
Poster: PLUG&CHECK: Finding Bugs in ISO15118
Implementations with EVFUZZ

Ashwin Nambiar∗, Z. Berkay Celik∗, Ryan Gerdes†, and Antonio Bianchi∗
∗Purdue University †Virginia Tech

Abstract—The ISO15118 standard defines architecture and
protocols for V2G (vehicle-to-grid) communication enabling
interaction between vehicle manufacturers, utility providers, and
charging station operators. This standard was designed to make
the charging process easier and secure. However, the security
of its implementations has never been evaluated thoroughly. To
address this issue, we design a custom system to interact with
the car pretending to be a legitimate charger and fuzz the car to
find bugs in the implementation of the standard.
Introduction. The transportation industry adopts Electric
Vehicles (EVs) as the major form of transportation. To make this
process as smooth and as easy as possible, the industry devised
the ISO15118 standard [2]. This standard allows the various
manufacturers of the different components of the charging
infrastructure to follow a unified standard for authentication,
payment verification, and charging. Given the complexity of the
standard, the possibility of having bugs in the implementations
increases. To address the challenge of effectively fuzzing the
ISO15118 stack and identifying bugs, we introduce EVFUZZ.
EVFUZZ’s charger consists of the Raspberry Pi 3B+, connected
to an HSM containing the required certificates to use TLS to
communicate with the car using PLUG&CHARGE. Preliminary
tests ran the EVFUZZ for 4 generations over 24 hours in 2
modes, observing that most time was spent resetting the car. We
employ the concept of unique messages in the car’s responses
to determine if new paths were discovered.
Implementation. We implemented the fuzzer in Rust as a
modification to Nautilus fuzzer [1], as illustrated in Figure 1.
To establish communication with the car, EVFUZZ functions as
a charging station. To accomplish this, we developed a charging
station using ISO15118, Raspberry Pi 3B, and QCA700 Modem.
The QCA700 modem was employed to establish Powerline
Communication between the charger and the Battery Electric
Vehicle (BEV). Additionally, we modified an existing CCS
(Combo 2) charger to establish a connection between the
Modem and the car by connecting wires. The Modem is
controlled through SPI communication using the Raspberry
Pi. To ensure we are compatible with PLUG&CHARGE, we
obtain a CPO leaf certificate.

Targets. We applied EVFUZZ to three distinct target systems
sequentially. We begin with Java Client (RISE-V2G) [3], a
Java-based client, then with Python Client (iso15118) [2],
an alternative Python-based client. Finally, we test it on the
Mustang Mach-E, which serves as the hardware implementation.

Input Generation using Grammar. The fuzzing loop com-
mences by generating inputs based on a specific input grammar

ISO15118
Grammar

Rust
Fuzzer

Java Client   

  Python Client 

EV          Code Coverage

Network Responses

Decoded Protocol
messages

Client logs

Fig. 1: An overview of the EVFUZZ

(implemented based on [1]), which is derived from the ISO
15118-2 protocol messages.

Fuzzing Loop. To initiate the fuzzing session, the fuzzer
generates the initial 10 inputs. In the first round of fuzzing,
these inputs are executed on three targets. These three targets
offer a range of feedback mechanisms. The fuzzer subsequently
acquires feedback from these targets.
Preliminary Results. We ran the EVFUZZ for 4 generations,
in 2 modes approximately for 24 hours. During our tests, most
of the time was spent on resetting the car. We hypothesize
that this is because of an error state triggered by the mutated
message. On average, the reset mechanism takes 20 minutes. To
determine if the EVFUZZ discovered new paths, we employ the
concept of unique messages retrieved from the car’s responses.
We focus on identifying those messages that only appear once
in the set of car responses. Our results showed that combining
multiple forms of feedback resulted in a greater variety of
responses than using only feedback from the car.

ACKNOWLEDGMENT

The authors extend their gratitude to Ford Motor Company
for providing research vehicles and technical assistance. Addi-
tionally, to Hubject for supplying the leaf certificate for testing,
and to the lab members, Chase Smaker and Eric Wilson, who
contributed to the hardware interfacing.

REFERENCES

[1] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and
D. Teuchert, “NAUTILUS: Fishing for Deep Bugs with Grammars,” in
Network and Distributed System Security Symposium (NDSS), 2019.

[2] “GitHub - SwitchEV/iso15118: Implementation of the ISO 15118
Communication Protocol,” https://github.com/SwitchEV/iso15118.

[3] “SwitchEV/RISE-V2G,” Switch, Aug. 2023.

Symposium on Vehicles Security and Privacy (VehicleSec) 2024
26 February 2024, San Diego, CA, USA
ISBN 979-8-9894372-7-6
https://dx.doi.org/10.14722/vehiclesec.2024.25006
www.ndss-symposium.org


