
OCPPStorm: A Comprehensive Fuzzing Tool for
OCPP Implementations

Gaetano Coppoletta
University of Illinois Chicago
tano.coppoletta@gmail.com

Amanjot Kaur
and Nima Valizadeh

and Omer Rana
Cardiff University

KaurA7@cardiff.ac.uk
ValizadehN@cardiff.ac.uk

RanaOF@cardiff.ac.uk

Rigel Gjomemo
and V.N. Venkatakrishnan
Discovery Partners Institute

University of Illinois System
rgjome1@uic.edu

venkat@uic.edu

Abstract—In the last decade, electric vehicles (EVs) have
moved from a niche of the transportation sector to its most
innovative, dynamic, and growing sector. The associated EV
charging infrastructure is closely following behind. One of the
main components of such infrastructure is the Open Charge Point
Protocol (OCPP), which defines the messages exchanged between
charging stations and central management systems owned by
charging companies. This paper presents OCPPStorm, a tool for
testing the security of OCPP implementations. OCPPStorm is
designed as a black box testing tool, in order to be able to deal
with different implementations, independently of their deploy-
ment peculiarities, platforms, or languages used. In particular,
OCPPStorm applies fuzzing techniques to the OCPP messages
to identify errors in the message management and find vulnera-
bilities among those errors. It’s efficacy is demonstrated through
extensive testing on two open-source OCPP systems, revealing its
proficiency in uncovering critical security flaws, among which 5
confirmed CVEs and 7 under review. OCPPSTorm’s goal is to
bolster the methodological approach to OCPP security testing,
thereby reinforcing the reliability and safety of the EV charging
ecosystem.

Index Terms—Cybersecurity, OCPP, Fuzzer, Electric vehicle
charging, cyber-resilience

I. INTRODUCTION

The swift embrace of EVs has initiated a fresh wave of
research and development, propelling the transportation sector
into an era of unparalleled innovation and progress. This
shift towards EVs is predominantly fueled by a growing
environmental consciousness and a collective endeavor to
decrease dependence on traditional fossil fuels. The EV market
is undergoing consistent expansion, with numerous companies
foreseeing that by the year 2040, EVs will constitute more than
50% of the overall automotive ecosystem [1][2] [3]. However,
despite the widespread adoption of EVs, one of the main
barriers hindering a broader acceptance is the inadequacy of
EV charging infrastructure. Such infrastructure is composed of

several components and standards including Electric Vehicle
Charging Stations (EVCSs), Central Management Systems
(CMS), and e-Mobility Service Providers (e-MSPs) to ensure
the optimal functioning of EVs.

The Open Charge Point Protocol (OCPP) is one of the
components of the EV charging infrastructure. As an open
communication protocol, OCPP facilitates the interoperability
between EVCSs and CMS. OCPP has the potential to play a
pivotal role in the EV charging ecosystem [4]. It has emerged
as a widely adopted protocol, being utilized as the de facto
standard in 148 countries across all six continents [5]. The
protocol is endorsed by the Open Charge Alliance (OCA),
featuring over 220 member companies actively participating
in the electric mobility sector [6]. OCPP’s widespread im-
plementation is evidenced by its adoption by major charging
companies worldwide, detailed in Table I. In practice, OCPP
facilitates remote management of charging points from a
central management system, allowing centralized operation
and monitoring, enabling tasks such as remote diagnostics,
firmware updates,starting and stopping of charging sessions,
surveillance of power usage, etc.

OCPP has evolved to address growing security concerns,
with different versions offering varying levels of security.
In OCPP 1.5 and earlier, basic security measures were im-
plemented, establishing a foundational level for secure com-
munications but lacking advanced protections. With the in-
troduction of OCPP 1.6, currently the most used protocol,
optional enhanced security features were marked, encompass-
ing encrypted communications and improved authentication
mechanisms. The progression continued in OCPP 2.0 and
beyond, where advanced security features became standard,
incorporating mutual authentication and emphasizing the sig-
nificance of ongoing security updates.

Recent research into the security of the OCPP includes
several works [9] [10] [13]. In general, these works identify
scenarios where OCPP protocol may be bypassed to initiate
attacks against CMSes or charge points. In this paper, in-
stead, we focus on designing a systematic approach to test
the security of generic OCPP implementations. The main
challenge in designing such approach relies in the fact that

Symposium on Vehicles Security and Privacy (VehicleSec) 2024
26 February 2024, San Diego, CA, USA
ISBN 979-8-9894372-7-6
https://dx.doi.org/10.14722/vehiclesec.2024.23069
www.ndss-symposium.org



OCPP implementations may use different types of technolo-
gies, programming languages, and deployment platforms. To
address this challenge, we design OCPPStorm, a black box
testing tool to test such generic implementations. The key
contributions of the paper are as follows:
(i) We propose black box testing as a robust testing methodol-
ogy that enables the evaluation of multiple security implemen-
tations. This approach allows us to assess the functionality of
a system without delving into its internal code structure, logic,
or implementation details.
(ii) We utilize a range of fuzzing techniques employing various
strategies to explore and exploit security vulnerabilities deeply
embedded in protocol interactions. This research sheds light
on the effectiveness of fuzzing as a proactive security measure,
offering valuable insights into identifying and addressing po-
tential weaknesses within the context of protocol interactions.
(iii) Using OCPPStorm, we identify several vulnerabilities
in two open source OCPP implementations, leading to 5
confirmed CVEs and 7 more under review at MITRE at the
time of this submission.
(iv) The OCPPStorm code base will be released as open
source.

The rest of this paper is organized as follows: Section II
provides some background and an overview of OCPPStorm.
Section III describes OCPPStorm in detail. Section IV covers
the implementation and Section V contains the evaluation of
OCPPStorm. Section VI reviews related work. Finally, Section
VII provides conclusions and outlines future work.

II. BACKGROUND AND SOLUTION OVERVIEW

A. Background

OCPP is a protocol that defines the communications
between charging stations and central management sys-
tems. In particular, OCPP defines a set of messages such
as BootNotification.req sent by charging stations
(or charging points) to central management systems and
BootNotification.conf sent by central management
systems to charging stations. Each message is composed of
several fields (e.g., chargePointVendor, messageId)
that convey specific types of information. The protocol specifi-
cation describes the semantics of the messages and the types of
responses associated with each request, as well as the order in
which messages are sent. In addition, the protocol specifies the
data types for each message field (e.g., integer, string)
and constraints on the length and values of those fields.

A central management system (CMS) is typically respon-
sible for the management of a set of charging stations that
are physically distributed over a specific region. The central
management system is responsible for storing data about users
(e.g., user information, authentication credentials, payment
details), charging sessions (e.g., start and end timestamps,
power used to recharge an EV), charging stations (e.g., vendor,
ids, etc). Usually, a central management system has a user in-
terface, often implemented by a browser, which communicates
with a database where all the data about users, stations, and
sessions, are stored and updated. From a software architecture

point of view, then, a CMS can be thought of as composed
of two interconnected parts, a communication component, that
implements the OCPP protocol, and a management component
that deals with the business logic for authorizing sessions, user
management, visual interface for the CMS employees, etc. The
main goal of OCPPStorm is testing the security of any CMS
whose inputs consist largely of OCPP messages.
Threat Model and Assumptions: We assume that an attacker
has the ability to send messages to OCPP CMSes. This could
happen in different ways. For instance, an attacker may obtain
physical or remote access to a charging station and be able to
craft arbitrary OCPP messages that are then encrypted and
then sent to the CMS. Different ways to compromise charging
points have been demonstrated by recent works [10], [14].
We assume that the attacker is able to authenticate and start a
session. This is to be able to test the protocol implementations
of the functionality that requires authentication.

Starting from these assumptions, we create OCPPStorm,
a tool to test the security of different CMSes or OCPP
implementations. In particular, we want to test how well the
OCPP communications’ component of these CMSes validate
the input of incoming OCPP messages. The main challenges
in doing so are listed below.

• Diverse Implementations. OCPP implementations can
vary greatly depending on the manufacturer, version, or
specific requirements of the deployment. The heterogene-
ity of the system complexities precludes the formulation
of a universally applicable testing methodology.

• Language and Platform Independence. OCPP imple-
mentations can be found in a myriad of programming
languages and platforms, adding an additional layer of
complexity to the testing process.

Addressing these challenges requires a testing methodology
that is independent of the platforms, technologies, and lan-
guages used to implement CMSes and OCPP communications.

B. Solution Overview

To be platform-independent and language agnostic, our
OCPPStorm solution revolves around the principle of black
box testing. Black box testing is a testing methodology in
which the tester is unaware of the internal workings of the item
being tested. Instead, the tester is only familiar with the inputs
and the expected outcomes. In essence, by employing black
box testing for OCPP, we can systematically evaluate various
implementations regardless of their internal complexities or
specific details. This method provides a comprehensive and
robust security assessment that not only identifies vulnerabil-
ities but also ensures the integrity and reliability of critical
infrastructure systems.

A special methodology for black box testing is black box
fuzzing. Fuzzing is a methodology for testing applications that
relies on sending a large number of inputs that stress test an ap-
plication’s error handling and logic. The main challenge faced
by fuzzers is that of coverage. The input sent to the application
under test must exercise as much of the application’s code as
possible. Fuzzers deal with the coverage problem in different

2



TABLE I
MAJOR CHARGING COMPANIES USING OCPP

Company Name Region OCPP Usage Additional Notes

ChargePoint US Yes One of the largest EV charging networks in the US. Uses OCPP for interoperability.
EVBox Europe Yes A leading EV charging solutions provider in Europe. Adopts OCPP for flexibility and

compatibility.
Greenlots Asia (Singapore-based) Yes Offers OCPP-compliant charging solutions, ensuring compatibility across different

charging networks.
ABB Global (Europe, US, Asia) Yes A major industrial equipment manufacturer that provides OCPP-compliant EV charg-

ing solutions.
Enel X Europe Yes Provides OCPP-compliant charging solutions, allowing for easy integration with

various management systems.
NewMotion Europe Yes One of Europe’s largest providers of EV charging services. Supports open standards

like OCPP.

Fig. 1. OCPPStorm Architecture and Workflow.

ways. Some fuzzers like AFL receive branch information as
feedback and mutate their inputs in order to exercise untested
branches. Other fuzzers rely on knowledge of the code to solve
constraints that exercise untested branches.

In our case, because of our choice to create a general OCPP
testing tool as a black box fuzzer for multiple implementations,
the only feedback that we receive from the application is in the
OCPP messages themselves and eventual error messages. The
lack of information about the server-side code execution, like
branches and paths executed means that we cannot measure
code coverage on the server code. Instead, we introduce the
notion of protocol coverage. The main idea here is that in
order to test the implementation of a specific component of
the protocol, which may be located deep in the sequence of
messages, we need to send inputs that satisfy the constraints
and logic of the protocol up to reaching the component that
we want to test. OCPPStorm does this via a State Machine
Fuzzer, which is described later in this section.

OCPPStorm’s architecture is depicted in Figure 1. The input
to OCPPStorm is a set of json schema files representiing
the messages and a protocol description or representation as

a state machine. OCPPStorm integrates three core fuzzing
modules—Random Fuzzer, State Machine Fuzzer, and Isla
Fuzzer—interfacing with specialized components like the
Message Generator and Isla Message Generator. All three
components can generate both valid and invalid OCPP mes-
sages. Valid messages satisfy the constraints of the OCPP
protocol on data types, field lengths, content, and order of
messages. Invalid messages instead, violate one or more of
those constraints. The random message generator does so
in a random manner, the ISLA message generator uses the
ISLA library [22], while the state machine fuzzer uses a
representation of the OCPP protocol as a state machine to
guide the message generation.

The OCPP WebSocket Client manages communication with
the external server representing a CMS, and the Message
Validator ensures compliance with OCPP standards. Any dis-
crepancies or anomalies detected by these components are
flagged by the Error Detector. This collaborative architecture
ensures the effective crafting and dispatching of messages,
with the goal of uncovering potential vulnerabilities in OCPP
implementations. The effectiveness of OCPPStorm is fun-
damentally tied to the quality and relevance of its inputs,
comprising the protocol description and JSON schemas.

We describe in more detail the different components in the
next sections.

III. DESIGN

In this section, we delve into the functionalities of each
component, highlighting their roles within OCPPStorm and
their collective contribution to the overall fuzzing process.

A. Fuzzing Modules in OCPPStorm

OCPPStorm implements three different independent fuzzing
mechanisms, 1) a Random Fuzzer that generates random
messages, 2) a State Machine Fuzzer that generates messages
compliant with the protocol up to a specific state and then
starts generating random messages, and 3) a grammar-based
fuzzer called Isla Fuzzer based on the ISLA library [22].
Random Fuzzer: The Random Fuzzer, integrated with the
Message Generator, operates through iterative random mes-
sage generation. Its process involves: (a) Random selection
of a message type for each iteration, (b) Message generation

3



and subsequent validation using JSON schema, (c) Prediction
of server response, based on the fuzzed message properties,
and (d) Transmission of the message and analysis of server
feedback by the Error Detector.
State Machine Fuzzer: The State Machine Fuzzer offers an
advanced approach to increase the coverage of the fuzzer. This
component employs user-defined sequences of valid OCPP
messages to simulate paths in a state machine. OCPPStorm
can then fuzz messages starting from the state reached in
the state machine. For instance, a sequence of messages may
include a message to authenticate a user and a message
to start a charging session. After these messages are sent,
OCPPStorm can start fuzzing the application from the state
reached when the charging session is started. At this point, the
Error Detector module evaluates the server response, ensuring
the transition to the next state in the sequence. We opted for a
representation of the state machine as a sequence of messages
for usability purposes. In fact, our goal is to make it easier
for software developers and testers to use OCPPStorm to test
their implementations without having to create complex state
machine representations of their implementations.
Isla Fuzzer: The Isla Fuzzer, deriving its functionality from
the Isla library, presents two modes of operation:
a) Fuzzing With Constraints: This mode employs constraints-
based message generation, targeting specific Json properties
for fuzzing. This strategy involves selecting a set of predefined
constraints for a particular message type during the fuzzing
process. For example, in generating an Authorize message,
the sole property, idTag, is subject to a maximum length
constraint of 20 characters. In a constraints-based approach,
the Isla library is instructed to create an idTag that deliber-
ately exceeds this limit, challenging the protocol’s established
constraints.
b) Fuzzing Without Constraints: Focuses on generating mes-
sages without considering OCPP constraints, enhancing the
randomness and coverage of fuzz testing. The integration of
the Isla Fuzzer with other standard modules of OCPPStorm,
such as the Error Detector and Message Validator, ensures a
thorough and efficient fuzzing process.

B. Message Generators

OCPPStorm provides two message generators that follow
two different strategies for the generation of the messages.
Message Generator: The Message Generator is a key el-
ement, distinguished from the Isla Message Generator, and
is intricately tailored to enhance the fuzzing process for
the OCPP protocol. Unlike the Isla library’s general-purpose
approach, our Message Generator is meticulously crafted to
address the specific intricacies of the OCPP protocol.Using the
Json schemas of the OCPP messages, this component is able to
generate both valid and invalid OCPP messages to send to the
CMSes. The valid messages are consistent with the various
OCPP message types. The invalid messages are created by
systematically creating random actions and payload structures.
In particular, the randomization operates at the: 1) single data
type level (by creating fields with different datatypes, fields

with values or lengths outside the ranges specified by OCPP),
2) message level (by creating messages with missing or added
fields or fields different from the ones that are expected).

The Message Generator is designed to work cohesively
with other modules within OCPPStorm. This collaboration
facilitates a synchronized operation of the fuzzing process,
with its output feeding into components like the Random
Fuzzer and the State Machine Fuzzer.
Isla Message Generator: The Isla Message Generator, oper-
ating in conjunction with the Isla Fuzzer, uses a combination of
grammars and constraints for message creation, based on the
ISLa library [22]. These grammars specify string production
rules and constraints that the ISLa library uses to create strings
in the language of the grammar. The ISLa message generator
in OCPPStorm encodes grammars that based on the Json
schemas create strings that represent OCPP messages.

C. Error Detector

Within the architecture of OCPPStorm, the Error Detector
is a crucial component tasked with the analysis of server
feedback under various test scenarios. It essentially acts as a
bridge, aligning the theoretical expectations of the OCPP pro-
tocol with the actual server responses. The key functionalities
of the Error Detector are outlined as follows:
Analyzing Server Responses: There are two kind of messages

that can be received:
a) Valid OCPP Messages: When the server receives legiti-
mate OCPP messages, the Error Detector evaluates whether
the responses are appropriate and in line with the required
operations. This ensures that the server’s behavior remains
consistent with the protocol standards.
b) Invalid OCPP Messages: In scenarios where fuzzed mes-
sages are sent to the server, the Error Detector assesses the
server’s reaction to these irregular inputs, identifying any
deviations or anomalies that could indicate vulnerabilities or
non-compliance with the OCPP protocol.
Predicting Error Responses: The Error Detector also pos-
sesses the capability to predict potential errors. This capability
is built from the information in the OCPP specification doc-
uments, which specify the type of errors that can occur for
each OCPP message [25]. This predictive analysis involves
comparing the fuzzed message against its corresponding JSON
schema and utilizing logical constructs to anticipate potential
server errors. This approach is particularly effective in de-
tecting violations of JSON schema constraints and provides
insights into the server’s adherence to protocol standards.
Gathering Error and Bug Statistics: A critical role of the
Error Detector is to compile data on server errors and potential
vulnerabilities. This information is crucial for a comprehensive
assessment of the server’s robustness and security. The col-
lected data, which includes statistics on various error types and
bugs, is documented for detailed analysis and future reference.

D. Message Validator

The Message Validator within OCPPStorm is critical for
ensuring the accuracy and integrity of message exchanges.

4



It serves as a fundamental component, verifying messages
against predefined standards and structures. Its primary respon-
sibilities include:
Timestamp Verification: The validator scrutinizes the ’times-
tamp’ property in messages, validating it against the RFC3339
standard. This ensures format and value consistency.
Schema Compliance: The validator confirms message com-
pliance with corresponding JSON schemas. It checks the
structure and values against the schema, marking messages
as non-compliant in case of deviations.
Exception Handling: Capable of managing scenarios where
messages deviate from expected structures, the validator iden-
tifies and reports discrepancies, crucial for handling fuzzed
messages.

The Message Validator acts as a vital checkpoint within
the OCPPStorm fuzzer, as depicted in ??. It interfaces with
multiple components, including the Random Fuzzer, State
Machine Fuzzer, Isla Fuzzer, the OCPP WebSocket Client, and
the Error Detector. This ensures that every OCPP message,
whether generated or received, undergoes validation, uphold-
ing the communication process’s integrity and adherence to
protocol schemas.

E. OCPPStorm Output Report

OCPPStorm generates detailed output logs, each serving a
specific function in documenting and analyzing the fuzzing
process. These logs are instrumental in understanding the
responses of the OCPP implementation to various test cases.
Here is an overview of the output files:
Correct Messages Log: This file documents messages deemed
correct by OCPPStorm, including valid OCPP messages and
status notifications. It’s vital for identifying instances where
the server incorrectly rejects valid inputs.
Fuzzed Messages without Errors Log: Captures fuzzed mes-
sages that did not elicit errors from the server, suggesting
potential gaps in input validation.
Non-Protocol-Compliant Responses Log: Details server re-
sponses that are technically valid but do not adhere to the
expected OCPP JSON schema.
Statistics Log: Compiles general fuzzing metrics, such as total
iterations, rates of correct and incorrect responses, and various
detected error types.
Error Type Statistics Log: Tracks specific error types encoun-
tered during fuzzing, providing quantitative data on each error
category.
Status Notification Statistics Log: Monitors transitions related
to the StatusNotification message, offering insights into the
server’s state management.
Fuzzing Duration Log: Records start and end timestamps
of the fuzzing process, reflecting the overall duration and
efficiency of the tests.
Valid Requests Causing Errors Log: Lists valid requests that
unexpectedly trigger server errors, indicating potential issues
in server response handling.

Mismatched Error Responses Log: Contains instances where
the server’s error responses deviated from those anticipated by
OCPPStorm, highlighting error handling discrepancies.

These logs are pivotal in evaluating both OCPPStorm’s
performance and the resilience of the OCPP implementations
under test, providing granular insights into the system’s be-
havior against diverse fuzzing inputs.

IV. EVALUATION

OCPPStorm is developed in Python with approximately
1915 lines of code. To evaluate it, we searched for available
CMS implementations over the Web. The most well-developed
available CMS implementations that we were able to find are
two open source packages: Steve1 and OCPP.Core2. Steve is
a Java-based open-source CMS with a total of 31,432 lines of
code. OCPP.Core is a .NET-based server with a total of 21,684
lines of code. This CMS uses a mix of C#, JavaScript, and
XML, showcasing the diverse language use within the .NET
ecosystem. For our evaluation, we installed both applications
on a local Mac M1 laptop, initializing their databases with
fictitious users and charging stations to simulate an operational
charging networks.
Results Overview. Our evaluation of OCPPStorm over these
two CMSes assesses the tool’s performance in error detection,
security vulnerability identification, resource performance, and
scalability. OCPPStorm was able to exercise all OCPP 1.6
messages that have as destination the central CMS. It found
that both the CMS implementations deviate from the OCPP
protocol significantly in terms of error handling and leniency
towards constraints violations. OCPPStorm identified numer-
ous bugs and vulnerabilities, with 6 confirmed CVEs and 6
suspicious behaviors that may result in attacks under specific
situations. We describe our results in more detail in the rest
of this section.

A. OCPPStorm Evaluation Metrics

In our evaluation of the OCPPStorm, we aimed to cover
a broad spectrum of test scenarios, ranging from schema
violations and exceeding length constraints to the processing
of unexpected input types. To do this, we use the following
metrics.
1) Total Iterations: The complete count of messages sent.
2) Correct Responses Rate: The ratio of responses that were
accurate, aligning with expectations for both valid and invalid
inputs. Specifically, we consider a response as correct in two
cases: a) if the fuzzer sends an invalid message and we receive
an error response, matching the type of error predicted by the
fuzzer, b) if the fuzzer sends a valid message and we receive a
valid response. Ideally, this value should be as close to 100%
as possible. This rate therefore reflects the system’s accuracy
in responding correctly according to the expected outcome for
each specific input. An example of correct message that falls
into this category is:

1https://github.com/steve-community/steve
2https://github.com/dallmann-consulting/OCPP.Core

5



[2,"1","Authorize","idTag":"abcde12345"]

which will receive this response:

[3,"1",{"idTagInfo":{"expiryDate
":"2024-01-24T00:00:00-06:00","
status":"Accepted"}}]

An example of incorrect message (idTag is not a string) that
trigger the correct error and so falls into this ratio is:

[2,"1","Authorize","idTag": 123]

which will receive the predicted error (TypeConstraintViola-
tion), here is a possible response:

[4,"1","TypeConstraintViolation","idTag
longer than 20",{}]

3) Incorrect Response Rate: This metric is the opposite of
the Correct Response Rate. It is the ratio of responses that
were different from the expected ones. This is composed of
the following subcategories:
a) Wrong Error Rate: The ratio of errors differing from those
anticipated by the fuzzer, suggesting potential issues in error
handling. An example of message that cause the wrong error
is:

[2,"1","Authorize","idTag":123]

which should trigger a TypeConstraintViolation error. If we
receive another type of error, this ratio becomes higher. An
example of wrong error for this message is:

[4,"1","InternalError","",{}]

b) Valid Requests Causing Error Rate: The ratio of instances
in which valid inputs erroneously triggered errors, indicating
improper processing by the system. An example of message
that falls into this category is:

[2, ’15505’, ’StatusNotification’, {’
connectorId’: 6, ’errorCode’: ’
GroundFailure’, ’status’: ’
Finishing’}]

The StatusNotification message comply with the constraints
defined by its json schema and it should be accepted by the
server. If it’s not accepted and the server sends an error, this
ratio becomes higher. An example of response is:

[4,"15505","InternalError","",{}]

c) Non-error-Causing Fuzz Rate: The fraction of invalid
messages that did not cause an error but ideally should have,
indicating possible validation gaps. An example of message
that falls into this category is:

[2, ’84’, ’MeterValues’, {’
connectorId’: 7}]

the json schema of the MeterValues message has two required
properties: connectorId and meterValue. The message in the
example does not contain the meterValue property and so is
flagged as fuzzed and should trigger an error. If we do not
receive an error from the server this ratio will be higher. An
example of response is:

[3,"84",{}]

d) Responses Not Valid with Protocol: The frequency of re-
sponses that did not adhere to the OCPP protocol’s constraints.
In particular the response is validated against its json schema
and if it does not comply with it, the message falls into this
category. An example of message for this ratio is:

[2, ’1’, ’Authorize’, {}]

This message is not valid because the idTag property is
required and here is missing. The server sends this response:

[3,"1",{}]

which does not comply with the json schema for the Autor-
izeResponse message, that must contain at least the idTagInfo
property.
4) Comprehensive Handling Rate: This ratio evaluates the
system’s overall ability to correctly process inputs, but with
a broader scope than the Correct Responses Rate. It includes
all well-formed messages that receive an appropriate response
and all incorrect messages that successfully trigger any error
response, regardless of the specific error type. This rate is
indicative of the system’s general resilience and effectiveness
in handling a wide range of inputs, reflecting its capacity
to appropriately respond under varied circumstances, without
being restricted to the accuracy of error types. An example of
message that falls into this category is:

[2,"1","Authorize","idTag":123]

the predicted error for this message is TypeConstraintViolation
but here we are just looking for an error without checking if
it’s the predicted one. Examples of possible responses for this
category are:

[4,"1","TypeContraintViolation","idTag
longer than 20",{}]

[4,"1","InternalError","",{}]
[4,"1","GenericError","",{}]

Table II contains the results for the different metrics. With
the exception of the first row, each row of the table corresponds
to one metric and shows the results of OCPPStorm’s compo-
nents (random fuzzer, ISLA fuzzer, and State Machine fuzzer)
for that metric against Steve and OCPP.Core. The first row
corresponds to the number of iterations. We report different
numbers of iterations for the different variants of OCPPStorm.
This is due to the slow performance of the ISLa fuzzer with
constraints (see Table IV for the performance results). In this
fuzzer, the constraint solution step can significantly slow the
message generation.

In Random Fuzzer against Steve, the evaluation shows a
Correct Responses Rate of 22.44%, indicating limited align-
ment with expected outcomes. The Comprehensive Handling
Rate stands at 57.31%, suggesting moderate effectiveness.
However, a high Incorrect Response Rate of 77.56% points
to notable issues in error handling and protocol compliance,
underscoring areas for improvement in Steve’s implementa-
tion.

6



TABLE II
EVALUATION METRICS FOR OCPPSTORM

Metric Random
fuzzer
against
Steve

Random
fuzzer
against
OCPP.CORE

Isla
Fuzzer w/o
constraints
against
Steve

Isla
Fuzzer w/o
constraints
against
OCPP.CORE

Isla
Fuzzer w/
Constraints
against
Steve

Isla
Fuzzer w/
Constraints
against
OCPP.CORE

State
Machine
Fuzzer
against
Steve

State
Machine
Fuzzer
against
OCPP.Core)

Total
Iterations

500,000 500,000 100,000 100,000 19,950 19,950 1,114,800 1,114,800

Correct
Responses
Rate

22.44% 22.04% 57.80% 42.07% 31.35% 33.67% 22.74% 21.86%

Incorrect Re-
sponse Rate

77.56% 77.96% 42.19% 57.93% 68.65% 66.32% 77.24% 78.14%

Wrong Error
Rate

51.11% 75.20% 23.18% 36.58% 49.63% 60.57% 50.99% 75.41%

Valid
Requests
Causing Error
Rate

0% 0% 0% 19.13% 0.18% 0.98% 0% 0%

Non-error-
Causing Fuzz
Rate

20.82% 2.75% 13.26% 2.22% 18.83% 4.77% 20.66% 2.72%

Responses
Not Valid
with Protocol

5.63% 0% 5.75% 0% 0% 0% 5.58% 0%

Comprehensive
Handling
Rate

57.31% 86.37% 58.79% 61.99% 69.63% 82.90% 57.08% 86.48%

In Random Fuzzer against OCPP.Core, the results show a
Correct Responses Rate of 22.04%, with the Comprehensive
Handling Rate at a higher 86.37%. The high wrong error eate
of 75.20% suggests issues in error categorization. A low non-
error causing Fuzz Rate of 2.75% indicates good detection of
malformed inputs.

In Isla Fuzzer w/o Constraints against Steve, the table
shows a Correct Responses Rate of 57.80%, with over half
of the responses meeting expectations. The Comprehensive
Handling Rate is 58.79%, indicating consistent handling of
messages. However, incorrect response rate of 42.19% and
Wrong Error Rate of 23.18% suggest areas for improvement
in error handling and accuracy.

In Isla Fuzzer w/o Constraints against OCPP.Core, the
Correct Responses Rate is 42.07% , indicating that under half
of the responses were as expected. The Comprehensive Han-
dling Rate stands at 61.99%, showing good system resilience.
However, a high incorrect response rate of 57.93% and wrong
error rate of 36.58% reveal substantial challenges in error
handling and protocol compliance.

In Isla Fuzzer w/ Constraints against Steve, the results
exhibit a Correct Responses Rate of 31.35%, showing Steve’s
struggle with both valid and fuzzed inputs. A high Incorrect
Response Rate of 68.65%, mainly due to a Wrong Error Rate
of 49.63%, underscores significant error handling issues. The
Comprehensive Handling Rate at 69.63% suggests moderate
robustness but highlights the need for error categorization and

protocol compliance improvement.

In Isla Fuzzer w/ Constraints against OCPP.Core, the results
reveal a Correct Responses Rate of 33.67%, reflecting diffi-
culties in protocol-compliant input processing. A significant
Incorrect Response Rate of 66.32%, with a Wrong Error Rate
of 60.57%, indicates notable error handling and classification
issues. Despite these challenges, the Comprehensive Handling
Rate stands at 82.90%, underscoring the system’s general
efficacy in handling diverse inputs but with limitations in error
categorization and protocol adherence.

In State Machine Fuzzer against Steve, the results demon-
strates a Correct Responses Rate of 22.74%, signifying notable
protocol adherence and input processing issues. With a high
incorrect Response Rate of 77.24% and a Wrong Error Rate
of 50.99%, the results indicate significant error handling and
categorization challenges. The Comprehensive Handling Rate
at 57.08% suggests moderate effectiveness in input manage-
ment, yet underscores the need for improvements in protocol
compliance and error accuracy.

In State Machine Fuzzer against OCPP.Core, the results
exhibits a Correct Responses Rate of 21.86%, reflecting major
protocol adherence and response accuracy issues. With a
significant incorrect Response Rate of 78.14%, largely due
to a 75.41% Wrong Error Rate, the results highlight major
error handling inaccuracies. Despite these challenges, a Com-
prehensive Handling Rate of 86.48% suggests a high level of
system resilience in managing diverse inputs, underlining its

7



overall robustness.
As these results show, OCPPStorm is able to perform black

box fuzzing efficiently and to catch several inaccuracies in
the responses from the two OCPP CMS implementations in
our evaluation. The vulnerabilities that we found in these
two implementations were all triggered by the State Machine
fuzzer (See Section IV-D for a detailed discussion on the
vulnerabilities).

B. Constraint Violation Analysis

A fundamental component of our evaluation is the detailed
analysis of constraint violations. This analysis is critical for
understanding how effectively the system adheres to speci-
fied constraints under diverse testing conditions. Our focus
encompasses key areas like Required Field Omission, Length
Constraint Breach, and Data Type Discrepancy. These areas
are crucial for evaluating the system’s ability to accurately
process protocol-specific deviations.

For each category, we have conducted an in-depth exami-
nation to determine the system’s conformity with established
protocol standards and its response to atypical input scenarios.
Due to the extensive nature of this analysis, the complete
results will be uploaded online in the form of a detailed table
linked by the paper. In Table III, we provide a condensed
excerpt of the findings, illustrating some of the primary
constraint violations encountered during testing.

When analyzing the handling of protocol constraints by
Steve and OCPP.Core (Table III), distinct patterns in their
compliance emerge. Steve’s implementation exhibits notable
leniency towards protocol specifications. It tends to accept
inputs that deviate from the defined constraints, such as
allowing overly long fields, disregarding missing required
properties, and overlooking data type discrepancies. This pat-
tern is evident across various message properties and types.
Although this suggests a degree of flexibility in input handling,
it also raises concerns about security and the predictability of
system behavior in response to non-standard or malformed
inputs. Conversely, OCPP.Core demonstrates a more stringent
adherence to protocol constraints. The system shows greater
compliance, particularly in managing required fields and data
types, and is more restrictive with inputs that do not adhere to
the expected format or length. This rigidity indicates a focus on
maintaining protocol integrity, potentially enhancing system
security against malformed inputs and ensuring consistent
behavior.

In essence, Steve and OCPP.Core each adopt different ap-
proaches to protocol adherence, leading to varied implications.
Steve’s approach, while potentially more user-friendly, could
introduce security vulnerabilities. In contrast, OCPP.Core’s
strict adherence might increase security and consistency but
at the cost of reduced flexibility.

C. Performance Metrics

Table IV shows the performance metrics of OCPPStorm for
STEVE and OCPP.Core.

Table IV reveal notable differences in the performance of
the State Machine, Random Fuzzer, and Isla Fuzzers. Both
the State Machine and Random Fuzzers process messages at
a much faster rate (approximately 521.4 to 595.5 messages
per second (MPS) for Steve and 20.59 to 20.69 MPS for
OCPP.Core), while the Isla Fuzzers (with and without con-
straints) operate more slowly (3.99 to 1.36 MPS for Steve and
3.36 to 1.37 MPS for OCPP.Core). This indicates that the isla
library is much slower in generating messages compared to
the other fuzzers.
Steve vs. OCPP.Core: When comparing the two implemen-
tations, Steve generally exhibits a higher message processing
speed across all fuzzers, indicating a more efficient handling of
incoming messages. However, this does not necessarily reflect
the overall robustness or security posture of the implemen-
tations. It is essential to consider this in the context of the
fuzzing method employed.

D. Vulnerability Analysis in OCPP Implementations

The vulnerabilities identified through OCPPStorm’s anal-
ysis underscore the importance of strict adherence to the
OCPP protocol standards. These vulnerabilities, found in both
OCPP.Core and Steve implementations, are not only crucial for
these specific systems but may also have implications for other
systems using the OCPP protocol. Reproduction, verification,
and documentation were conducted for each vulnerability,
supported by detailed logs and visual evidence. After the
developers were contacted for each found vulnerability, the
systems were patched to fix them. In one or two cases, the
behavior leading to the vulnerability results from assumptions
on the behavior of the charging station. This fact points to the
confusion that still exists among developers and researchers
about the expected behaviors of the components of EV charg-
ing infrastructure. We describe such vulnerabilities next.3.

1) OCPP.Core Vulnerabilities: DoS Vulnerability: A criti-
cal issue was identified in the handling of the ’chargePointVen-
dor’ field in the ’BootNotification’ message. The system’s
failure to validate input length could lead to server instability
or DoS under excessive data load. Specifically, we were able
to send a message with a very large payload, which crashed
the OCPP.Core implementation.
Negative Charging Transactions: The system improperly pro-
cesses ’StopTransaction’ messages, accepting instances where
’meterStop’ values are lower than the ’meterStart’ from ’Start-
Transaction’ messages, leading to erroneous negative charging
logs and potential billing discrepancies.
Unauthorized Transaction Termination: We discovered a vul-
nerability allowing the termination of active transactions using
’StopTransaction’ messages with random ’transactionId’s, in-
dicating a lack of stringent validation checks.
Concurrent Transaction Handling: The system erroneously
permits multiple transactions with identical ’connectorId’ and
’idTag’, deviating from the ’ConcurrentTx’ status protocol.

3In this version of the paper, we omit the confirmed CVE numbers to
preserve the submission anonymity. We will add the CVE numbers to the
final paper version in case of acceptance

8



TABLE III
CONSTRAINT VIOLATION RESULTS FOR STEVE & OCPP.CORE

MessageType.Property Required Field Omitted Length Constraint Breached Datatype Discrepancy
STEVE OCPP.CORE STEVE OCPP.CORE STEVE OCPP.CORE

Authorize.idTag X - X X X X
BootNotification.chargePointVendor X - X X X X
BootNotification.chargePointModel X - X X X X
BootNotification.chargePointSerialNumber - - X X X X
BootNotification.chargeBoxSerialNumber - - X X X X
BootNotification.firmwareVersion - - X X X X
BootNotification.iccid - - X X X X
BootNotification.imsi - - X X X X
BootNotification.meterType - - X X X X
BootNotification.meterSerialNumber - - X X X X
DataTransfer.vendorId X - X X X -
DataTransfer.messageId - - X X X -
DataTransfer.data - - - - X -
DiagnosticsStatusNotification.status X - - - X -
FirmwareStatusNotification.status X - - X X -

TABLE IV
PERFORMANCE METRICS COMPARISON FOR STEVE & OCPP.CORE

Performance Metric Random Fuzzer State Machine Fuzzer Isla Fuzzer(w/o constraints)) Isla Fuzzer(w constraints)
STEVE OCPP.CORE STEVE OCPP.CORE STEVE OCPP.CORE STEVE OCPP.CORE

Total Messages 500000 500000 1,114,800 1,114,800 100,000 100,000 4950 19950
Messages per Second (MPS) 521.4 20.69 595.5 20.59 3.99 3.36 1.36 1.37
Total Execution Time 0h 15m 59s 6h 42m 42s 0h 31m 12s 15h 2m 33s 6h 57m 14s 8h 15m 48s 1h 0m 38s 4h 2m 30s
Average Time per Message (s) 0.0019 0.0483 0.0017 0.0486 0.2503 0.2975 0.7349 0.7293

This flaw could lead to significant transaction management
and billing errors.
Handling of Additional and Duplicate Properties: The server
inappropriately processes ’StartTransaction’ messages with
extraneous or duplicate properties without validation. Notably,
the acceptance of the last occurrence in duplicate properties
poses risks for transaction record manipulation and system
stability.
Repeated Use of Message ID: A non-compliance issue with
the OCPP specification was found, wherein the system accepts
repeated use of the same message ID for different CALL mes-
sages on the same WebSocket connection. This could cause
confusion in request processing and compromise transaction
traceability and integrity.

The findings from OCPPStorm’s evaluation of OCPP.Core
demonstrate critical areas that need strengthening to enhance
protocol compliance, security, and system reliability.

2) STEVE Vulnerabilities: The evaluation of Steve using
OCPPStorm uncovered multiple vulnerabilities impacting its
transaction processing and compliance with OCPP standards.
Invalid Timestamp Handling: Steve incorrectly processes
‘StartTransaction‘ messages with invalid timestamps, leading
to database errors and potential data integrity issues.
Multiple StopTransaction Message Handling: The system
accepts multiple ‘StopTransaction‘ messages for a single
transaction, causing inconsistencies and errors in transaction
recording.
Reprocessing of StartTransaction Messages: Steve fails to re-

ject repeated ‘StartTransaction‘ messages, allowing transaction
duplication and data inconsistencies.
Unauthorized Transaction Termination: Predictable transac-
tion IDs in Steve enable unauthorized termination of ongoing
transactions, revealing a significant security vulnerability.
Billing Discrepancies from Invalid MeterStop Values: Steve
processes ‘StopTransaction‘ messages with ‘meterStop‘ values
lower than ‘meterStart‘, leading to incorrect billing calcula-
tions.
Repeated Use of Message ID: The system does not enforce
unique message IDs for CALL messages on the same Web-
Socket connection, undermining transaction traceability and
integrity.

The discovery of these vulnerabilities demonstrates that
OCPPStorm is able to successfully test the security of OCPP
CMS implementations in a black box manner.

E. Discussion and Limitations

OCPPStorm is a completely black box fuzzer that, by
design, does not use code execution information, like exe-
cuted branches, to generate its inputs. This design choice has
advantages and disadvantages. The main advantage is that
OCPPStorm is application- and platform-agnostic and it can
be deployed without the overhead of instrumenting the code
to be tested and providing feedback about its execution. On
the other hand, the lack of coverage information may lead to
less accurate results and reduced coverage.

Unlike other fuzzers like AFL, OCPPStorm is focused on
using only the information from the protocol specification

9



to practically test if an implementation conforms with the
protocol. In this sense, OCPPStorm can be seen as a dynamic
protocol implementation and testing tool that works as a
fuzzer.

An additional limitation of OCPPStorm’s current version
is that it only tests the central servers’ implementation of
the protocol via requests sent from a charging station to
a CMS. In fact, we did not test implementations of the
charging point stations because we were not able to find such
implementations. However, the implementation can be quickly
expanded to include such messages.

V. RELATED WORK

This chapter synthesizes the relevant literature on Electric
Vehicle (EV) charging security, with a focus on the Open
Charge Point Protocol (OCPP), its security aspects as well
as its advanced testing methods. The burgeoning EV market
has prompted extensive research on EV charging infrastructure
security. Studies like [7] and [8] offer an in-depth analysis
of vulnerabilities within EV charging systems, encompassing
hardware, network connections, payment systems, and com-
munication protocols like OCPP. These papers highlight the
intricate security risks and the necessity for robust protective
measures in the EV charging ecosystem. A classic literature
in this field was published by Alacaraz et al. in [14] focusing
on attacks that interfere with resource reservation originating
with the Electric Vehicle (EV), which may also be initiated
by a man in the middle, energy theft, or fraud. Even though
the OCPP implementation of each manufacturer will have a
different method of deployment [15], the security of OCPP
implementation itself is also a key focus area. Rubio et al.
in [9] presents a novel approach for preserving privacy in
smart meter data transmission using a secret sharing scheme
as a countermeasure to Man-in-the-Middle (MitM) attacks in
OCPP, offering an alternative to traditional encryption-based
methods. Elmo et al. in [10] demonstrate two MiTM attack
scenarios to terminate charging sessions and gain root access
to the EVSE equipment via remote code execution for OCPP-
based systems. Furthermore, Gebauer et al. in [13] developed
an OCPP server for penetration testing of OCPP charge points,
and they devised three different attack scenarios which could
be executed by a malicious OCPP central system to attack
an OCPP charge point. Furthermore, Sarieddine et al. in their
recent work focus on analyzing the OCPP communication for
injection vulnerabilities [23]. The authors identify potential
entry points lacking input cleansing and validation, using
system fuzzing on the WebSocket handshake with various
payloads. They performed OCPP backend system fuzzing
on Websocket handshake using some composed payloads by
monitoring HTTP request-response traffic using Burpsuite[24].
These payloads, available on this GitHub repository [26], are
used to test systems for potential exploits, without causing
harm [23].

Traditional testing approaches, such as the one outlined in
[11], have been fundamental in ensuring OCPP compliance.

However, the emergence of fuzzing techniques, as demon-
strated by OCPPStorm, marks a significant shift in protocol
testing. Fuzzing offers a more dynamic assessment, uncovering
vulnerabilities beyond the scope of predefined test cases, and
thus enhancing the reliability of EV charging systems. Ad-
vancements in automated fuzzing, such as those demonstrated
by AutoFuzz[12], have set the stage for specialized tools
like OCPPStorm. OCPPStorm’s targeted approach, tailored for
OCPP, goes beyond generic fuzzing, providing a more nuanced
analysis vital for EV charging security.

In another study by Nasr et al. with a broader perspec-
tive, considering the whole Electric Vehicle Charging System
(EVCS) as a larger system vulnerable to attacks, it was found
that these systems are susceptible to manipulations of charging
operations that could potentially harm the EV battery by
altering charging levels. The research also revealed that at-
tackers could upload malicious firmware, thereby maintaining
covert access, and use the compromised EVCS for coordinated
network activities, including denial of service attacks [27].
Furthermore, these systems could be locked to deny access
to legitimate users, potentially leading to ransomware attacks
for financial gain [27].

Another protocol within the EV charging infrastructure is
ISO-15118, which has also been a matter of importance in
terms of implementation testing and threat analysis due to
its connection with the OCPP protocol. Any vulnerabilities
or attacks within the ISO-15118 protocol can potentially
impact the OCPP as well, thereby emphasizing the need
for rigorous testing. Lee et al. focuses on the data used
in the communication between electric vehicles and power
charging infrastructure. It analyzes the security vulnerabilities
of the ISO/IEC-15118 standard-based charging technology
and proposes countermeasures for them [20]. Bao et al.
introduces adversary-centric threat analysis, which exposes
implicit assumptions that need to be fulfilled by the deploy-
ment context of a charging point infrastructure to guarantee
security. This analysis focuses on the scope boundaries of
the communication protocol between electric vehicles and
charging stations [21]. Researchers have also explored the
challenges implicated by the wireless communication of ISO-
15118 and provided a proof of concept prototypical ISO-15118
based implementation that provides a mechanism for achieving
EV-EVSE Pairing, next to the Association and Authentication
[16]. In addition, the ISO-15118 protocol stack has been
subjected to Fuzz Testing, a method that enhances the test for
robustness and negative invalid input [18]. Conformance tests
for combined communication and power interfaces have also
been conducted [17]. Furthermore, a test system according
to ISO/IEC-15118 has been presented, using the TTCN-3
testing framework for maximum flexibility to support various
testing scenarios [19]. These studies highlight the importance
of rigorous testing in ensuring the robustness and security of
the ISO-15118 protocol, similar to the OCPP protocol.

10



VI. CONCLUSION

In this paper, we describe OCPPStorm, which is able to test
the security of different OCPP implementations in a language-
and platform-agnostic way. OCPPStorm is evaluated against
two available OCPP implementations and is able to find several
vulnerabilities and errors in handling OCPP messages. Future
work includes integration of white-box fuzzing into OCPP-
Storm and incorporation of static code analysis techniques,
providing a comprehensive view of potential vulnerabilities
and contributing to the development of a more robust security
testing framework for OCPP implementations.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion under award 2330565 and the UK Research and Innova-
tion organization (UKRI) under award EP/Y026233/1.

REFERENCES

[1] BloombergNEF. 2020. “Electric Vehicle Outlook 2020”.
https://about.bnef.com/electric-vehicle-outlook/

[2] National Geographic. 2017. “Electric Cars May Rule the World’s Roads
by 2040”. https://www.nationalgeographic.com/news/2017/09/electric-
cars-replace-gasoline-engines-2040

[3] Geotab. Electric Vehicle Trends in 2020: Top 6 Factors Impacting Fleet
Electrification; Geotab: Oakville, ON, Canada, 2020.

[4] ”Open Charge Alliance,” Open Charge Alliance (OCA), Tech. Rep., 2020.
[Online]. Available: https://www.openchargealliance.org/

[5] S. Acharya, Y. Dvorkin, H. Pandziˇ c, and R. Karri, “Cybersecurity of ´
smart electric vehicle charging: A power grid perspective,” IEEE Access,
vol. 8, pp. 214 434–214 453, 2020.

[6] “Open Charge Alliance - Our mission,” 2022. [Online]. Available:
https://www.openchargealliance.org/about-us/

[7] Antoun, J., Kabir, M.E., Moussa, B., Atallah, R. and Assi, C., 2020.
A detailed security assessment of the EV charging ecosystem. IEEE
Network, 34(3), pp.200-207.

[8] Johnson, J., Berg, T., Anderson, B. and Wright, B., 2022. Review of
electric vehicle charger cybersecurity vulnerabilities, potential impacts,
and defenses. Energies, 15(11), p.3931.

[9] Rubio, J.E., Alcaraz, C. and Lopez, J., 2018, February. Addressing
security in OCPP: Protection against man-in-the-middle attacks. In 2018
9th IFIP International Conference on New Technologies, Mobility and
Security (NTMS) (pp. 1-5). IEEE.

[10] Elmo, D., Fragkos, G., Johnson, J., Rohde, K., Salinas, S. and Zhang, J.,
2023, November. Disrupting EV Charging Sessions and Gaining Remote
Code Execution with DoS, MITM, and Code Injection Exploits using
OCPP 1.6. In 2023 Resilience Week (RWS) (pp. 1-8). IEEE.

[11] Priyasta, D., Septiawan, R., Herminawan, F. and Bayu, H., 2023. En-
suring Compliance and Reliability in EV Charging Station Management
Systems: A Novel Testing Tool for OCPP 1.6 Messages Conformance.
Journal Européen des Systèmes Automatisés, 56(1).

[12] Gorbunov, S. and Rosenbloom, A., 2010. Autofuzz: Automated network
protocol fuzzing framework. Ijcsns, 10(8), p.239.

[13] L. Gebauer, Henning Trsek, and G. Lukas, “Evil SteVe: An Approach
to Simplify Penetration Testing of OCPP Charge Points,” 2022 IEEE
27th International Conference on Emerging Technologies and Factory
Automation (ETFA), Sep. 2022.

[14] C. Alcaraz, J. Lopez, and S. Wolthusen, “OCPP Protocol: Security
Threats and Challenges,” IEEE Transactions on Smart Grid, vol. 8, no.
5, pp. 2452–2459, Sep. 2017.

[15] A. Sanghvi and T. Markel, “Cybersecurity for Electric Vehicle Fast-
Charging Infrastructure,” 2021 IEEE Transportation Electrification Con-
ference & Expo (ITEC), Jun. 2021.

[16] N. E. Sayed, ”A Prototypical Implementation of an ISO-15118-Based
Wireless Vehicle to Grid Communication for Authentication over Decou-
pled Technologies,” 2019 AEIT International Conference of Electrical and
Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Turin,
Italy, 2019, pp. 1-6, doi: 10.23919/EETA.2019.8804545.

[17] K. Hänsch et al., ”An ISO/IEC 15118 conformance testing sys-
tem architecture,” 2014 IEEE PES General Meeting — Conference
& Exposition, National Harbor, MD, USA, 2014, pp. 1-5, doi:
10.1109/PESGM.2014.6938863.

[18] Schöneberger, T. FUZZ testing the ISO 15118 pro-
tocol stack - Vector Informatik GmbH. Available at:
https://cdn.vector.com/cms/content/events/2021/vSES21/vSES21 Slides
07 Schoeneberger Vector.pdf (Accessed: 15 December 2023).

[19] Shin, M.; Kim, H.; Kim, H.; Jang, H. Building an Inter-
operability Test System for Electric Vehicle Chargers Based on
ISO/IEC 15118 and IEC 61850 Standards. Appl. Sci. 2016, 6, 165.
https://doi.org/10.3390/app6060165

[20] S. Lee, Y. Park, H. Lim and T. Shon, ”Study on Analysis of Security
Vulnerabilities and Countermeasures in ISO/IEC 15118 Based Electric
Vehicle Charging Technology,” 2014 International Conference on IT
Convergence and Security (ICITCS), Beijing, China, 2014, pp. 1-4, doi:
10.1109/ICITCS.2014.7021815.

[21] Bao, K., Valev, H., Wagner, M. et al. A threat analysis of the vehicle-to-
grid charging protocol ISO 15118. Comput Sci Res Dev 33, 3–12 (2018).
https://doi.org/10.1007/s00450-017-0342-y

[22] Dominic Steinhöfel and Andreas Zeller. ”Input Invariants”. Software
Engineering 2023, Fachtagung des GI-Fachbereichs Softwaretechnik. 24
Februar 2023, Paderborn. pp. 113–114, 2023.

[23] K. Sarieddine et al., “Uncovering Covert Attacks on EV Charging
Infrastructure: How OCPP Backend Vulnerabilities Could Compromise
Your System”.

[24] Burp Suite. [n. d.]. BURP suite - application security testing software.
https: //portswigger.net/burp

[25] https://openchargealliance.org/my-oca/ocpp/
[26] 1N3. [n. d.]. 1N3/intruderpayloads: A collection of burpsuite

intruder payloads, Burpbounty payloads, Fuzz Lists, malicious
file uploads and web pentesting methodologies and checklists.
https://github.com/1N3/IntruderPayloads

[27] Nasr, T. et al. (2023) ‘Chargeprint: A framework for internet-scale
discovery and security analysis of EV charging management systems’,
Proceedings 2023 Network and Distributed System Security Symposium
[Preprint]. doi:10.14722/ndss.2023.23084.

11


