
AutoWatch: Learning Driver Behavior with Graphs
for Auto Theft Detection and Situational Awareness

Paul Agbaje∗, Abraham Mookhoek∗, Afia Anjum∗, Arkajyoti Mitra∗, Mert D. Pesé†, Habeeb Olufowobi∗
∗Department of Computer Science and Engineering, University of Texas at Arlington

†School of Computing, Clemson University
{pauloluwatowoju.agbaje, habeeb.olufowobi}@uta.edu

Abstract—Millions of lives are lost due to road accidents each
year, emphasizing the importance of improving driver safety mea-
sures. In addition, physical vehicle security is a persistent chal-
lenge exacerbated by the growing interconnectivity of vehicles,
allowing adversaries to engage in vehicle theft and compromising
driver privacy. The integration of advanced sensors with internet
connectivity has ushered in the era of intelligent transportation
systems (ITS), enabling vehicles to generate abundant data that
facilitates diverse vehicular applications. These data can also
provide insights into driver behavior, enabling effective driver
monitoring to support safety and security. In this paper, we
propose AutoWatch, a graph-based approach for modeling the
behavior of drivers, verifying the identity of the driver, and
detecting unsafe driving maneuvers. Our evaluation shows that
AutoWatch can improve driver identification accuracy by up
to 22% and driving maneuver classification by up to 5.7%
compared to baseline techniques.

Index Terms—Driver Behavior, Situational Awareness, Graphs,
Graph Neural Network

I. INTRODUCTION

Increasingly, the risk of vehicle theft continues to be a
concern for car owners. The National Highway Traffic Safety
Administration (NHTSA) reports that over 1 million vehicles
were stolen in the United States (U.S.) in 2022 alone, with over
74% being passenger vehicles [1]. Thus, every 32 seconds,
a vehicle is stolen in the U.S. This statistic is even more
likely to be lower than the actual state of things as the Federal
Motor Vehicle Theft Prevention Standard by the NHTSA also
admitted that not all thefts are reported, making the overall
estimation of motor vehicle thefts difficult [2].

Modern vehicles, with their embedded sensors and Internet
connectivity, have evolved into platforms that facilitate various
intelligent transportation system (ITS) applications, such as
real-time traffic navigation, autonomous driving, advanced
driver assistance systems, and parking management. Neverthe-
less, the growing interconnectedness among vehicles presents
opportunities for malicious actors to exploit vehicular vulner-
abilities, opening up new car theft opportunities. For instance,
car thieves can leverage weaknesses in a vehicle’s remote key

entry system to gain access, bypass the immobilizer system, or
program a new key through the onboard diagnostics (OBD)-
II port [3]. Through an investigation into actual car theft in
2022, Ken Tindell [4] showed that keyless car theft is possible
with a controller area network (CAN) injector grafted onto a
James Bullough Lansing (JBL) speaker’s circuit board. The
attackers accessed the CAN bus from the headlight connector
and injected successful frames onto the bus before stealing the
car. Beyond the loss of vehicles, the rise of data collection and
processing platforms based on vehicular telematics data raises
significant privacy concerns since the data must not be shared
with malicious entities [5]. Car theft can lead to data breaches
and potential misuse of personal information [6].

Apart from the challenge of auto theft, the World Health
Organization (WHO) reported that approximately 1.3 million
lives are lost annually, and an additional 20-50 million people
suffer injuries due to road accidents. Many individuals en-
dure long-term disabilities due to these accidents [7]. Fig. 1
illustrates the mortality count resulting from vehicle crashes
spanning 1975 to 2021, based on data from the U.S. Depart-
ment of Transportation [8], [9]. We observe that the mortality
rate initially declined as the development of transportation
technology kept improving. However, the proliferation of
sensors and interconnectedness in recent times across the
vehicular industry also exposed several attack surfaces for an
adversary. During the year 2019, the U.S. recorded a total
of 36,355 fatalities due to vehicular accidents. Despite the
pandemic, this number increased to 39,007 in 2020 and 42,939
in 2021. Two possible reasons for the increase in fatality
are the increased propensity for risky driving behaviors and
reduced law enforcement on roads during this period [10].
The fatality rate underscores the importance of comprehensive
initiatives that can improve road safety. An example of such
an initiative is Vision Zero [11], dedicated to enhancing road
safety with the ambitious vision of eliminating road-related
fatalities and severe injuries. With initiatives like Vision Zero,
there is potential to improve overall road safety significantly
and enhance the effectiveness of ITS.

The advancements in vehicular connectivity have allowed
vehicles to produce extensive data that support safety and
security applications in ITS [12]. These data are sourced from
various components, including the in-vehicle CAN [13], [14]
and a range of sensors, such as gyroscopes and accelerometers,
even smartphones, which can be leveraged to learn and model

Symposium on Vehicles Security and Privacy (VehicleSec) 2024
26 February 2024, San Diego, CA, USA
ISBN 979-8-9894372-7-6
https://dx.doi.org/10.14722/vehiclesec.2024.23072
www.ndss-symposium.org

Fig. 1. Total number of deaths in vehicle crashes from 1975-2021

driver behavior [15]. This behavior model is then helpful for
monitoring drivers to facilitate safety and mitigate vehicle
theft. For instance, collecting data representing a driver’s
unique driving characteristics, such as driving speed, steering
angle, and sudden acceleration rates, can support driver pro-
filing applications to verify the identity of the car owner [16].
In addition, these behavior models can be used for situational
awareness, allowing the detection of risky and improper driv-
ing maneuvers that jeopardize the safety of road users [17].
Efficiently recognizing these risky driving maneuvers can be
crucial to safe driving in congested driving conditions, where
sudden and unexpected driving behaviors can lead to collisions
with other vehicles on the road.

To improve road safety, physical vehicle security, and driver
privacy, we propose a graph-based technique, AutoWatch,
that efficiently models the relationships between the driving
behaviors of different drivers to identify car owners and detect
improper driving behavior. Concretely, AutoWatch extracts
feature components with the most impact for efficient clus-
tering to establish links by learning the relationship between
different driving behaviors. Using this learned behavior, we
predict the car owner for identification verification and classify
the driver’s behavior to support situational awareness.

In summary, we make the following contributions in this
paper:

• We propose AutoWatch, a graph-based approach that
models driving characteristics as a graph, where each
node represents a driver or a unique driving behavior.

• To learn the relationship among different driving char-
acteristics, we use a lightweight unsupervised learn-
ing approach based on principal component analysis
(PCA), KMeans clustering, and horizontal visibility graph
(HVG). Using these approaches, we capture the depen-
dencies and associations among the diverse data features.

• We implement a graph neural network (GNN)-based
approach for driver identification and driving maneuver
classification to support safety and security in ITS.

• To demonstrate the effectiveness of our approach, we
evaluate the performance using publicly available vehicu-

lar datasets and compare our work with baseline models.
Our results show that AutoWatch can support vehicular
safety and security in ITS.

II. BACKGROUND

This section provides an overview of our approaches for
establishing connections among data points, including di-
mensionality reduction, clustering, and visibility graph-based
techniques. Additionally, we introduce GNNs, which we use
to learn the embeddings that encode the relationships among
different data points.

A. Dimensionality Reduction

High dimensional data can introduce the curse of di-
mensionality, where data points become equidistant from
each other, adversely affecting distance-based clustering tech-
niques [18]. Dimensionality reduction techniques help trans-
form these data points from a high-dimensional to a lower-
dimensional space. The objective is to retain the essential
properties present in the original data while reducing the
number of features. The technique helps derive new repre-
sentative features from an input dataset. These new features
can be beneficial in clustering different data points to improve
accuracy results and address the challenges posed by high-
dimensional data, which slow down the convergence of clus-
tering algorithms [19], [20]. An example of a dimensionality
reduction technique is Principal Component Analysis (PCA),
a statistical method used to convert the original variables from
an input dataset to a new set of linear combinations that
maximally preserves the covariance of the original data [21].

B. Clustering

Clustering is an unsupervised learning process for finding
meaningful groupings within a set of unlabelled data. The
technique leverages the inherent structure in the data to isolate
groups with common traits or attributes and identify patterns
and relationships between data points [22]. This partition-
ing enables further exploration of the relationships between
these groups and aids in uncovering insights from the data.
A well-known clustering method is the KMeans clustering
algorithm [23], which partitions 𝑛 data points into 𝑘 clusters,
where each cluster represents a group of data points with
high similarity. The KMeans algorithm iteratively assigns data
points to the nearest cluster based on a distance metric. This
technique can help group data points to extract insightful
information.

C. Visibility Graphs

A visibility graph uses graph theoretical concepts to trans-
form time series data into a graph representation useful for
analyzing interrelations among associated data points in the
graph [24]. In the generated graph, data points are represented
as nodes. Two arbitrary data in the graph, such as (𝑡𝑘 , 𝑦𝑘) and
(𝑡𝑛, 𝑦𝑛) are connected, if any other data (𝑡𝑚, 𝑦𝑚) between them
fulfils the following:

2

Fig. 2. An example of time series data with the associated connection using
visibility graphs.

𝑦𝑚 < 𝑦𝑛 + (𝑦𝑘 − 𝑦𝑛)
𝑡𝑛 − 𝑡𝑚
𝑡𝑛 − 𝑡𝑘

(1)

The associated graph generated from the time series data
is always connected, undirected, and invariant under affine
transformations of the series data [25]. Fig. 2 shows an
application of the visibility graph technique. The bars in the
graph represent the data values 𝑦𝑎 where 𝑦0 ≤ 𝑦𝑎 ≤ 𝑦10
occurring at time 𝑡𝑎 where 𝑡0 ≤ 𝑡𝑎 ≤ 𝑡10. The visibility rays in
the graph represent the connecting links between different data
points in the time series. If the first three data points in the
graph are represented as (𝑡𝑘 , 𝑦𝑘), (𝑡𝑚, 𝑦𝑚), (𝑡𝑛, 𝑦𝑛) with val-
ues (1, 10), (2, 4.5), (3, 6), respectively, following Equation 1,
𝑦𝑚 = 4.5 < 6 + (10 − 6) × 3−2

3−1 = 8, which satisfies the
criterion. Therefore, the first and third data points, (𝑡𝑘 , 𝑦𝑘) and
(𝑡𝑛, 𝑦𝑛), are connected. Data points are generally connected in
the resulting graph if the visibility rays do not intercept another
data point placed between them.

D. Graph Neural Networks

A graph is a data structure representing entities as nodes and
their relationships as edges [26]. Using graph representations,
we represent a graph as G = (V, E,X), where V signifies
the set of nodes, E ⊆ V × V characterizes the observed
links, and X corresponds to the attributes matrix. In addition,
the graph’s adjacency matrix is symbolized as A, where
A𝑢𝑣 ∈ A, with 𝑢 and 𝑣 denoting nodes. If there is an edge
connecting nodes 𝑢 and 𝑣, A𝑢𝑣 = 1, otherwise, A𝑢𝑣 = 0.
Furthermore, X𝑢 ∈ X, X𝑢 representing the attributes of node
𝑢, and 𝑋 ∈ R |𝑉 |× 𝑓 , where 𝑓 represents the feature dimension
for each node. Graph Neural Networks (GNNs) generate node
embeddings based on an attributed graph’s attributes and
topological structure. For a given graph G, with its structural
and feature information as input, a GNN model denoted as
F (·) produces node embeddings in a high-dimensional space,
resulting inZ ∈ R |𝑉 |×ℎ, where ℎ represents the dimensionality
of the node embeddings. These learned embeddings Z serve
as a foundation for various tasks, including node prediction.

Fig. 3. Overview of AutoWatch with a GraphSAGE architecture of depth
2 and a 2-layer multi-layer perceptron (MLP) architecture. AGGR represents
the AGGREGATE function.

III. SYSTEM DESIGN

This section outlines the design overview of our proposed
approach, AutoWatch. First, we explore how AutoWatch com-
pletes its feature selection technique for reducing the input
dataset’s dimensionality. Subsequently, we discuss the method-
ology used by AutoWatch to establish links among different
data points and explain the graph-based approach used for
the downstream prediction tasks—the classification tasks that
depend on the link discovery capabilities of AutoWatch. Fig. 3
shows the architecture of AutoWatch. Following feature ex-
traction using PCA, link discovery—a technique we use to
find relevant relationships among different data points—is per-
formed using KMeans clustering and cosine-based similarity
matching. The extracted graph from the link discovery process
is fed as input to a GraphSAGE architecture with a depth of 2.
The output from GraphSAGE passes to a downstream multi-
layer perceptron (MLP) classifier. Finally, the MLP output
logits pass through the softmax function to give the probability
distribution of the predicted classes.

A. Feature Extraction

Vehicle data can be high-dimensional, with many attributes
offering different information, such as speed, acceleration,
and steering wheel angle metrics. Understanding the salient
relationship between these data points is necessary to identify
the individual behind the wheel and classify the driver’s
maneuvers on the road. However, high-dimensional data can
affect clustering performance, essential for establishing rela-
tionships among data points. Consequently, understanding the
individual importance of each feature is crucial to AutoWatch’s
design, as it aims to reduce the dimension of the data for
efficient clustering. To determine the most critical driver
behavior features, we used PCA to transform the original
high-dimensional data points into new variables in a smaller
subspace. These new variables, called principal components
(PCs), summarize the data without losing vital information
present in the original data. Also, PCs are linear combinations
of the original data features that encapsulate the maximum
variance in the data. Although fewer components can be

3

Fig. 4. Clustering visualization using the first two PCs. First, Second, and
Third represent three different data clusters.

beneficial, their significance diminishes if these components
do not capture enough information about the original data.
Thus, choosing the right amount of PCs is crucial to having
enough information for clustering. The explained variance
ratio (EVR) [27] helps to understand the contribution of
each PC by measuring the fraction of variance explained
by that component [20]. We consider the minimum number
of components whose cumulative EVR exceeds a predefined
threshold 𝜏. Based on our experiments, we set 𝜏 = 0.7 with
10 components for clustering, choosing minimum values that
do not degrade the performance of the model.

B. Link Discovery

To establish connections among different data points, we
first separate the data into multiple clusters using KMeans
clustering, resulting in multiple partitions of the original data
based on their similarities. To simplify our design, we divide
our data points into 𝐺 clusters and initialize the KMeans
algorithm with greedy KMeans++, which allows the clustering
algorithm to use several trials at each sampling step to select
the best initial cluster centroids to speed up convergence. We
choose minimum values of 𝐺 for both classification tasks that
efficiently divide the data points based on similarity. Based
on our experiments, we choose 𝐺 = 3 and 𝐺 = 5 for driver
identification and driving maneuver classification, respectively.
A visualization of the 3 clusters used for driver identification
is shown in Fig. 4.

With the data successfully clustered, we assign a unique ID
to each data point to track the connections among different
data points. We establish connections using two techniques:
cosine similarity matching and horizontal visibility graphs.

1) Cosine Similarity Matching: The cosine similarity met-
ric is a common similarity measure in machine learning
applications [28], [29]. The cosine similarity scores between
two vectors 𝛼 and 𝛽 can be expressed as 𝑆𝑠 =

⟨𝛼,𝛽⟩
∥𝛼∥ ∥𝛽 ∥ .

Where ⟨𝛼, 𝛽⟩ gives the dot product between vectors 𝛼 and
𝛽. ∥𝛼∥∥𝛽∥ is the product of the norms of the vectors. We
assume that during the design phase of AutoWatch, an existing
budget 𝐵 determines the number of sampled nodes to be

Fig. 5. Visualization of connected nodes associated with the driver identifi-
cation dataset.

used for establishing connections, where 0 ≤ 𝐵 ≤ 𝑁 . Here,
𝑁 is the total number of data points in the dataset, when
𝐵 = 0, no connections are being established using AutoWatch,
and when 𝐵 = 𝑁 , all available nodes are used to establish
connections. To establish connections, we sample 𝐵

𝐶
number

of data points from each available class in the dataset, where 𝐶
is the number of available classes. After sampling, we look for
inter-cluster similarities and intra-cluster relationships between
selected data points. Inter-cluster similarity helps us establish
connections between data points of different clusters, while
intra-cluster similarity helps us achieve similarity between
data points of the same cluster. To establish a connection, we
compare each node (i.e., each data point) with other sampled
nodes and establish connections between pairs with the highest
𝑆𝑠 .

2) Horizontal Visibility Graph (HVG): We also establish
connections among data points within each class using the
HVG algorithm, which maps the time series data of each
class into graphs with established connections among nodes.
The HVG algorithm simplifies the original visibility graph
algorithm, and its output is always a subgraph of the more
complex visibility graph [30]. Concretely, two data points are
connected if we can draw a horizontal ray connecting both data
points without intersecting any intermediate data point. If we
represent the time series data within a class as 𝑥𝑡 1,...,𝑁 and
consider two points in the time series, 𝑡 and 𝑖 = 𝑡 + 𝑧, where
𝑧 is an integer greater than 0, then the connection between
points 𝑡 and 𝑖 is subject to the following criteria:

𝑥𝑡 , 𝑥𝑖 > 𝑥𝑛,∀𝑛 ∈ 𝑁 |𝑡 < 𝑛 < 𝑖 (2)

Using the cosine similarity matching and the HVG tech-
niques, we establish connections among different data points
representing driver behaviors, which we use in the graph
neural network that learns the embedding that can be used
for classification from the supplied graphs. A visualization
of the connected nodes after link discovery for the driver
identification dataset we used for evaluation is shown in Fig. 5.

4

C. Graph-based Learning
We adopt GraphSAGE [31] to learn the relationships be-

tween connected data points and generate embeddings that are
fed as input to a classifier for driver identification and driving
maneuver predictions. Using an inductive learning technique,
GraphSAGE leverages node features to learn embeddings that
generalize to nodes that are not available during training.
Other advantages of GraphSAGE include its efficiency for
large graphs and its ability to learn spatial information from
the underlying data by considering the topological structure
of the neighbors of each node and the distribution of the
features of nodes in the neighborhood [32]. To generate em-
beddings, GraphSAGE learns the parameters of K aggregator
functions, expressed as AGGREGATE𝑘 ,∀𝑘 ∈ {1, 2, . . . , 𝐾}
and K weight matrices, expressed as 𝑊 𝑘 ,∀𝑘 ∈ {1, 2, . . . , 𝐾}.
These functions are used for aggregating information from the
neighbors of each node 𝑣 ∈ V, and the weights are used to
propagate information between layers of the model. Each node
𝑣 generates an initial input node feature ℎ0

𝑣 ← 𝑥𝑣 and for
each aggregator generates an embedding for each node in its
immediate neighborhood N(𝑣), as follows:

ℎ𝑘N(𝑣) ← AGGREGATE𝑘 ({ℎ𝑘−1
𝑢 ,∀𝑢 ∈ N (𝑣)}) (3)

where ℎ𝑘−1
𝑢 is the current representation of the aggregate

neighbors’ embeddings, which depends on the previous iter-
ation. The aggregated representation is concatenated with the
node’s current representation ℎ𝑘−1

𝑣 as follows:

ℎ𝑘𝑣 ← 𝜎(𝑊 𝑘 · CONCAT(ℎ𝑘−1
𝑣 , ℎ𝑘N(𝑣))) (4)

where 𝜎 is a nonlinear activation function. In our work, we
use the mean aggregator in line with the original GraphSAGE
paper [31], which is a linear approximation of a localized
spectral convolution [32], [33] and can be expressed as:

ℎ𝑘𝑣 ← 𝜎(𝑊 𝑘 ·MEAN({ℎ𝑘−1
𝑣 } ∪ {ℎ𝑘−1

𝑢 ,∀𝑢 ∈ N (𝑣)})) (5)

The final representation 𝑧𝑣 of a node can be expressed as:

𝑧𝑣 ≡ ℎ𝐾𝑣 ,∀𝑣 ∈ V (6)

GraphSAGE works by encouraging nodes close to each
other to have similar representations and forcing nodes dis-
similar to have different embeddings. The model achieves this
objective by minimizing the following loss function:

𝐽𝐺 (𝑧𝑢) = −𝑙𝑜𝑔(𝜎(𝑧𝑇𝑢 𝑧𝑣)) −𝑄 · E𝑣𝑛∼𝑃𝑛 (𝑣) 𝑙𝑜𝑔(𝜎(𝑧𝑇𝑢 𝑧𝑣𝑛)) (7)

Here, 𝑢, 𝑣 ∈ V and 𝑣 co-occur near 𝑢 on a fixed-length random
walk—a graph traversal technique that begins at a node and
moves to a neighbor with a certain probability. 𝑃𝑛 is a negative
sampling distribution of nodes in V, 𝑄 represents the number
of negative samples, and 𝜎 is the sigmoid activation function.

After learning the embeddings for each node, we feed these
embeddings to an MLP, which we use as our classifier. For an
input 𝑧𝑖 , we define the encoding of the classifier as:

𝑋𝑣 = 𝜎(𝑊𝑚𝑧𝑖 + 𝑏𝑚) (8)

where 𝑊𝑚 and 𝑏𝑚 are learnable parameters, and 𝜎 is a non-
linear activation function. We apply the softmax function to
the final output of the MLP to convert the logits from the
model’s output into a probability distribution over the target
output classes. The final prediction can be expressed as:

𝑦𝑣 = arg max(SOFTMAX(𝑋𝑣)) (9)

The prediction 𝑦𝑣 , represents the respective identified classes
for the driver identification and driving maneuver tasks.

IV. EXPERIMENTAL SETUP

A. Datasets

To our understanding, no comprehensive dataset in the
literature encompasses labels for driver identification and
driving maneuver tasks in a unified manner. We leverage two
diverse datasets aligned with each task’s requirements and
incorporate embeddings learned from these datasets during
training to address the unique challenges of each task. Inte-
grating the learned embeddings improves AutoWatch’s overall
performance, allowing it to excel in both tasks with improved
proficiency.

1) Dataset 1: For driver identification, we use the driving
dataset1 from the Hacking and Countermeasure Research
Lab [16]. The data was extracted from the OBD-II port of a
model of KIA Motors Corporation in South Korea and includes
a driving time of about 23 hours with a driving path totaling
23 km. The dataset includes 10 drivers labeled "A" to "J"
with 94,401 records and 51 distinct features retrieved from
recordings every 1 second while driving.

2) Dataset 2: To demonstrate the proposed approach’s
efficiency in extracting useful connections, which improves
classification performance, we use another publicly available
driving behavior dataset2 used for modeling risky driver behav-
iors based on accelerometer and gyroscope data [34]. The data
was extracted from experiments conducted on a Ford Fiesta
1.4, a Ford Fiesta 1.25, and a Hyundai i20 using 3 drivers aged
27, 28, and 37. Equipment used to extract the data includes
an MPU6050 (3-axis accelerometer and 3-axis gyroscope) and
a Raspberry Pi 3 Model B. The dataset contains 4 driving
behaviors: sudden acceleration, sudden right turn, sudden left
turn, and sudden break. For our experiment, we sample data
with a window size of 14 seconds.

B. Data Preprocessing

We preprocess the datasets by converting the labels to
numerical values and then normalizing the attributes using the
z-score. The z-score scales the data to unit variance and a mean
of zero, allowing the data to assume Gaussian distribution. The
z-score for each data point can be expressed as 𝑧 = 𝑥−𝜇

𝜎
.

1Dataset 1 is available at http://ocslab.hksecurity.net/Datasets/
driving-dataset

2Dataset 2 is available at https://data.mendeley.com/datasets/jj3tw8kj6h/2

5

http://ocslab.hksecurity.net/Datasets/driving-dataset
http://ocslab.hksecurity.net/Datasets/driving-dataset
https://data.mendeley.com/datasets/jj3tw8kj6h/2

Where 𝑢 is the mean and 𝜎 is the standard deviation of the
data. 𝑥 is the data point we want to standardize, and 𝑧 is the
standardized value.

C. Baselines
We compare the performance of our graph-based Au-

toWatch against four baselines: support vector machine
(SVM), decision tree (DT), K-nearest neighbors (KNN), and
multi-layer perception (MLP). These are the baselines used
in the literature for driver identification and driving maneuver
classification [16], [35]–[37].

1) Support Vector Machines (SVMs): SVMs [38] are a class
of supervised learning algorithms used for classification [39].
Classifiers in SVMs use hyperplanes corresponding to the
classification task’s decision functions. The classifier can also
perform nonlinear classification tasks made possible using
kernel functions.

2) Decision Trees (DTs): DTs [40] are types of classifiers
that recursively partition the input space to form a directed
tree with a root node with no incoming edges and other
nodes with only one incoming edge. The internal nodes of
the tree represent tests on specific data attributes and the
outgoing edges of these nodes represent the outcome of
the respective tests [41]. The leaf nodes of the tree denote
predicted class labels based on the path followed during the
recursive partition.

3) K-nearest neighbors (KNN): KNN [42] is a supervised
non-parametric classification technique known for its sim-
plicity and effectiveness [43]. For classification tasks, KNN
algorithms identify data that are closest in a given region using
distance metrics such as Euclidean, Hamming, and Chebychev
distances [44]. We have used the Euclidean distance for
our comparisons since it is the most common one used in
KNN [42].

4) Multi-layer perceptrons (MLPs): MLPs [45] are types
of artificial neural networks that are widely used for differ-
ent tasks, including classification problems. Feature vectors
extracted from the training data are fed as input to the
MLP, which has a network of nodes that compute simple
functions [46]. The outputs of the MLP are logits that can
be converted to probability distributions for classification. In
our work, we specifically choose the MLP as our downstream
classifier to show improvement in the performance of the clas-
sifier when used with the learned embeddings of AutoWatch.

D. Metrics
We evaluate the effectiveness of AutoWatch using standard

metrics such as accuracy, precision, recall, and F1 score.
1) Accuracy: The accuracy, 𝐴, is the number of correctly

predicted classes divided by the total number of observations.
The accuracy can be expressed as:

𝐴 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 (10)

where 𝑇𝑁 and 𝑇𝑃 are the true negative and true positive
values, respectively. 𝐹𝑁 and 𝐹𝑃 are the false negative and
false positive values, respectively.

TABLE I
OVERVIEW OF DATASETS AFTER LINK DISCOVERY

Datasets No. of nodes No. of edges No. of features

Dataset 1 94380 58616 52

Dataset 2 1114 533 12

2) Precision: The precision, 𝑃, denotes the proportion of
identified classes that were actually correct. We can express 𝑃
as follows:

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (11)

3) Recall: The recall, 𝑅, is the fraction of correctly pre-
dicted instances of a specific class. The recall can be expressed
as:

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (12)

4) F1 score: The F1 score offers a compact assessment
of a model’s effectiveness using a weighted average of the
precision and the recall. The F1 score is given by:

𝐹1 =
2 ∗ (𝑅 ∗ 𝑃)
𝑅 + 𝑃 (13)

V. EVALUATION

In this section, we present the results of our experiment.
With 10% of nodes from each dataset used for establishing
connections, AutoWatch’s link discovery stage successfully
identified 58,616 and 533 relationships with Datasets 1 and
2, respectively. Table I summarizes the dataset configuration
after the link discovery stage.

A. Performance on identification tasks

We evaluate the performance of AutoWatch on the driver
identification and driving maneuver classification tasks. In our
experiment, we use the same configurations for the baseline
MLP model and our downstream MLP classifier for fair
comparison. For Dataset 1, we use a 2-layer MLP with the
rectified linear unit activation function and a learning rate of
1e-03. We also use a hidden layer with 128 hidden units. For
Dataset 2, we use a hidden unit of 512 and run the models for
1,000 epochs.

The confusion matrix for the driver identification task on
Dataset 1 is shown in Fig. 6. The results show that AutoWatch
can efficiently identify most of the drivers based on their
driving styles. Drivers "A" and "E" are recognized with an
accuracy of 100%. The lowest classification results for the
driver identification tasks were on drivers "D" and "G", with
accuracies of 99.88% and 99.87%, respectively. Notably, a
significant portion of false positives for driver "G" results
from its misclassification as "D," with 0.08% misclassification
accuracy on "D".

Fig. 7 shows the result for the driving maneuver task on
Dataset 2. AutoWatch was able to attain 100% accuracy with

6

TABLE II
COMPARISON OF AUTOWATCH’S PERFORMANCE WITH 4 BASELINES AND

2 DATASETS. RESULTS ARE GIVEN IN PERCENTAGES (%)

Models/Datasets Metrics SVM DT KNN MLP AutoWatch

Dataset 1

Accuracy 85.9 81.9 90.4 99.5 99.9

Precision 86.3 82.9 90.6 99.5 99.9

Recall 85.9 81.9 90.4 99.5 99.9

F1 Score 85.9 81.7 90.4 99.5 99.9

Dataset 2

Accuracy 94.4 97.1 94.7 98.2 99.8

Precision 94.5 97.9 94.8 98.3 99.8

Recall 94.4 97.9 94.7 98.2 99.8

F1 Score 94.6 97.9 94.7 98.2 99.8

the prediction of sudden break. In addition, the model achieves
also an accuracy of 100% with both sudden acceleration and
sudden right turn and an accuracy of 99.32% for sudden left
turn.

B. Comparison with baselines

We compare the performance of AutoWatch with other
baselines used in prior work and summarize the result of our
evaluation in Table II.

From the results depicted in Table II, DT has the lowest
performance result for the driver identification task on Dataset
1 with an accuracy score of 81.9%. SVM improves on all four
metrics, but can only achieve an accuracy of 85.9% on the
identification task. The MLP performed better than the rest of
the baselines achieving an accuracy of 99.5%, an improvement
on the KNN which achieves an accuracy of 90.4%. AutoWatch
achieves 99.9% for accuracy, precision, recall, and F1 score
improving on the performance of the MLP model with only
10% of connection nodes. Overall, AutoWatch improves ac-
curacy performance by 16.3%, 22%, 10.5%, and 0.4% for
SVM, DT, KNN, and MLP, respectively. The performance of
AutoWatch shows that it can better leverage the relationships
between data points for different classification tasks.

Table II also shows the performance comparison for the
driving maneuver task on Dataset 2. SVM achieves 94.4%,
94.5%, 94.4%, and 94.6% accuracy, precision, recall, and F1
score, respectively. KNN has a similar performance to SVM
with a slight improvement, achieving an accuracy score of
94.7%, and improved by DT with an accuracy of 97.1%.
AutoWatch achieves the best overall score of 99.8% for accu-
racy, precision, recall, and F1 score, improving the accuracy
performance by 5.7%, 2.8%, 5.4%, and 1.6% for SVM, DT,
KNN, and MLP, respectively. The efficiency of AutoWatch
with only 10% connected nodes is more evident with dataset
2 between the base MLP classifier without graph capabilities
and the AutoWatch using graph-based techniques to learn
feature representations before feeding these representations to
the MLP classifier.

C. Impact of number of connections

To show the impact of the number of connections on model
performance, we evaluate AutoWatch on Dataset 1 using
2%, 5%, 7%, and 10% nodes for connections and running

the model for 100 epochs. Fig. 8 shows the result of our
evaluation. With 2% connected nodes, the model achieves an
accuracy of 94.30%, which was increased to 97.96% when we
used 5% nodes to establish connections. With 7% connected
nodes, the accuracy improved to 98.61% and further to 99.06%
with 10% connections. The result shows the importance of the
number of connections for establishing crucial relationships
among data points and learning embeddings that can be used
for efficient classification tasks.

D. Does AutoWatch capture meaningful relationships that
help with classification?

We also show the effect of AutoWatch on the resulting em-
beddings from the data points. For our visualization, we used
the t-distributed stochastic neighbor embedding (t-SNE) [47]
— a technique used for the visualization of high-dimensional
data in a low-dimensional space — to reduce the dimensions
of the embeddings just before the input layer of the MLP to
two dimensions. Fig. 9 shows the plot of the embeddings of
dataset 2 after we apply t-SNE.

It shows that AutoWatch can separate most of the data points
into distinct classes, which makes it possible for a downstream
classifier to classify with sufficient training data. The result
shows that AutoWatch learns crucial relationships among data
points that can be used to assist the downstream classifier in
properly distinguishing between the different classes in the
dataset.

VI. DISCUSSION

Our work demonstrates the effectiveness of AutoWatch in
driver identification, contributing to reducing auto theft and
enhancing situation awareness by detecting unsafe driving
maneuvers. Our results show that AutoWatch facilitates gener-
alization across various classification tasks to improve vehicle
and driver safety.

The driver identification approach can be implemented by
notifying the vehicle owner through a mobile application in
the event of theft. Car insurance companies typically permit
owners to maintain a list of authorized users [48]. Owners
can establish a trust list with a trusted authority authorized to
identify and flag anomalous users. Furthermore, AutoWatch
enables the analysis of decision-making processes leading to
different classification outcomes, revealing connections that
infer similarities in the behaviors of diverse drivers.

For situational awareness, AutoWatch’s application can in-
clude a dashboard that alerts the driver to anomalous driving
behaviors. Similar to techniques used by usage-based insur-
ance companies to calculate driving scores to adjust insur-
ance premiums and discounts, the dashboard may also offer
analytical insights into the driver’s behavior over time [49].
This approach bolsters driver safety by leveraging available
sensor information and employing our graph-based method
for driving maneuver classification.

Our results show that increasing the number of connec-
tions may improve the model’s efficiency. However, network
designers can also consider budget constraints to determine

7

Fig. 6. Confusion matrix for Dataset 1 Fig. 7. Confusion matrix for Dataset 2. SB, SLT, SRT, and SA
represent sudden break, sudden left turn, sudden right turn, and sudden
acceleration, respectively.

Fig. 8. Accuracy with increasing number of connections Fig. 9. A t-SNE plot of the embeddings of dataset 2. Each color
represents different classes.

a trade-off between computation complexity and accuracy in
choosing an optimal number of connected nodes required for
classification tasks. To use the optimal number of connections,
designers can decide to train AutoWatch centrally in the cloud.
However, if on-device training is preferred, where the training
is completed in the vehicle, the number of connections can be
reduced to account for the resource constraints of individual
vehicles.

Using AutoWatch, instances where time constraints are
critical can leverage techniques like knowledge distillation
(KD) [50], [51] to allow training a simpler student model, such
as a basic MLP, for real-time classification. This method en-
hances the performance of resource-efficient student models by
leveraging more powerful teacher models. The student model
operates independently during inference, ensuring effective
classification for time-sensitive tasks. In vehicles, a simpler
MLP trained with a teacher AutoWatch model can be used to

flag anomalous drivers and unsafe driving behaviors.

VII. RELATED WORK

Several works have been proposed for detecting unsafe driv-
ing maneuvers by learning driver behavior through vehicular
sensor data. Lattanzi et al. [17] proposed a methodology based
on machine learning techniques, such as SVM and artificial
neural network (ANN), aimed at recognizing safe and unsafe
driving behaviors by taking advantage of sensors present in
modern cars. Khosravi et al. [52] utilized real-time smartphone
sensor signals by developing an Android application that
collects these smartphone sensor signals to detect driving
events. The collected data undergo a novel multi-classifier
fusion framework, ensembling hybrid convolutional neural
network (CNN), SVM, and MLP models, where each classifier
processes each sample input and combines the outputs using
a majority vote. Khosravinia et al. [53] proposed a framework

8

that extracts relevant sensor information from the CAN bus
and uses graph convolutional recurrent neural networks de-
ployed at the edge server to classify driving behaviors into
safe and unsafe classes. In addition, the authors developed
a dashboard enabling drivers to access their driving reports,
monitor the prediction results, and get alerts during unsafe
driving scenarios. Ma et al. [54] proposed a real-time abnormal
driving behavior detection method based on vehicle kinematic
data called the long short-term memory residual (LSTM-R).
The LSTM-R method compares current and historical vehicle
kinematic data, such as speed, acceleration, direction, and
position, to detect unusual behavior. LSTM-R flags abnormal
driving by looking at these differences over a specific time
frame. While the discussed papers [17], [52]–[54] distinguish
between safe and unsafe driving patterns, they overlook driver
identification, a crucial factor in preventing vehicle theft. Our
proposed method efficiently models the relationships between
the driving behaviors of different drivers to identify car owners
along with detecting unsafe driving.

Enev et al. [55] analyzed driving behavior using in-vehicle
sensor readings. The authors proposed a multi-class classifica-
tion approach employing pairwise classifiers for each driver.
The pairwise classifiers, utilizing binary classification models
such as SVM, random forest (RF), KNN, and Naive Bayes,
were trained on features extracted from sensor readings. These
readings were recorded from driving on a closed loop setting in
a parking lot and an open loop setting. Li et al. [56] proposed
a driver identification approach that collects data from a 3-
axis accelerometer, which records the lateral, longitudinal, and
vertical accelerations for drivers’ driving behavior analysis.
The proposed approach contains a multi-modal ensemble
algorithm comprising multiple classifiers, such as KNN, RF,
MLP, and AdaBoost algorithms, that help identify the driver
based on combining the output of the multi-classifiers. Ravi et
al. [57] leveraged the sensor data collected from the CAN
bus, which offers insights into driving behavior, and employed
an LSTM deep learning model to distinctly identify the
legitimate driver of a vehicle based on this data. Martinelli et
al. [58] proposed a framework that compares the accuracy
and effectiveness of driver detection based on CAN bus
data with several machine learning algorithms, including J48,
J48graft, J48consolidated, RandomTree, and RepTree. Yang et
al. [59] proposed a deep learning architecture (Driver2vec) to
identify drivers. Driver2vec is a custom deep learning model
that leverages performance gains of temporal convolutional
networks, embedding separation power of triplet loss and
classification accuracy of gradient boosting decision trees to
ensure precise driver identification accuracy. However, these
papers do not analyze drivers’ behavior towards unsafe driving
detection.

VIII. CONCLUSION

In this paper, we present AutoWatch, an efficient approach
that utilizes graph-based techniques for learning relationships
among diverse data samples, with embeddings that can be
used for subsequent prediction tasks. AutoWatch integrates

techniques such as PCA, cosine similarity, HVG, and GNN
to establish meaningful connections between data points and
generate embeddings. These embeddings are subsequently
employed in an MLP classifier for tasks related to driver
identification and detection of unsafe driving maneuvers.
Through empirical studies on two datasets, we demonstrate
that AutoWatch significantly enhances classification perfor-
mance compared to baseline methods. Furthermore, our anal-
ysis highlights the impact of AutoWatch on the embeddings
derived from data samples. In addition, we emphasize the
importance of the number of connections in influencing Au-
toWatch’s performance. AutoWatch provides a robust frame-
work for representing data samples as graphs, offering a
versatile foundation for diverse classification tasks.

REFERENCES

[1] NHTSA, “Vehicle theft prevention,” United States Department of Trans-
portation, Accessed October 18, 2023,
https://www.nhtsa.gov/road-safety/vehicle-theft-prevention.

[2] ——, “Federal motor vehicle theft prevention standard,” United States
Department of Transportation, Accessed October 18, 2023,
https://www.federalregister.gov/documents/2002/06/26/02-15903/
federal-motor-vehicle-theft-prevention-standard.

[3] F. D. Garcia, D. Oswald, T. Kasper, and P. Pavlidès, “Lock it and
still lose it—on the ({In) Security} of automotive remote keyless entry
systems,” in 25th USENIX security symposium (USENIX Security 16),
2016.

[4] K. Tindell, “Can injection: Exploring the possibilities,” https://kentindell.
github.io/2023/04/03/can-injection/, 2023, accessed: December 25,
2023.

[5] M. D. Pesé and K. G. Shin, “Survey of automotive privacy regulations
and privacy-related attacks,” 2019.

[6] F. T. Commission, “Connected cars: Privacy and se-
curity issues related to connected and automated ve-
hicles,” https://www.ftc.gov/news-events/events/2017/06/
connected-cars-privacy-security-issues-related-connected-automated-vehicles,
2017, accessed: December 25, 2023.

[7] WHO, “Road traffic injuries,” World Health Organization, June 20, 2022
(Accessed October 18, 2023),
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries.

[8] IIHS, “Fatality facts 2021 yearly snapshot,” Insurance Institute for
Highway Safety - Highway Loss Data Institute, =Accessed October 18,
2023,
https://www.iihs.org/topics/fatality-statistics/detail/yearly-snapshot.

[9] NHTSA, “Fatality analysis reporting system,” United States Department
of Transportation, =Accessed October 18, 2023,
https://www.nhtsa.gov/crash-data-systems/
fatality-analysis-reporting-system.

[10] E. K. Adanu, D. Brown, S. Jones, and A. Parrish, “How did the covid-19
pandemic affect road crashes and crash outcomes in alabama?” Accident
Analysis & Prevention, vol. 163, p. 106428, 2021.

[11] C. Tingvall and N. Haworth, “Vision zero-an ethical approach to safety
and mobility,” in 6th ITE international conference road safety & traffic
enforcement: Beyond 2000, 1999.

[12] P. Agbaje, A. Anjum, A. Mitra, E. Oseghale, G. Bloom, and H. Olu-
fowobi, “Survey of interoperability challenges in the internet of vehi-
cles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23,
no. 12, pp. 22 838–22 861, 2022.

[13] M. H. Shahriar, W. Lou, and Y. T. Hou, “Cantropy: Time series
feature extraction-based intrusion detection systems for controller area
networks.”

[14] P. Agbaje, A. Anjum, A. Mitra, G. Bloom, and H. Olufowobi, “A
framework for consistent and repeatable controller area network ids
evaluation,” in Fourth International Workshop on Automotive and Au-
tonomous Vehicle Security, 2022.

[15] J. Xu, S. Pan, P. Z. Sun, S. H. Park, and K. Guo, “Human-factors-in-
driving-loop: Driver identification and verification via a deep learning
approach using psychological behavioral data,” IEEE Transactions on
Intelligent Transportation Systems, vol. 24, no. 3, pp. 3383–3394, 2022.

9

https://www.nhtsa.gov/road-safety/vehicle-theft-prevention
https://www.federalregister.gov/documents/2002/06/26/02-15903/federal-motor-vehicle-theft-prevention-standard
https://www.federalregister.gov/documents/2002/06/26/02-15903/federal-motor-vehicle-theft-prevention-standard
https://kentindell.github.io/2023/04/03/can-injection/
https://kentindell.github.io/2023/04/03/can-injection/
https://www.ftc.gov/news-events/events/2017/06/connected-cars-privacy-security-issues-related-connected-automated-vehicles
https://www.ftc.gov/news-events/events/2017/06/connected-cars-privacy-security-issues-related-connected-automated-vehicles
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.iihs.org/topics/fatality-statistics/detail/yearly-snapshot
https://www.nhtsa.gov/crash-data-systems/fatality-analysis-reporting-system
https://www.nhtsa.gov/crash-data-systems/fatality-analysis-reporting-system

[16] B. I. Kwak, J. Woo, and H. K. Kim, “Know your master: Driver
profiling-based anti-theft method,” in 2016 14th Annual Conference on
Privacy, Security and Trust (PST). IEEE, 2016, pp. 211–218.

[17] “Machine learning techniques to identify unsafe driving behavior by
means of in-vehicle sensor data,” Expert Systems with Applications, vol.
176, p. 114818, 2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0957417421002591

[18] S. Zhang, O. T. Ajayi, and Y. Cheng, “A self-supervised learning
approach for accelerating wireless network optimization,” IEEE Trans-
actions on Vehicular Technology, 2023.

[19] G. T. Reddy, M. P. K. Reddy, K. Lakshmanna, R. Kaluri, D. S. Rajput,
G. Srivastava, and T. Baker, “Analysis of dimensionality reduction
techniques on big data,” Ieee Access, vol. 8, pp. 54 776–54 788, 2020.

[20] O. T. Ajayi, X. Cao, H. Shan, and Y. Cheng, “Self-renewal machine
learning approach for fast wireless network optimization,” in 2023 IEEE
20th International Conference on Mobile Ad Hoc and Smart Systems
(MASS). IEEE, 2023, pp. 134–142.

[21] M. Greenacre, P. J. Groenen, T. Hastie, A. I. d’Enza, A. Markos, and
E. Tuzhilina, “Principal component analysis,” Nature Reviews Methods
Primers, vol. 2, no. 1, p. 100, 2022.

[22] A. Ghosal, A. Nandy, A. K. Das, S. Goswami, and M. Panday, “A
short review on different clustering techniques and their applications,”
Emerging Technology in Modelling and Graphics: Proceedings of IEM
Graph 2018, pp. 69–83, 2020.

[23] M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A
comprehensive survey and performance evaluation,” Electronics, vol. 9,
no. 8, p. 1295, 2020.

[24] L. Lacasa, A. Nunez, É. Roldán, J. M. Parrondo, and B. Luque, “Time
series irreversibility: a visibility graph approach,” The European Physical
Journal B, vol. 85, pp. 1–11, 2012.

[25] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuno, “From
time series to complex networks: The visibility graph,” Proceedings of
the National Academy of Sciences, vol. 105, no. 13, pp. 4972–4975,
2008.

[26] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI open, vol. 1, pp. 57–81, 2020.

[27] A. d’Aspremont, L. Ghaoui, M. Jordan, and G. Lanckriet, “A direct
formulation for sparse pca using semidefinite programming,” Advances
in neural information processing systems, vol. 17, 2004.

[28] P. Tian, W. Liao, W. Yu, and E. Blasch, “Wscc: A weight-similarity-
based client clustering approach for non-iid federated learning,” IEEE
Internet of Things Journal, vol. 9, no. 20, pp. 20 243–20 256, 2022.

[29] P. Agbaje, A. Anjum, Z. Talukder, M. Islam, E. Nwafor, and H. Olu-
fowobi, “Fedcime: An efficient federated learning approach for clients
in mobile edge computing,” in 2023 IEEE International Conference on
Edge Computing and Communications (EDGE). IEEE, 2023, pp. 215–
220.

[30] B. Luque, L. Lacasa, F. Ballesteros, and J. Luque, “Horizontal visibility
graphs: Exact results for random time series,” Physical Review E, vol. 80,
no. 4, p. 046103, 2009.

[31] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[32] J. Liu, G. P. Ong, and X. Chen, “Graphsage-based traffic speed fore-
casting for segment network with sparse data,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 3, pp. 1755–1766, 2020.

[33] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[34] A. S. Yuksel and Atmaca, “Driving behavior dataset,” https://doi.org/
10.17632/jj3tw8kj6h.2, 2020, mendeley Data, V2.

[35] M. N. Azadani and A. Boukerche, “Driving behavior analysis guidelines
for intelligent transportation systems,” IEEE transactions on intelligent
transportation systems, vol. 23, no. 7, pp. 6027–6045, 2021.

[36] W. Wang, J. Xi, A. Chong, and L. Li, “Driving style classification using a
semisupervised support vector machine,” IEEE Transactions on Human-
Machine Systems, vol. 47, no. 5, pp. 650–660, 2017.

[37] Y. Yao, X. Zhao, H. Du, Y. Zhang, G. Zhang, and J. Rong, “Classification
of fatigued and drunk driving based on decision tree methods: a
simulator study,” International journal of environmental research and
public health, vol. 16, no. 11, p. 1935, 2019.

[38] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Sup-
port vector machines,” IEEE Intelligent Systems and their applications,
vol. 13, no. 4, pp. 18–28, 1998.

[39] J. Wei, C. Long, J. Li, and J. Zhao, “An intrusion detection algorithm
based on bag representation with ensemble support vector machine
in cloud computing,” Concurrency and Computation: Practice and
Experience, vol. 32, no. 24, p. e5922, 2020.

[40] L. Rokach and O. Maimon, “Decision trees,” Data mining and knowl-
edge discovery handbook, pp. 165–192, 2005.

[41] K. Rai, M. S. Devi, and A. Guleria, “Decision tree based algorithm for
intrusion detection,” International Journal of Advanced Networking and
Applications, vol. 7, no. 4, p. 2828, 2016.

[42] L. E. Peterson, “K-nearest neighbor,” Scholarpedia, vol. 4, no. 2, p.
1883, 2009.

[43] K. Taunk, S. De, S. Verma, and A. Swetapadma, “A brief review of
nearest neighbor algorithm for learning and classification,” in 2019
international conference on intelligent computing and control systems
(ICCS). IEEE, 2019, pp. 1255–1260.

[44] G. Baldini and D. Geneiatakis, “A performance evaluation on distance
measures in knn for mobile malware detection,” in 2019 6th inter-
national conference on control, decision and information technologies
(CoDIT). IEEE, 2019, pp. 193–198.

[45] L. Noriega, “Multilayer perceptron tutorial,” School of Computing.
Staffordshire University, vol. 4, no. 5, p. 444, 2005.

[46] D. W. Ruck, S. K. Rogers, and M. Kabrisky, “Feature selection using
a multilayer perceptron,” Journal of neural network computing, vol. 2,
no. 2, pp. 40–48, 1990.

[47] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[48] E. Martin, “Determining which drivers must be listed on a
car insurance policy,” https://www.insure.com/car-insurance/
determining-which-drivers-must-be-listed-car-insurance-policy.html,
accessed: December 6, 2023.

[49] S. Arumugam and R. Bhargavi, “A survey on driving behavior analysis
in usage based insurance using big data,” Journal of Big Data, vol. 6,
pp. 1–21, 2019.

[50] C. K. Joshi, F. Liu, X. Xun, J. Lin, and C. S. Foo, “On representation
knowledge distillation for graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, 2022.

[51] H. He, J. Wang, Z. Zhang, and F. Wu, “Compressing deep graph neural
networks via adversarial knowledge distillation,” in Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2022, pp. 534–544.

[52] E. Khosravi, A. M. A. Hemmatyar, M. J. Siavoshani, and B. Moshiri,
“Safe deep driving behavior detection (s3d),” IEEE Access, vol. 10, pp.
113 827–113 838, 2022.

[53] P. Khosravinia, T. Perumal, and J. Zarrin, “Enhancing road safety
through accurate detection of hazardous driving behaviors with graph
convolutional recurrent networks,” IEEE Access, vol. 11, pp. 52 983–
52 995, 2023.

[54] Y. Ma, Z. Xie, S. Chen, F. Qiao, and Z. Li, “Real-time detection of
abnormal driving behavior based on long short-term memory network
and regression residuals,” Transportation research part C: emerging
technologies, vol. 146, p. 103983, 2023.

[55] M. Enev, A. Takakuwa, K. Koscher, and T. Kohno, “Automobile driver
fingerprinting.” Proc. Priv. Enhancing Technol., vol. 2016, no. 1, pp.
34–50, 2016.

[56] Z. Li, K. Zhang, B. Chen, Y. Dong, and L. Zhang, “Driver identification
in intelligent vehicle systems using machine learning algorithms,” IET
Intelligent Transport Systems, vol. 13, no. 1, pp. 40–47, 2019.

[57] C. Ravi, A. Tigga, G. T. Reddy, S. Hakak, and M. Alazab, “Driver iden-
tification using optimized deep learning model in smart transportation,”
ACM Transactions on Internet Technology, vol. 22, no. 4, pp. 1–17,
2022.

[58] F. Martinelli, F. Mercaldo, V. Nardone, A. Orlando, A. Santone et al.,
“Who’s driving my car? a machine learning based approach to driver
identification.” in ICISSP, 2018, pp. 367–372.

[59] J. Yang, R. Zhao, M. Zhu, D. Hallac, J. Sodnik, and J. Leskovec,
“Driver2vec: Driver identification from automotive data. arxiv 2021,”
arXiv preprint arXiv:2102.05234.

10

https://www.sciencedirect.com/science/article/pii/S0957417421002591
https://www.sciencedirect.com/science/article/pii/S0957417421002591
https://doi.org/10.17632/jj3tw8kj6h.2
https://doi.org/10.17632/jj3tw8kj6h.2
https://www.insure.com/car-insurance/determining-which-drivers-must-be-listed-car-insurance-policy.html
https://www.insure.com/car-insurance/determining-which-drivers-must-be-listed-car-insurance-policy.html

	Introduction
	Background
	Dimensionality Reduction
	Clustering
	Visibility Graphs
	Graph Neural Networks

	System Design
	Feature Extraction
	Link Discovery
	Cosine Similarity Matching
	Horizontal Visibility Graph (HVG)

	Graph-based Learning

	Experimental Setup
	Datasets
	Dataset 1
	Dataset 2

	Data Preprocessing
	Baselines
	Support Vector Machines (SVMs)
	Decision Trees (DTs)
	K-nearest neighbors (KNN)
	Multi-layer perceptrons (MLPs)

	Metrics
	Accuracy
	Precision
	Recall
	F1 score

	Evaluation
	Performance on identification tasks
	Comparison with baselines
	Impact of number of connections
	Does AutoWatch capture meaningful relationships that help with classification?

	Discussion
	Related Work
	Conclusion
	References

