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Abstract—Physical adversarial objects-evasion attacks pose a
safety concern for automated driving systems (ADS) and are a
significant obstacle to their widespread adoption. To enhance the
ability of ADS to address such concerns, we aim to propose a
human-AI collaboration framework to bring human in the loop
to mitigate the attacks. In this WIP work, we investigate the per-
formance of two object detectors in the YOLO-series (YOLOv5
and YOLOv8) against three physical adversarial object-evasion
attacks across different driving contexts in the CARLA simulator.
Using static images, we found that YOLOv8 generally outper-
formed YOLOv5 in attack detection but remained susceptible to
certain attacks in specific contexts. Moreover, the study results
showed that none of the attacks had achieved a high attack success
rate in dynamic tests when system-level features were consid-
ered. Nevertheless, such detection results varied across different
locations for each attack. Altogether, these results suggest that
perception in autonomous driving, the same as human perception
in manual driving, might also be context-dependent. Moreover,
our results revealed object detection failures at a braking distance
anticipated by human drivers, suggesting a necessity to involve
human drivers in future evaluation processes.

I. INTRODUCTION

Artificial intelligence (AI) components in automated driv-
ing systems (ADS) are known to be vulnerable to adversarial
attacks [7], [9], making ADS susceptible to safety-critical
errors that pose significant road hazards and fatalities. Exist-
ing works predominantly adopt physical-layer attack vectors,
especially physical-world attacks [3], [16], [23], [37]. Physical-
world attacks refer to modifying the physical driving environ-
ment and consequently tampering with the sensor inputs to
AI systems [24]. For instance, previous efforts have leveraged
malicious object texture, such as robust physical perturbation,
to make a STOP sign undetected by AI systems.

While most existing work has focused on object-evasion
attacks at the AI component level, Wang et al. [30] investigated
the adversarial attacks at the system level and found that
those previously known attacks could not achieve the same
results at the system level (e.g., causing collisions and traffic
rule violations). Recent research has also started to investigate

Fig. 1: An overview of three locations of the physical adversarial
object evasion attack in the CARLA simulator (Town01 Opt).

human drivers’ perception and detection of different physical-
world attacks. While the participants could differentiate the
benign and adversarial objects (i.e., STOP signs [8], [35]),
their estimation of the ability of AI systems was largely
influenced by their own driving experience [35]. Altogether,
these findings highlight the importance of understanding the
impact of physical adversarial evasion attacks on downstream
tasks, particularly in SAE Level 3 AD [22], where there are
situations in which human drivers are required to properly
respond to reduce uncertainty in AD systems.

In this WIP work, we evaluate object detection distribution
under physical adversarial object-evasion attacks to inform the
design of downstream tasks and human drivers’ experience
in AD (e.g., determining where to best initialize tracking).
We deploy three types of attacks: STOP sign, vehicle, and
pedestrian, each comprising two attacks and one benign case.
Our evaluation leverages two state-of-the-art variants from the
YOLO detector series [20], which offer real-time performance
that are critical to AD. We adopt a simulation-based evaluation
using the CARLA simulator [5]. Such a method allows us
to consider system-level features such as minimal braking
distances of AD vehicles and anticipated by human drivers
to safety critical events such as STOP sign. This preliminary
study helps lay the groundwork for our goal to develop a
human-AI collaboration framework to enhance the capacity
of ADS to mitigate the attacks with human in the loop.
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II. RELATED WORK

Physical Adversarial Object-Evasion Attacks and Ob-
ject Detection in AD. Prior works have constructed vari-
ous adversarial attacks for object detection focusing on AD
tasks [29], [32], [33], [34], [36], [38]. Among them, physical-
world adversarial attacks, which often embed malicious sens-
ing inputs to object texture, are fabricated as patches, mainly
aiming at road users (e.g., other vehicles, pedestrians) and
traffic objects (e.g., traffic signs, road surface) [3], [6], [32],
[34], [37]. Based on prior work [24], there are three main
types of attack vectors: object texture, object shape and object
position. Existing work mainly adopts these physical world
attacks [16], [24]. About half of these attacks are related
to camera-perceived object textures [24]. However, just as
recent works found, compared to the high success rate of
AI components, the feasibility of these attacks could vary
considering different types of detection models and integration
of system models [24], [30].

Object Detection Model in AD contexts. The state-of-the-
art camera-based perception in AD contexts leverages Neural
Networks (NNs) algorithms. Recent advances include one-
stage object detectors and two-stage object detectors. While
two-stage models, such as Region-based Convolutional Neural
Network (R-CNN) and Fast R-CNN [21], usually have higher
detection accuracy, one-stage models such as the YOLO se-
ries [4], [20] have been widely used in real-time scenarios
where higher detection speed is critical. YOLOv5 [26] and
YOLOv8 [13] are the two latest versions of YOLO family,
which outperform the previous versions of YOLOs, achieving
high accuracy and speed in practice. Few recent studies have
examined YOLOv5’s performance under adversarial attacks in
AD contexts [30], but no existing work has evaluated YOLOv8
in such settings. The current study fills the gap.

Driving Simulation of AD. AD is safety critical. Thus,
evaluating its robustness to adversarial attacks in the field
is utterly challenging because of the difficulty in controlling
real driving environments required in testing scenarios. Some
researchers have crafted and evaluated adversarial situations
in the virtual environment. Those prior work has shown
simulation engines, such as LGSVL [30] and CARLA [1],
[17], [18], to be a viable solution in alleviating the challenge.
In this paper, we rely on CARLA to deploy detection models
to measure physical-world attacks (see Figure 1) and evaluate
the camera-based AD perception. The whole ecosystem of
CARLA is well developed to be open-source, and is constantly
maintaining updates [5]. Also, a simulation-based approach is
suitable for our future human-subject evaluation when applying
human-AI collaboration to mitigate the attacks in AD.

III. CURRENT STUDY

The current study aims to obtain a comprehensive un-
derstanding of object detection distribution under physical
adversarial object-evasion attacks. To achieve the goal, we
focus on dynamic autonomous driving contexts at two levels:
1) the target-object level and 2) the driving-context level. Thus,
we first vary the viewpoints of target objects to represent
their possible appearances in driving and evaluate the object
detection rates. We then manipulate the driving contexts for
each attack target and examine the impact of driving contexts
on object detection.

A. Evaluation Setup

We evaluate the object detection at both levels. In this
preliminary work, we measure the object detection rate at
the target-object level using static images [7] and the driving-
context level using recorded videos [30]. We elaborate on the
details of each evaluation in the following subsections.

Attack Selection and Reproduction. Based on the prior
works [30], [35], we examine three main types of physi-
cal adversarial object-evasion attacks regarding object tex-
ture: the most extensively-studied STOP sign attacks [3],
[6]; pedestrian-evasion attacks [10], [34]; and vehicle-evasion
attacks [31]. As shown in Figure 2, we include two variants
for each attack type.

(a) ShapeShifter (b) TC-EGA-F (c) TC-EGA-B

(d) RP2 (e) TPS-F (f) TPS-B

(g) ER-F (h) ER-B (i) ER-S

(j) PD-UA-F (k) PD-UA-B (l) PD-UA-S

Fig. 2: Static images of the two variants in each attack. “-F”,
“-B” and “-S” denote the images of front view, back view, and
side view, respectively.

1) STOP Sign: Because the STOP sign attack is the most
common physical-world attack, there are various forms
[6], [12], [37]. We select two representative exam-
ples: ShapeShifter [3] and Robust Physical Perturbations
(RP2) [7], both of which have been systematically studied
in recent papers and proved to be the most effective attack
designs [30].

2) Pedestrian: We choose ‘pedestrian’ as the second target
object type because making pedestrians vanish on the
road or miss-detected could be a safety hazard and have
a significant impact on AD. Two most representative
patch attacks are considered: Toroidal-Cropping-based
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(a) Location 1 (b) Location 2 (c) Location 3

Fig. 3: Screenshots of the three locations in the CARLA simulator.

Expandable Generative Attack (TC-EGA) [10] and thin
plate spline-based transformer (TPS) [34].

3) Vehicle: As mentioned above, vehicle is another vi-
tal object in AD contexts. We thus perform two
variants of vehicle-evasion attacks: Enlarge-and-Repeat
(ER) [31] and Prior Driven Uncertainty Approximation
(PD-UA) [15]. ER is the state-of-the-art attack on vehicles
in a physical simulator [31]. PD-UA represents the state-
of-the-art in adversarial attack patterns, demonstrating su-
perior attacking performance on the ImageNet validation
set. To the best of our knowledge, PD-UA has not been
studied in vehicular scenarios. We fill the gap in the
current study. Note that in this preliminary study, we kept
the target vehicle in the same location (i.e., the vehicle is
stationary). Consequently, the relative speed between the
ego vehicle and the targeted vehicle is the same as in the
cases of the STOP sign and pedestrian.

To implement the attacks in CARLA, we manually ex-
tract the patterns used in each attack as proposed by the
authors. Subsequently, we alter the texture and material of the
STOP sign, pedestrian (walker.pedestrian.0002), and
vehicle (vehicle.audi.etron) in CARLA to execute the
perturbations. The results are shown in Figure 2. We place the
objects on the map using a practical setup in the real world.
For example, we position the STOP sign on the right-hand side
at a STOP sign intersection (see Figure 3). The pedestrian is
placed at the same location but on the sidewalk.

Object Detection Models. We evaluate these attacks using
YOLOv5 and YOLOv8. YOLOv5 has been studied in the
physical adversarial object-evasion attacks [30]. Thus, the
detection results in this work can be compared to the results
of existing studies. Additionally, YOLOv8, being the most
recent and advanced model in the YOLO series, is included
due to its relevance, novelty, as well as the limited number of
studies on AD tasks using it. We choose to use both YOLOv5
and YOLOv8 in their original forms to ensure an unbiased
evaluation and provide clear, straightforward results. For both
models, we select the versions with the lightest parameters
(YOLOv5n: 1.9M and YOLOv8n: 3.2M).

Simulation Setup. Due to the limitations of real-world
AD testing in safety and efficiency, using simulation engines
to evaluate and measure the effects of attacks and detection
models has been widely adopted and proven to be effective [1],
[17], [18], [23], [28], [30], [36]. Using a virtual scenario with
high fidelity, we simulate autonomous driving in the CARLA
driving simulator [5], in which the ego vehicle could run
safely and time-efficiently under control. The CARLA version

is 0.9.14. In CARLA, we use Town01 Opt, an official map
(see Figure 1) on a sunny day at noon, which is a common
setting and the most representative setup. We record videos in
the simulation engine for attack generation and manually feed
the videos into the detectors to obtain the perception results.
We conduct all the experiments in the simulator. Screenshots
of STOP signs located on the roadside are shown in Figure 3.

Procedure. Our goal is to evaluate the object detection
distribution of two object detectors under various attacks. We
started with the investigation by varying the viewpoints of
three target objects under different attacks. We input images
of perturbed STOP signs, pedestrians, and vehicles into the
models to observe the detection rates. Each attack detection
was run three times in both YOLOv5 and YOLOv8. The
average results are presented in Table I.

To further study the object detection distribution, we de-
ployed these attacks in CARLA and conducted evaluations
of each scenario (two attacks and one benign case) across
three different locations (see Figure 1). The driving speed of
our test vehicle was set at 30 mph, a common speed in the
United States in areas where STOP signs are typically found.
We maintained this fixed speed to assess the detection rate
at different distances and in various contexts. To make the
current study results comparable to the existing findings, our
starting point for testing the object detectors was 50 m, in line
with the setup used in prior research [30]. We then recorded
the perception results in each scenario as the ego vehicle
approached the attacked object, using a video stream. Such
a method allowed for a direct observation of how detectors
performed over time at different distances, providing detailed
confidence scores. We evaluated three scenarios (two attacks
and one benign case) for each target object. For example,
in the STOP sign case, we assessed the benign scenario,
ShapeShifter, and RP2 at three locations, respectively. Each
scenario in a location was run ten times in both YOLOv5 and
YOLOv8. In total, we compiled 180 videos, with each captured
at 30 FPS, amounting to a 7-second footage. All scenarios were
recorded at a resolution of 640× 640.

B. Results

Static Tests. Table I presents the detection results of those
images in Figure 2. Our study leads to several findings. First,
the detection performance of YOLOv8 (AVG: 0.63) was im-
proved compared to that of YOLOv5 (AVG: 0.08), especially
for the attacks such as RP2, TC-EGA, and TPS. The high
precision rate achieved by YOLOv8 might be due to its use
of revised anchor box and modified loss function, improving
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TABLE I: Detection results of static images. Each cell contains 3 runs and shows the average confidence score of the true
attack-aimed object. -F, -B, and -S indicate the front-view, back-view, and side-view, respectively.

Object detectors STOP sign attacks Pedestrian attacks Vehicle attacks

ShapeShifter RP2 TC-EGA-F TC-EGA-B TPS-F TPS-B ER-F ER-B ER-S PD-UA-F PD-UA-B PD-UA-S
YOLOv5 0.40 0 0.27 0 0 0.31 0 0 0 0 0 0
YOLOv8 0.77 0.95 0.9 0.91 0.92 0.93 0.25 0 0.93 0.41 0 0.58

the overall accuracy of the object detection process [13].
Second, regarding the attack types, attacks aimed at vehicles
achieved higher success rates than those on STOP signs and
pedestrians. Particularly, YOLOv5 failed to detect all cases,
and YOLOv8 showed a poor performance in general (AVG:
0.36). Third, regardless of the viewpoints of vehicles, most of
the attacks can achieve high attack effectiveness. One possible
reason could be that fewer studies have been published on
the aspect of vehicle detection compared to the detection of
pedestrians [25], suggesting fewer training datasets of vehicles
than pedestrians for training those detection models. Also, the
shape of the pedestrian was relatively fixed from the front-view
and the back-view, whereas the shapes of the vehicle varied
significantly across the three different viewpoints, implying
increased difficulties for accurate detection. Fourth, for the
back view of the vehicles, both detectors failed to detect the
vehicles, which suggests that the target’s viewpoints could have
a significant influence on the detection. Such an impact of
viewpoint was also evident for the pedestrian detection with
YOLOv51. Lastly, for the STOP sign, RP2 attack worked
better than ShapeShifter on YOLOv5, which might be due
to the differences in targeted models for those attacks (i.e.,
ShapeShifter is aimed at Fast-RNN detector [3] and RP2

is created to attack YOLOv2 [6]). While YOLOv8 showed
better performance in detecting both attacks, particularly RP2,
ShapeShifter attack still revealed a non-negligible impact with
YOLOv8.

Dynamic Tests. We further evaluated the detection dis-
tribution of each target as a function of detecting distance.
The average perception results across three locations for each
scenario (two adversarial cases and one benign cases) of all
three targets are visualized in Figures 4 and 5.

Wang et al. [30] evaluated adversarial attacks at a system
level grounding on a minimum braking distance of 15 m for
the AD vehicle at a speed of 30 mph to avoid collision. We
consider it as a system feature in our investigation. According
to a report from the U.S. Department of Transportation’s
National Highway Traffic Safety Administration (NHTSA),
the total braking distance at 30 mph under manual driving,
including human reaction time, is approximately 36 m [19].
Therefore, we also consider such a human factor in the
evaluation.

Results of the STOP sign are shown in Figure 4. In most
cases, the confidence score is above chance (AVG: about
0.8) between 25 m and 5 m. Compared the results between
benign and adversarial scenarios, the two detectors performed
similarly, showing all types of STOP-sign attacks did not evade

1To ensure the obtained results of vehicle are not specific to the vehicle
model (i.e., SUV), we ran the same evaluation on a sedan and obtained the
similar results. We will report the result in the complete paper.

the detection in AD contexts. Similar patterns were evident for
the results of pedestrian and vehicle (see Figure 5). Thus, none
of the existing representative attacks we chose had achieved a
high attack success rate across these dynamic tests. In other
words, when it comes to a dynamic scenario or system level,
existing adversarial object evasion attacks may not impact the
ADS, which is in agreement with the results of prior work [30].

Nevertheless, both detectors failed to detect the targeted
objects or predicted them with mediocre confidence scores at
around 36 m except for the vehicle attack. While those failures
were not accounted as evasions, undetected attacks at such
a distance could result in AD vehicles braking at a distance
shorter than 36 m. Because human drivers’ anticipated braking
distance is largely based on their prior driving experience [35],
a shorter-than-expected braking distance could negatively im-
pact their AD experience.

Moreover, we found that the detection results varied across
different locations. As shown in Figure 4, the overall detection
results of the STOP sign in Location 2 are better than those
in Locations 1 and 3. We also visualize the detection results
of the other two attacks across the three different locations2.
Different from the STOP sign, attacks have the best detection
rates under Location 3 for the pedestrian. Detection results of
the vehicle are good in general and show slightly better in
Locations 2 and 3. Such results indicate that object detection
in YOLO, in particular YOLOv8, might be context-dependent.

C. Discussion and Future work

Perception Evaluation with System-Level Features. Our
results reveal that the state-of-the-art object detection models
could fail at minimal braking distances anticipated by human
drivers and of AD perception. In the case of YOLOv5, our
observations indicate that it failed to timely detect the STOP
sign and pedestrian at 36 m. Yet, it worked effectively at 15
m from the targeted objects with an average confidence score
higher than 0.5. YOLOv8 managed to detect the STOP sign
and the vehicle in time but failed to detect the pedestrian
at 36 m. One potential explanation for such failure in both
YOLOv5 and YOLOv8 could be that when pedestrians are at
far distance, their shape and boundaries can be obscure. Thus,
it would be difficult to detect objects in a cluttered environment
with different visual characteristics and features [14]. Consid-
ering that human drivers may anticipate a minimal braking
distance more than twice than the AD vehicle, future work
should involve humans in the evaluation processes to ensure a
user-centered AD design.

While both models could fail to detect objects in the static
settings, they were capable of detecting all perturbed objects

2Due to page limits, we will report the results in the complete work.
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(a) Stop sign Benign (AVG) (b) ShapeShifter (AVG) (c) RP2 (AVG)

(d) RP2 (Location 1) (e) RP2 (Location 2) (f) RP2 (Location 3)

Fig. 4: Detection results of STOP sign with two detectors. The red line indicates the minimum braking distance including human
reaction time. The blue line represents the minimum distance of AD. The gray dash line points out the confidence score in 0.5.

from certain distances in the dynamic settings. Such results
suggest that more evaluations at the system level are necessary
to enhance our understanding of physical adversarial object-
evasion attacks in AD.

The Impact of Contexts in AD Perception. As shown in
Table I and Figures 4 and 5, YOLOv8 indeed outperformed
YOLOv5 in both settings, which is consistent with the results
of prior work [13], [27]. Because YOLOv8 uses mosaic
data augmentation to provide the model with better context
information [13], a possible explanation for the differences
is that other objects in the contexts might have assisted the
model in making predictions. For example, the model might
be more likely to anticipate the presence of STOP signs at
intersections, thus successfully detecting the targeted objects.
Thus, as in manual driving, our results imply that context is
also a critical factor in AD perception.

The Viewpoints of Targeted Objects. As is shown in
Figure 2, attacks (ER and PD-UA) aimed at vehicles have three
different viewpoints in the static tests. Results in Table I show
both detectors failed when ER and PD-UA attacks tested the
vehicle with back views, probably because these two attacks
are relatively less investigated. Such results highlight that it is
essential to have similar investigations in the dynamic settings
since there are scenarios where vehicles/pedestrians would
approach the ego vehicle from different viewpoints (e.g., side-
view vehicles at intersections with STOP signs).

In the dynamic tests, when the ego vehicle approached the
target objects, the object detectors generally performed well.
However, when the distance was in the region [0m, 5m], a

significant drop in detection rates was evident in general. Such
results could be due to the detection angle between the detector
and the perturbed objects being too large but the range of the
detector’s vision being too narrow, causing target deformation
and missing. While such a viewpoint could influence the
detection rate, it should not be a concern since any safety-
critical actions might have already been taken before the ego
vehicle got so close to the targets.

IV. LIMITATIONS

We discuss the limitations of the current study as follows.

A. Attacks

We only investigated three types of attacks (STOP sign,
vehicle, and pedestrian) in this study. Other attack types such
as shade attacks and road condition attacks that could result
in hazards [1], [23], were not considered. Future work could
include more attack types to understand the corresponding
detection results. Moreover, we implemented one pedestrian
model (walker.pedestrian.0002) in the current work.
Thus, the results may not be applicable to individuals of
different gender, age, and ethinicity groups. Considering the
bias revealed in the literature [2], we recommend further
research to increase the diversity of investigated entities.

Also, there are a few limitations to the dynamic tests
in our study. First, the target vehicle remained stationary in
the simulator. However, a moving vehicle may yield different
results. For example, the relative speed between the ego vehicle
and another moving vehicle would vary, thereby altering the
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(a) Vehicle Benign (AVG) (b) ER (AVG) (c) PD-UA (AVG)

(d) Pedestrian Benign (AVG) (e) TC-EGA (AVG) (f) TPS (AVG)

Fig. 5: Different attacks on vehicle and pedestrian with two detectors’ perception results. The red and blue lines indicate the
minimum braking distance anticipated by human drivers and of AD. The gray dash line points out the confidence score in 0.5.

minimum braking distance required. Second, in our dynamic
tests, the position of the perturbed vehicle is fixed, allowing
the ego vehicle only to view its front. Given the impact of
viewpoints in our static evaluation, a more comprehensive
study including various viewpoints is recommended for future
dynamic tests. Finally, we used only one type of vehicle
(vehicle.audi.etron), an SUV model. Incorporating a
broader range of vehicle models, such as sedans, CUVs, hatch-
backs, and trucks, would be necessary to understand whether
the findings can be generalized to other vehicle models. We
intend to explore it in future work.

B. CARLA Simulation.

CARLA is widely used by the research community for
ADS-related research. It allows researchers to simulate various
conditions quickly and safely. However, we believe there is
still a gap between the simulation and real-world settings.
For example, the simulation-based approach adopted by the
current study may not fully capture the complexity of real-
world environments and scenarios. Additionally, our study was
conducted on only one map (Town01 Opt), which resembles
a small town. In future work, we plan to include more maps
with more complex conditions, such as urban environments.

C. Object Detection Model.

In this study, we used two off-the-shelf object detection
models (YOLOv5 and YOLOv8). Yet, it is uncertain whether
the object detectors used in real-world vehicles perform com-
parably to the YOLO models. Furthermore, real-world vehicles

rely on additional sensors and information for tracking and
action planning. For example, temporal cues are important for
dynamic tracking, but they are not considered in static image
detectors [11]. While we believe our study provides valuable
insights for researchers in developing ADS, there may be a
gap between our study and real-world applications.

V. CONCLUSION

In this WIP work, we examine the performance of
YOLOv5 and YOLOv8 against three types of physical adver-
sarial object-evasion attacks: STOP sign, vehicle, and pedes-
trian. The results indicate that although YOLOv8, a state-
of-the-art object detector, generally outperforms YOLOv5, it
remains susceptible to certain attacks. Furthermore, our study
provides insights into the models’ behaviors, which indicates
that the context can be a critical factor for detector models
when facing adversarial attacks in automated driving (AD).
Such finding is valuable for the development of automated
driving systems (ADS) in future work. Moreover, our results
reveal detection failures at a minimal braking distance antici-
pated by human drivers, suggesting the necessity of bringing
human in the loop to mitigate the attacks in AD.
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