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Abstract—Human trust is critical for the adoption and con-
tinued use of autonomous vehicles (AVs). Experiencing vehicle
failures that stem from security threats to underlying technolo-
gies that enable autonomous driving, can significantly degrade
drivers’ trust in AVs. It is crucial to understand and measure
how security threats to AVs impact human trust. To this end,
we conducted a driving simulator study with forty participants
who underwent three drives including one that had simulated
cybersecurity attacks. We hypothesize drivers’ trust in the vehicle
is reflected through drivers’ body posture, foot movement, and
engagement with vehicle controls during the drive. To test this
hypothesis, we extracted body posture features from each frame
in the video recordings, computed skeletal angles, and performed
k-means clustering on these values to classify drivers’ foot
positions. In this paper, we present an algorithmic pipeline for
automatic analysis of body posture and objective measurement
of trust that could be used for building AVs capable of trust
calibration after security attack events.

I. INTRODUCTION

Advancements in transportation systems have transformed
contemporary vehicles into smart modes of transportation
capable of driving autonomously using sensors, artificial in-
telligence technologies, and communication network protocols
[1]. While such development aims to ensure safer and more
efficient operation of vehicles, advancements in the autonomy
of vehicles also expose them to cybersecurity threats. Despite
the relatively rare occurrence of security breaches, the impact
of such incidents on the trust between drivers and autonomous
vehicles (AVs) can be profound. Trust is a crucial element
in the successful adoption and acceptance of autonomous
technologies, influencing the overall user experience and per-
ception of safety.

Like any other Internet-enabled technology, AVs are also
vulnerable to a variety of threats that can vary based on type of
attacker (source), attack vector (method), target, motive (objec-
tive/reason) and potential consequences (outcome) (Thing and
Wu [17] for a taxonomy of potential security threats that an AV
can experience). For example, the attack vectors categorized
as ’physical access’ and ’remote access’ could include attacks

such as code injection, in-vehicle spoofing, and packet fuzzing,
and the latter could include GPS spoofing and jamming.

Despite the risks posed by such security threats to human
interactions, there has been limited research examining the hu-
man aspects of autonomous vehicle (AV) security. Specifically,
there is a gap in understanding about the methods for assessing
and calibrating drivers’ degraded trust in the system following
a cyberattack. As highlighted by [11], trust plays a pivotal role
in the acceptance of AVs, and once compromised, rebuilding
it becomes a formidable challenge. Experiencing failure can
significantly erode drivers’ trust levels. However, the specific
impacts and the extent to which experiencing failures from
security threats erode drivers’ trust remains to be measured and
understood. Developing methods capable of robustly assessing
and calibrating drivers’ trust in autonomous vehicles is also
imperative.

A. Trust Measurements

The development of higher levels of automation in AVs has
created a dynamic between the human driver and the system in
which the driving task can be shared. One safety implication
of this dynamic relationship is the driver’s behavior after
relinquishing control to the autonomous driving system. For
example, a driver may choose to sleep or use their phone
instead of supervising the system, resulting in potentially dan-
gerous road situations. This decision to appropriately supervise
the AV or not can be heavily influenced by the driver’s trust
in the system [2].

Past studies have widely relied on administering trust ques-
tionnaires that result in self-reported responses from individu-
als to measure human trust levels in such autonomous driving
scenarios. For instance, Jian et al. [10] developed a 12-item
trust scale for automated systems based on different types
of trust, i.e., human–human trust, human–machine trust, and
trust in general. In another study conducted by Holthausen et
al. [9], a situational trust scale for autonomous driving was
constructed to rate various components such as trust, perfor-
mance, non-driving related tasks (NDRT), risk, judgement,
and reaction. Other studies have used self-defined scales to
evaluate individuals’ trust levels and overall driving experience
of AVs [5], [7], [12].

However, due to the inherent limitations of self-reporting
data based on the susceptibility to individual and situational
biases, subjective trust assessments provided by drivers may
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Fig. 1: Experiment Setup

not align with the level of trust that could be objectively
measured through observed behaviors. This discrepancy is
attributed to the non-objective and potentially inaccurate na-
ture of self-reporting, as highlighted by various studies [8],
[14], and the presence of unaccounted confounding effects
[21]. Furthermore, methods that involve self-reported measures
of trust are not amenable to the development of trust-aware
autonomous vehicles.

To overcome such drawbacks, few studies have proposed
the use of objective measures of driver trust centered around
drivers’ behavioral responses including hand position frequen-
cies and transition probabilities [21], drivers’ gas pedal control
during car following [6], and eye glance patterns [18]. Also,
on-road studies have been conducted to collect more realistic
driving behavior data, and observe the interaction between
drivers and AVs under dynamic real-world environments [15].

II. METHODOLOGY AND DATA

A driving simulator study was conducted at a large public
university in the USA with 40 participants (22 males, 18
females) to investigate their responses to autonomous driving
situations and their trust levels toward self-driving cars during
cybersecurity attacks. The recruitment criteria were (1) 18
years old and above, (2) at least one year of US driving
experience, and (3) English proficiency. The participants had
an average age of 24.5 years and an average driving experience
of 5.95 years.

The driving scenarios were created using the National
Advanced Driving Simulator miniSim and ISAT. The simu-
lator featured a realistic setup with a steering wheel, pedals,
displays, and other in-vehicle controls. To manipulate an
”autonomous” driving environment, the scenarios were driven
by one of the researchers, prerecorded, and shown to the
participants during the experiment. To heighten participant
attentiveness and engagement during each of the drives, par-
ticipants were told to feel free to step on the brakes, the
accelerator, or use other vehicle controls if they felt the need
to do so, and were not explicitly informed that the experiment
stimuli were prerecorded videos.

At the beginning of the study, participants were informed
about the research’s focus on understanding drivers’ reactions
to autonomous driving and their trust in the face of cybersecu-
rity threats, and signed an informed consent form. However,
in order to prevent participants from creating bias in how they
interact with the simulator, no specific information regarding
when the threats would occur and what types of threats
they would encounter was not provided. Then participants
underwent three drives: a Baseline Drive with no cybersecurity
threats, an Attack Drive with simulated cybersecurity attacks
at specific time intervals, and a Post-Attack Drive resembling
the Baseline Drive. Thus, the Baseline Drive was considered
as the control drive with the absence of security perturba-
tions, to which drivers’ behaviors in the other drives would
be compared. All drives involved city driving with various
events such as traffic lights, pedestrian crossings, and stop
signs. The Attack Drive featured three cybersecurity attacks,
including failure to recognize a stop sign, running a red light,
and not identifying a pedestrian crossing. In other words,
the cybersecurity attacks simulated in the experiment were
modeled on the premise that the perception module of the
AV was compromised. After the Attack Drive, participants re-
ceived a notification about the cybersecurity attack, simulating
compromised vehicle controls.

The experiment lasted approximately 60 minutes, and par-
ticipants received a $25 gift card as compensation. All study
protocols were approved by the university’s Institutional Re-
view Board. The data collected from this experiment is used
for developing a novel approach to measuring trust from
drivers’ foot positions.

III. RESULTS

Drawing from prior research that employed alterations in
body positions as a measure for evaluating driver confidence
levels [20], [21], the study involved the extraction of foot
position data from video recordings of the experiment. First,
0.5 second frames were extracted from the experiment record-
ings of each of the participants. With each drive being around
10 minutes resulting in a 30-minute recording for a single
participant, a total of 144,522 frames were extracted as JPG
files from all recordings.

Then, using the OpenPose library, which is a real-time
system to jointly detect human body, hand, facial, and foot
keypoints on single images [3], [4], [16], [19], key joints in
the lower body were captured from the image files and saved
as JSON files. Next, using python code, we defined utility
functions to extract and manipulate pose information, as well
as to draw skeleton lines and overlay the detected skeleton on
RGB images. Thus, the first section of the code showcases the
process of extracting, analyzing, and visually presenting body
pose data in the context of video analysis.

Based on the identified skeletal lines, we calculated the
angle between two lines defined by four input points (the
starting and ending points of the two lines), employing vec-
tor operations and trigonometry. This is done by computing
the Euclidean distance between two points in a 2D space,
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Fig. 2: Example of Feature Extraction Results

extracting the pixel coordinates of specified points from the
OpenPose body pose estimation data, and calculating the
angles between pairs of lines specified by point indices.

From the resulting angle values, we performed k-means
clustering to classify foot positions using the scikit-learn
library. The results from an initial analysis showed that hand
positions and overall body posture were maintained in a
relatively similar position throughout the drives, while foot
positions changed according to each driving scenario. Thus, we
specifically focused on foot posture for trust measurement for
the scope of this research. We hypothesized that there would be
mainly four different foot positions being: foot on brakes, foot
on accelerator, hovering between pedals, and foot completely
off both pedals. Thus, we used k=4 and were able to observe
5912, 10618, 23426, and 17503 occurrences respectively for
each of the four clusters. Currently, this is a work in progress.
Our focus is twofold. Firstly. we are evaluating the accuracy
and reliability of such methods for accurately detecting foot
positions in driving conditions. Secondly, we are developing a
novel approach to automatically generate trust scores which is
predicated on analyzing drivers’ foot positions as an indicative
measure of their trust levels.

IV. DISCUSSION

A. Trust Assessment Pipeline

In this study, we propose a pipeline for trust assessment
based on the analysis of drivers’ body postures, specificially
foot positions. The initial step involves the segmentation of
the recording into discrete 0.5-second frames. Subsequently,
joint coordinates such as knees and ankles are extracted and
the skeletal structure in each frame is detected. Based on
the resulting feature extraction, further computations can be
performed to obtain distance and angle between skeletal fea-
tures, in order to classify the foot position in the given frame.
Next, unsupervised clustering techniques, (K-means clustering
in this study) can be applied to group frames exhibiting similar

Fig. 3: Trust Assessment Pipeline

postures. These clusters can subsequently be labeled to denote
distinct foot positions, such as ’Foot on Brakes,’ ’Foot on
Accelerator,’ ’Hovering Between Pedals,’ and ’Completely Off
Both Pedals.’ This classification sets the basis for subsequent
application of supervised learning algorithms, designed to
search for a correlation between these categorized postures
and the corresponding levels of trust, as reported by partici-
pants. This correlation process is underpinned by the dataset
being labelled with trust levels derived from participants’ self-
reported trust levels. Moving forward, our model selection
and training phase would incorporate classification models,
using algorithms such as Support Vector Machines (SVM) and
Random Forests.

By monitoring the driver’s body postures, particularly the
foot positions, the system can infer the driver’s dependence
on the autonomous system. For example, the driver’s foot
positioned more frequently on the brake pedal may indicate a
higher level of caution and lower levels of trust towards AV.
On the other hand, if the foot is consistently off both pedals,
it may suggest a higher trust level in the autonomous system.
The clustering and labeling of different postures can thus be
used to identify patterns of trust, and the size of such clusters
or frequency in the appearance of certain labels could be used
as indicators of driver trust.

B. Objective Trust Measurement

While post-experiment questionnaires have been widely
used for assessing trust in AVs, the incorporation of machine-
learning-based algorithms that analyze body postures intro-
duces a more objective dimension to trust measurement. Body
posture can be a significant indicator of human attitudes
toward the system in use, providing a non-intrusive and real-
time source of information. Unlike questionnaires, which are
retrospective and may be influenced by recall bias, machine
learning algorithms analyzing body postures hold the capacity
to provide a real-time assessment of driver trust levels towards
AVs. This enables continuous monitoring and dynamic adap-
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tation of the vehicle’s responses to enhance trust during the
driving experience.

Also, machine learning models can generate objective met-
rics related to posture and movement, such as skeletal angles
as computed in this study. This allows for quantifiable mea-
surements of trust, and such metrics can reduce the subjectivity
associated with self-reported questionnaire results.

Moreover, information derived from machine learning al-
gorithms analyzing body postures can be used to develop
driver-adaptive systems. For instance, higher engagement with
vehicle controls including frequent usage of brakes/accelerator
may be consistently associated with decreased levels of trust.
In such a situation, the vehicle’s interface or behavior could be
adjusted in real-time to address concerns and enhance drivers’
overall perception of safety.

C. Lessening Manual Labor

The proposed method for posture analysis and trust quan-
tification can significantly help future experiments on drivers’
trust towards AV. Analyzing video recordings of drivers often
necessitates extensive manual effort [13]. Extracting specific
features at certain time frames within a video recording, a
common task in posture analysis, can be particularly time-
consuming for human observers. This process involves metic-
ulously identifying and tracking key body posture indicators,
which can be challenging and prone to subjectivity.

By employing machine learning algorithms for posture
analysis, this labor-intensive aspect of the analysis can be sig-
nificantly reduced. Machine learning models, once trained on
a sufficiently diverse dataset, can autonomously recognize and
extract relevant features from video frames. Moreover, as this
particular method utilizes unsupervised learning algorithms
that operate based on intrinsic patterns and relationships within
the data itself, data labeling is not required. This automation
not only accelerates the analysis process but also mitigates the
potential for human error and variability in qualitative assess-
ments of data collected from driving studies. As a result, the
adoption of machine learning in posture analysis contributes to
increased efficiency, consistency, and objectivity in extracting
valuable insights from driver behavior, ultimately facilitating
a more streamlined and effective approach to understanding
and interpreting posture dynamics.

D. Limitations and Future Work

One notable limitation of the method proposed for posture
analysis is the occasional identification of a single individual
as two separate individuals, resulting in inaccuracies in foot
position categorization. Particularly, it was shown that there
was a difference in estimations when the algorithm limited the
number of people it needed to identify as one or two. Also,
there were errors where the full skeleton could not be identified
and a loss of the lower body skeleton occurred. Additionally,
the quality of the data could be constrained by inconsistencies
in video recording conditions, including variations in recording
angles and zoom levels. These inconsistencies can introduce
noise and impact the reliability of the pose classification.

Moreover, for a more comprehensive analysis in future studies,
there is a potential avenue for improvement by incorporating
additional features. For instance, including measurements such
as distances to the brake and gas pedals or absolute positions
of joints using x-y coordinates could provide a more accurate
result for estimating body postures.

V. CONCLUSION

When faced with vehicle failures, drivers’ confidence in AVs
can rapidly diminish, necessitating the imperative task of re-
building this trust for the widespread adoption and acceptance
of autonomous technologies. To address this, we conducted a
driving simulator study involving forty participants, subjecting
them to three driving scenarios, one of which simulated
cybersecurity attacks. Recognizing that drivers’ trust is man-
ifest in their body posture, movements, and interaction with
vehicle controls, we extracted body posture features from each
video frame, computed skeletal angles, and applied k-means
clustering to classify drivers’ foot positions. Consequently, we
present an algorithmic pipeline for the automated analysis
of body posture, providing an objective means to measure
trust, which can be further utilized for trust recalibration and
building driver adaptive systems.
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