutions are over opti-
mized for better-precise-than-timely decision processes result-
ing in All-or-Nothing regardless of the delivery time. While this
can be questionable, it inspired us to study the effectiveness of
accepting some predictive quality degradation in ML inference
in favor of timeliness to guarantee safety. This helps in enforc-
ing decision making timeouts, e.g., by calibrating dynamic
ML algorithms [4], [21], [31], [46], [51] (e.g., deepness or
parameters) to deliver before timeouts as long as the output is
helpful, though not optimal.

To exemplify, we convey different scenarios presented in
Table II. The table demonstrates that from a single event,
there could be different rich/poor sensing and planning levels
upon which safety-critical ”possible actions” can be made
the earliest possible. In the Obstacle Avoidance scenario for
instance, there are many sensing levels, either because of ML
model deepness or considered sensors fusion, that could help
making constructive decisions within some known time win-
dows. Depending on the time availability (e.g., before hitting
an obstacle), a used ML model is calibrated (or another model
is fetched) to give richer details. Note that the safety-critical
possible actions in the table are not our recommendations, but
rather used to explain the concept. (This is worth another study
out of the scope of this paper.) This motivated us to designing
Savvy, a new architecture with this concept as we show next.

III. TRUSTWORTHY AUTONOMOUS VEHICLES
ARCHITECTURE

To address the above challenges, we propose a new pre-
liminary AV architecture that we introduce next, while we
leave empirical evaluation to future work. However, we first
introduce the design decisions behind Savvy.

TABLE II. DIFFERENT SCENARIOS SHOWING THAT SOME TIME-AWARE
PREDICTIVE QUALITY DEGRADATION CAN STILL BE HELPFUL IN DECISION

MAKING WITHIN DIFFERENT TIME BOUNDS. (HINT: INCREASING L
REFERS TO RICHER ML OUTPUT DETAILS, INCURRING MORE DELAYS.)

Level Sensing Possible Actions

1. OBSTACLE AVOIDANCE
L1 An object detected at safety distance brake; beep
L2 Non obstructive shaped (flat, small, short)

object detected
continue

L3 Non obstructive material object detected
(rubber, herb plant, snow)

continue slowly

L4 Obstructive avoidable object detected beep; steer away
L5 Obstructive unavoidable material object de-

tected
brake; beep

L6 Obstructive mobile object detected (auto, an-
imal)

brake; give way; continue
later

L7 Obstructive rational object (human) detected brake; stop; continue later

2. INTERSECTION CROSSING
L1 No cooperative sensing brake
L2 Cooperative sensing (e.g, RSU) short dis-

tance
brake

L3 Cooperative sensing (e.g, RSU) long dis-
tance

continue

L4 Cooperative active sensing agreement

3. OVERTAKING
L1 No cooperative sensing continue
L2 Cooperative sensing (e.g, RSU) short dis-

tance
slow down

L3 Cooperative sensing (e.g, RSU) long dis-
tance

overtake

L4 Cooperative active sensing agreement

4. CRASH AVOIDANCE
L1 No cooperative sensing default (brake)
L2 Cooperative sensing (e.g, RSU) short front

distance
stop

L3 Cooperative sensing (e.g, RSU) long front
distance

slow down

L4 Cooperative sensing (e.g, RSU) short front
and back distance

maneuver

L5 Cooperative active sensing agreement

A. Design Rationales

1) Time-aware predictive quality degradation: We bridge
the All-or-Nothing gap of the AI system with time-aware
predictive quality degradation (TPQD). TPQD specifies that
the AI system delivery should be maximized within safety time
bounds even if at degraded quality. This can leverage the tuning
properties of tunable AI models like DNNs [4], [21], [31], [46],
[51]. The intuition is to reduce the likelihood of hitting the
safety time bounds and consequently fail-operational because
of aiming at high predictive quality and rich recognition. For
instance, Savvy enables the safe identification of an elephant as
an obstacle object at the earliest possible, instead of classifying
it optimally as an elephant when it is too late; and allows to
optimally identify a tunnel as is when time permits, rather
than being conservative (and maybe slow-down) if otherwise
classified as an obstacle object. This decision allows making
use of the AI system capabilities as much as possible without
violating the safety bounds.

2) Safety-first supervisory control: Safety in an au-
tonomous vehicle is paramount. To be able to make decisions
without confusions, we enforce some centralized control where
processes are coordinated by a Safety-critical Supervisory
Control System (SSCS). This inherits the safety-first principles
of recent architectures [5], [7], [10], [30], [41], [42], but
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importantly controls and monitors the time safety bounds
across processes, including the AI system. The SSCS can
benefit from AI-based Delivery Time Estimation (henceforth
TED) models to estimate the delivery time of AI processes. In
our experience, the inference time of pre-trained DNN models
is very predictable. The challenge part is launching the time
of triggering events. For this, while we maximize the use of
the available sensing and actuating capabilities, we require a
quick bird’s eye sensing based on which the SSCS scheduling
process is sparked. In this vein, we encourage introducing more
sensing technologies for that very purpose.

B. Savvy Architecture

To implement the aforementioned design decisions, we pro-
pose the Savvy architecture, comprising two main components:
a safety-critical supervisory control system referred to as the
Safety-Critical Control (SCC) system, and an AI-based system
that may include multiple Time-Sensitive Intelligent Modules
(TSIMs) based on the perception/planning model of AV. Fig. 1
depicts the Savvy architecture with reference to the well-known
Sense-Plan-Act (SPA) model [7], [10], [42].

The SCC assumes full supervisory control of the system
including time scheduling of AI-based TSIMs tasks. The
SCC system employs a time-sensitive Task Scheduler (TS)
that generates the time bounds for the driving related tasks,
ensuring the safety-critical timeliness. For each driving related
event, TS defines the task schedules across the different TSIMs
and set the safety timers accordingly. In particular, TS defines
two time bounds that represent the time interval [Time to
Hazard (TTH), Time to Event (TTE)]. The TTE, e.g., Time
to Curve, Time to Overtake, etc., is the time assigned to each
TSIM to deliver. TTH, on the other hand, defines the safety-
critical time by which the whole driving task should complete,
guaranteeing the safety.

A TSIM processes driving tasks, e.g., detection, respecting
the time bounds. Each TSIM is further composed of the Static
submodule (SMod) and the Dynamic submodule (DMod).
DMod leverages the dynamic AI models capabilities that are
tuned, for instance, using Bounded AI (such as Neurosymbolic
NNs [9], [14], [17] and Physics Informed Neural Networks
(PINN) [1], [26], [34], [56] models), to deliver before the TTE
expires. Tuning is done via a time prediction system that learns
and estimates the calibration parameters of AI models to be
used in order to deliver before the TTE expires. The TSIMs are
self-contained modules that can be used in any architecture;
for instance, Fig. 1 demonstrates the well-known Sense-Plan-
Act model using three TSIMs for the three modules of Sense,
Plan, and Act.

The workflow starts by a sensing trigger issued by a
preliminary-sensing module that is tailored for quick bird’s
eye detection. This may leverage any available sensors to
send a heads-up to the SCC, activating a new driving task
process. The preliminary-sensing feeds the SCC with initial
time boundaries based on which the SCC can schedule (using
time prediction models) fine-grained tasks over the TSIMs,
e.g., in this case over the three TSIMs of SPA modules.
Different TSIMs can interact as necessary to do more sensing,
fusion, perception, planning, etc. According to the proposed
time limits given, the TSIMs tune the Dynamic AI models

Fig. 1. Savvy architecture demonstrated on the Sense-Plan-Act model.

to meet the delivery time. This may sometimes reduce the
prediction quality, but should deliver useful insights, e.g.,
frames of animals versus animals, shadows versus liquids on
road, etc. The TTE is the expected time by which all the
DMods should deliver and execute in order to take advantage
of the AI capabilities. In the event where the TSIM AI
execution, that is DMod processing, hits the lower time bound,
the SMod is triggered by firing the safety timer TTH. The
TTH defines the deadline to execute all the safety executions
of SMods to guarantee global fail-safe.

To estimate TTH and TTE, TS again uses a special Control
TSIM whose SMod is defined at design time, and DMod is
made highly accurate using real accurate formulas or more
Bounded AI models. The TS distributes the TTH and TEE over
all TSIMs following some policy: statically, e.g., on evenly
basis, or dynamically, in a similar to DMods. At any time,
before scheduling or during running TSIM, an expired timer
will immediately launch a safety-critical action controlled by
the SCC (i.e., TSIM’s AI never assumes control).

The SCC system plays the role of Pub/Sub broker where
sensors push their readings to, and actuators take order from.
Upon the receipt of input from that set of sensors, that triggers
the event, the SCC system triggers the corresponding set of
actuators before the safety-critical time TTH, if better oppor-
tunistic decisions are not expected within the TTE. With this,
the safety-critical action is always guaranteed to be triggered
and completed before a critical event or time TTH, beyond
which the vehicle would be at risk.

IV. DISCUSSION

A. Feasibility

Savvy is a practical architecture as it is aligned with the
recent trend of centralized or semi-centralized vehicle E/E
architectures where a powerful central Electronic Control Unit
(ECU) of cluster of ECUs handle the heavyweight processing.
This is however assumed that this central brain is dependable
and secure, for instance, it could be a replicated state machine
over many ECUs or COTS in System on Chip (SoC).
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Savvy architecture may impose some additional computing
and AI training overheads as it mandates the separation of
control plane and data plane, and it also introduces additional
supervisory safety-critical control layer to the AV architecture.
The run-time model-tuning and time-aware predictive quality
degradation may also add some AI training costs. However,
this entire overhead comes at the expense of prioritizing the
safety of precious lives, aligning with the principle of ‘Safety
First for Automated Driving’. A Proof of Concept for Savvy is
currently in the implementation phase. This will facilitate an
empirical evaluation of the proposed trustworthy autonomous
vehicle architecture, Savvy.

B. Safety versus Convenience

The ‘all or nothing’ strategy, employed by other AV archi-
tectures, aims at achieving an optimized driving performance,
as too many safety triggers may frequently slow down the vehi-
cle, resulting in an unpleasant passenger experience. However,
this strategy also presents a significant risk to human lives
and road safety due to its inability to deliver before timeouts
in several cases discussed in detail in Section II. Savvy, on
the other hand, leverages the dynamic AI models capabilities
before the TTE expires just like other AV architectures. How-
ever, the fail-safe mode is only triggered if the TTE timer
expires that is the safety-critical time beyond which the road-
safety is at a higher risk. The predefined tasks of SMode may
not always be the most efficient solution, compromising the
driving performance to some extent, however, they will reduce
the safety incidents which otherwise happen in case of ‘all or
nothing’ strategy. Savvy stands as a quality degradation method
to exploit the best possible of the AI usage; and therefore,
avoids the all-or-nothing dilemma. For instance, it enables the
safe identification of an elephant as an obstacle the earliest
possible, as opposed to attempting optimal classification as an
elephant when it might be too late. It also allows for optimal
classification of an elephant as is when time permits, avoiding
unnecessary conservatism.

C. Safety-Critical predefined tasks

Due to dynamic nature of Savvy, the safety-critical prede-
fined tasks will be defined as the optimized ones considering
the road circumstances. These predefined tasks will be based
on human driver’s posture, mental and psychological state,
driving skills, as well as the real-time situation awareness.
For instance, the decision could be to continue driving and
apply a brake when a very little distance (time) is left between
the vehicle and the object, if the AI model fails to deliver.
However, as the sudden brake at a busy road may likely be
risky, the decision could be to gradually slow down the vehicle
speed, provided that the distance between the vehicle and the
object is known (like in Savvy), and apply a brake only when
TTE expires; enabling the vehicle to apply a brake just before
the safety-critical time beyond which a safety incident may
happen, if the AI model fails to deliver.

We exemplify the idea using two cases conveyed in Table I.
In case I1 of Uber Volvo XC90 incident, the object was de-
tected 6 seconds before the accident whereas 4.7 seconds were
taken in object classification, and braking decision was made
just 1.3s before the accident which could not be implemented
in this short time of 1.3s. Once the brake process is initiated

and the vehicle’s braking system comes into play, the vehicle
needs some time to come to a complete stop after applying the
brakes depending on various factors such as vehicle’s initial
speed, braking system efficiency, road conditions, etc. The gap
of 6 seconds was already too short and if the SCC had been
activated, braking or speed-reducing decisions would have
been initiated earlier, it would have been feasible to complete
the braking process before the incident. Similarly, in case I6
of Tesla Model S incident, the system required an agreement
between both the camera and the radar before any action could
be taken. The detection of the Radar alone had been ignored.
It’s believed that the possible cause for this accident might
have been the camera and its ML algorithm failing to detect
the object. If based on the Radar input alone, the SCC had been
activated, it might have avoided the causality. As mentioned
earlier, the predefined tasks necessitate further investigation,
which is beyond the scope of this paper.

The proposed architecture may not solve all the incidents
faced by AVs, for instance, if AV fails due to the inability of
sensors to detect an object in time. However, it may handle
several others, some of them discussed above, reducing the
number of such incidents. Moreover, we also emphasize the
need to introduce new sensors capable of detecting objects
more easily and at the earliest possible moment.

V. RELATED WORKS

A. Safe AV Architectures

Safety-first principles have been used in early architectures
of automotive safety-critical systems [41], [54]. The Simplex
architecture includes a high-assurance and a (complex) high-
performance system that run in parallel. The latter controls
the system as long as safety is not violated, in which case
the former can take control using a decision logic supervisory
circuit. The implementation of the supervisory circuit to make
a taking control decision is however complex as explained
in [3], due to the tradeoffs between safety and performance.
Generalized concepts have been used in the E-GAS standard-
ized architecture EGas [54] and [48], while running multiple
levels of diagnostic monitoring and redundancy. Safe-AV [42],
a more recent architecture, combines the prior solution in more
redundancy levels while also supported ML-based AV. Similar
to Savvy, these architectures make a clear separation between
performance and safety planes, however without addressing
ML-based systems or quality/service degradation.

Service level degradation, on the other hand, has been
proposed in KARYON [5] to ensure timeliness and switch
to ”hard-coded” safety kernel. We inspire from this work
to propose degradation with ML inference, which has not
been addressed in [5]. A recent monolithic architecture, Sen-
tinel [10], has been proposed to cover the aforementioned
safety-first concepts with ML degradation. However, degra-
dation in Sentinel is more like cross-validation, as it makes
use of a combination of parallel inaccurate predictions (e.g.,
60% accuracy) to consolidate a decision. This is far from
safe compared to Savvy’s degradation technique that uses
a degraded classification problem whose accuracy is high.
For instance, Sentinel may recognize an elephant with 60%
accuracy, while Savvy recognizes it as obstructing object with
95%. The latter is a credible accuracy to make an informed
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decision, although not optimal, while Sentinel’s decision is
highly risky.

Unfortunately, we do not discuss commercial architectures
like Tesla, Waymo, Cruise, and Huawei-backed AITO M7 as
these are not publicly available.

B. AI/ML for AV Architectures

The use of AI/ML in AVs is prominent in recent litera-
ture [11]–[13], [16], [32], [39], [43], [52]. In general, most
follow the Sense-Plan-Act design [7], running several AI/ML
architectures and models. The Sense part is focused on sensor
data processing including detection, recognition, perception,
and localization. It makes use of Deep Learning for object
detection and classification problems [2], [28] being able
learn new features without handcrafted features. In particular,
Convolutional Neural Networks (CNNs) have shown to be
promising for lane and vehicle detection [22]. Plan also uses
ML models for prediction and planning. Prediction is essential
to guess and evaluate the expected future (e.g., trajectory or
behaviour) of the vehicle considering its dynamic surrounding.
Recurrent Neural Networks [38], [45] (RNNs) are essential
to this class of problem, especially Long-Short Term Memory
(LSTM) networks [20], used to integrate past the present
information for end-to-end scene labeling systems. Recent
models like Reinforcement Learning [44], [45], mixed with DL
can achieve human-level control in [18], [28], and Attention
models [35], [55] are being used to improve information
filtering. This is mainly useful to focus on the relevant part
to ”attend” in highly dimensional data, e.g., camera images.

Our work in progress make uses of these techniques and
models with two main differences: First, we recommend those
models, e.g., Dynamic Neural Networks (DNN), that are
easily tunable at inference time to be able to leverage the
full power of AI/ML despite time limits. Many of the models
discussed in this section lie in the category and support
dynamic features like: model deformation using depth and
width adjustment [21], [31], [46], [51] (early exiting, skipping,
pruning, etc.), choosing the adequate protocol using Neural
Architecture Search [57], [59] (NAS), or parameter (Weights,
Space, or Channel) adjustments [6], [19], [29], [50], [53] at
inference time. Second, for more accurate recognition and
prediction to improve safety, our work encourages more re-
search and use of what we call Bounded AI (BAI) prediction
models that include factual pre-trained or symbolic models
to guide the training of the main processing models. Recent
methods like Neurosymbolic NNs [9], [14], [17], Physics
Informed Neural Networks (PINN) [1], [26], [34], Constrained
or Conservative PINNs [24], [58], Finite Basis PINN [36],
Variational PINN [27] are believed to have close to 100%
accuracy in some contexts.

VI. CONCLUSION

AI is proving to be widely useful especially for non-
critical applications. AVs are however more challenging being
safety-critical and often time-critical. Reality shows that AI
can be useful to improve safe driving compared to humans;
however, our analysis shows that AI is not reliable per se to
take control of the AV. In particular, due to time-criticality of
AV tasks, the architects are either in the conservative camp,

and tend to refuge to fail-operational mode often, or in the
optimistic camp where performance and user convenience are
prioritized at the cost of safety. This paper presents a new AV
architecture Savvy following a new approach, we call Time-
aware predictive quality degradation (TPQD), to combine the
two advantages without violating the other. Savvy leverages
the Dynamic NN properties through tuning them at inference
time given the available safety time boundaries. This leads to
a trustworthy AV where even for limited time windows, the
AI power is being exploited, thus avoiding the all-or-nothing
dilemma. We are currently implementing the architecture and
exploring the DNN models to evaluate empirically.
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