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Abstract—Authentication logs can be helpful to Security Oper-
ations Centers (SOCs), but they are often messy, reporting details
more relevant to system configurations than user experiences and
spreading information on a single authentication session across
multiple entries. This paper presents a method for converting
raw authentication logs into user-centered “event logs” that
exclude non-interactive sessions and capture critical aspects of
the authentication experience. This method is demonstrated using
real data from a university spanning three semesters. Event con-
struction is presented along with several examples to demonstrate
the utility of event logs in the context of a SOC. Authentication
success rates are shown to widely vary, with the bottom 5%
of users failing more than one third of authentication events.
A proactive SOC could utilize such data to assist struggling
users. Event logs can also identify persistently locked out users.
2.5% of the population under study was locked out in a given
week, indicating that interventions by SOC analysts to reinstate
locked-out users could be manageable. A final application of
event logs can identify problematic applications with above
average authentication failure rates that spike periodically. It also
identifies lapsed applications with no successful authentications,
which account for over 50% of unique applications in our sample.

I. INTRODUCTION

A Security Operations Center (SOC) serves as the “nerve
center” of an organization’s cybersecurity efforts. It should
receive inputs from multiple sources, be sensitive to stimuli
that may signal danger, and present the organization with a
comprehensive representation of its environment. The primary
functions range from monitoring, assessing, and defending
against cyber threats, to surveillance of networks, servers,
applications and users. This enables the SOC to identify pain
points, potential vulnerabilities, and areas for improvement.

As such, a SOC is heavily limited by the quality of its
inputs, i.e., its data sources. Many tools are utilized to de-
velop and leverage data sources, such as Security Information
and Event Management (SIEM) systems, Intrusion Detection
Systems (IDS), vulnerability management tools, and other
analytical tools. These systems work together to enable SOCs
to detect, investigate, and respond to issues at speed.

One primary data source for SOCs is authentication logs.
Controlling who uses a given service or application, and in
what capacity, is key to both proper security and functional-
ity. Many organizations have deployed single sign-on (SSO)
services such as Microsoft Azure AD (now Azure Entra AD)
to streamline their users’ authentication experience.

Currently, authentication logs are used to investigate user
and application issues, as well as sources for systems that
generate alerts of suspicious activities [13], [9]. For example,
SOC analysts can identify potential account takeovers when
logs indicate login attempts from an unexpected country or
high frequency failures. Increasingly, artificial intelligence
(AI) and machine learning (ML) models are employed to
flag anomalies, promising to reduce time to detection. How-
ever, Zhao et al [14] identify several limitations including
difficulty dealing with complex abnormal log patterns, poor
interpretability of alerts, and lack of domain knowledge.

Traditional monitoring involves engineers examining logs
and writing keyword and regular expression based rules for
detection. This method is growing more challenging as the
number of components and variety of logs increases, resulting
in noisy datasets that require extensive domain knowledge to
interpret, with new and updated service components producing
ever diversifying log messages. While AI and ML systems can
offer sensitivity to abnormality, they struggle with interpreta-
tion: engineers might be alerted that a given state is anomalous,
but it is unclear why something is an anomaly, and what a
“normal” pattern would look like.

Raw authentication logs are noisy. They have not been
created with easy interpretability in mind. A single login
attempt often generates dozens of log entries, each apparently
disconnected from another. Wading through that mess, either
manually or with an automated system, can be problematic.

In this paper, we describe a process to construct inter-
pretable, user-centric “event logs” from raw authentication
logs that reduce noise, eliminate redundant entries, and com-
bine entries into discrete user experiences. This event-focused
dataset can be implemented in several ways: as an input for
an IDS that allows for more interpretable alerts, as a more
straightforward dataset for investigation that lowers the bar for
domain knowledge, and as a means of generating performance
metrics that enable proactive identification of struggling users
or applications.

The paper is organized as follows. Section II reviews related
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work. Section III describes the method for distilling raw
authentication logs into distinct events. Section IV explores
examples of how event data can be leveraged. Finally, we
conclude in Section V.

II. RELATED WORK

Prior work incorporating authentication logs falls into a few
broad categories. First, a small group of usability research on
multi-factor authentication (MFA), some of which has used
authentication logs to measure adoption rates and basic counts
of errors associated with MFA use[11] [3] [10]. The most
relevant examples being from Reynolds et al., who tracked
users through a 90 day MFA adoption period at a university.
They introduced “recovery time”, defined as the time between
a failed login attempt and the next successful login for a
given user [12]. They also performed some basic data cleaning,
including removing duplicate log entries and malformed logs.
Note that they used an individual log row as the unit for
analysis, and did not use aggregation of log entries.

Our next and larger body of work uses authentication logs
to create metrics and derivatives to directly identify insider
threats and profile groups of users with similar behaviors.
Recently, Sonneveld et al. published a study examining the
non-intrusive security relevant information available to an
SOC [13]. Through examining which resources users accessed,
and when they were accessing them, they were able to identify
each “ITAdmin” user. Using similar measures, they clustered
users and tested deviation from cluster baselines as a poten-
tial indicator of insider threats. Carnegie Mellon’s synthetic
“Insider Threat” data set was used to test their methodology.
Using this data set, they correctly detected 80% of insider
threats in the ITAdmin group [6]. Intuitively, having high
cluster consistency is key to getting a consistent measure for
deviation; however, when they applied the clustering method-
ology to real-world data, consistency was cut in half. They
attribute this partially to the much higher granularity of the
real world data compared to the synthetic data. For other work
clustering users, see Garchery and Freeman [5] [4].

Third, there is similar research that focuses on indicators
of compromise or impersonation rather than insider threats,
again using authentication logs to derive relevant metrics
and measures. Liu et al. [7] created a behavior-based model
to detect compromise using only two features: consecutive
failures and login time of day. Their low computation-cost
probabilistic model showed a good true positive to false
positive trade off with high accuracy and low false positive
ratio. They used a real-world private dataset of 4 million logs,
and state that it contains no authentication compromises. This
paper is of particular interest to us due to the unique way
they construct derivative authentication “events” as their unit
of analysis, rather than using individual log entries as atomic
units. The authors aggregated raw log rows into series of 0-n
failures prior to a success; series that don’t result in success
are discarded. The maximum gap between a failed log row and
the following success is not stated. The resulting “events” do
not include failures, and some “events” may span time periods

longer than the user’s interaction. See Bian et al [2] for similar
work using to identify lateral movement.

Finally, we note the work of Alahmadi [1], who sur-
veyed SOC practitioners investigating analysts perspectives
on security alerts. They report an excessive number of alerts
experienced across organizations, which contributes to analyst
fatigue and human error. This is exacerbated by the low
interpretability of the alerts being generated. These findings,
in combination with Zhao et al. [14] who found that log data
was used in over 30% of incident diagnoses, with indicators
that this portion would be larger if the logs had greater inter-
pretability, suggest the potential benefit that could accompany
more interpretable logs and alerts.

III. METHODOLOGY FOR CONSTRUCTING
AUTHENTICATION EVENTS

Using data obtained through the University of Tulsa IT
department, and approved for analysis by the Institutional
Review Board (IRB), we developed a process to capture
user authentication “events” from raw authentication logs. We
define an event as:

The occurrences reflected in log data that are directly
experienced by a user, beginning when an authen-
tication to a particular application is initiated, and
terminated upon the eventual success, or abandon-
ment of the authentication attempt.

By filtering sign-in logs to events directly experienced by the
user, we can construct event-based metrics of usage and perfor-
mance while reducing noise and increasing interpretability. In
this section we provide an overview of the process to translate
authentication logs to events, followed by a description of each
step, and concluded with a description of the resulting events.

A. Process Overview

Before we dive into details of the process, we first give a
high level example in Figure 1. The steps are:

1) De-Identify: These logs are first stripped of four direct
identifiers which are replaced by the “Participant ID”
attribute1.

2) Row Code: Each row is assigned one of 46 “Row
Codes” which captures both the overall success or failure
result and detail about the action performed. This row
code is the backbone of the encoding system, and will
be explained in greater detail in III-C.

3) Reduce: Several helper attributes are added, such as
“event number” to indicate which “event” a particular
authentication entry is associated with. An attribute
tracking if a password is entered is added by cross
referencing an entry’s “RequestID” with its entry(s) in
the “authDetails” files. These attributes are used in com-
bination with the row code to produce the “interactive”
attribute. Duplicates and known or suspected malicious
entries are removed.

1This step is only necessary in a research context where the users remain
anonymous to the researcher.
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Fig. 1. Event coding overview diagram.

4) Collapse: Finally, we create a derivative data set by
aggregating the key attributes from all rows for a given
event, tracking the number and type of errors encoun-
tered, the form of MFA used, etc. This yields a smaller
data set comprised of rows with 20 attributes, each
row describing a complete authentication attempt to a
particular application. The final set of attributes is easily
adjusted based on the attributes available in the raw data.

B. Raw Log Data Description

The author’s university utilizes Microsoft Entra AD for
authentication. Data is first collected through the Entra AD
portal, which presents the sign-in logs broken down into six
categories. The first four categories are interactive and non-
interactive sign-in logs and their corresponding interactive and
non-interactive “auth details” files. The final two categories
are called “Application logs” and “MSISignins”; these refer
to authentications by service principals, and authentications by
an Azure Managed Identity, respectively. Interactive logs are
defined by Microsoft as those sign-ins where “a user provides
an authentication factor, such as a password, a response
through an MFA app, a biometric factor, or a QR code”.

To investigate user experience, we ignore the application
and managed identity logs, as they are not indicative of
human interaction. Microsoft’s labeling of interactive and non-
interactive may be helpful in some cases; however, it does
not strictly adhere to the definition of interactivity we use in
this paper. For example, we want visibility into the errors that
occur prior to or following presentation of an authentication
factor. Thus, both files and their associated authentication de-
tails are downloaded. A single log entry contains 44 attributes

TABLE I
RAW AZURE AD SIGN-IN LOG ATTRIBUTES

Category Attributes

Direct ID User, User ID, Username, Sign-in Identifier
Device Device ID, Operating System, Browser
Connection IP Address, Location, Latency
Connection IP (seen by resource)
Session Info Date (UTC), Application, Application ID
Session Info Resource, Resource ID, Resource Tenant ID
Session Info Home Tenant ID, Home Tenant Name, Request ID
Session Info Correlation ID, Cross Tenant Access Type
Session Info Incoming Token Type, Unique Token Identifier
Session Info Client app, Client Credential Type
Session Info Autonomous System Number, Token Issuer Type
Session Info Incoming Token Type, Token Issuer Name
User

Provenance User Type, Compliant, Managed, Join Type
Authentication

Info Authentication Protocol, Conditional Access
Authentication
Result Info Status, Sign-in Error Code, Failure Reason
Result Info MFA Result, MFA Auth Method, MFA Auth Detail

and describes a single system interaction. A small period of
user interaction can generate several to dozens of log entries
per minute, many of which may represent back-end processes
that users don’t directly experience within an authentication
attempt. The process described below is implemented on Entra
AD logs, but is designed to be generalize to other sources of
authentication logs.

Table I summarizes the attributes, which we have split into
7 broad categories. Direct ID attributes identify the specific
user, which are immediately removed and replaced with a
unique user number. Device and Connection attributes detail
the network connection and device characteristics. Session
Info attributes comprise the bulk of the data, including the
name and ID of the application and resource being used,
token information, client application, and so on. Redundant
attributes will be dropped in processing, such as alpha-numeric
“ID” fields like “Resource ID”; as “Resource” is retained,
which is the name of the Resource. The “Request ID” field
is always retained, as it is the unique key linking a particular
log item with other associated data in the Azure AD system.
The User Provenance category includes information about a
particular user’s account, such as their user type (member
or guest) and join type (Azure AD Registered, Azure AD
Joined, Hybrid Azure AD Joined). The smallest category
is Authentication Info. Relevant attributes include “Authen-
tication Requirement”, which indicates if the authentication
requires single or multi-factor authentication, and “Conditional
Access”, which indicates any conditional access policies that
were applied and the result. Finally, the Result Info category
includes details about the authentication attempt and result.

The “Status” attribute has one of three values: Failure,
Interrupted, and Success. Note that many “Failure” results are
not caused by improper user action, and “Interrupted” results
often do not tangibly disturb the user experience. The “Sign-in
error code” attribute contains a numerical error code when an
error is present, which is true for any entry that is not labeled
“Sucesss”. This error code is the key attribute used to assign
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TABLE II
ROW CODES - SUCCESS (ALL)

Code Item Authentication

0 Token Success Multi-Factor
1 App Password Multi-Factor
2 Remembered Device Multi-Factor
3 Registered Device Multi-Factor
4 App Notification Multi-Factor
5 SMS Verification Multi-Factor
6 Phone Call Multi-Factor
7 OATH Multi-Factor
8 Token Authentication Single-Factor
9 Password Authentication Single-Factor
10 Password Authentication Multi-Factor

TABLE III
ROW CODES - ERRORS (SAMPLE)

Code Item Type

9 Token Failure Interrupt
10 Needs to Complete MFA Interrupt
16 Device Code Expired Interrupt
14 User has no Role in Application Configuration
19 Error Issuing Token Configuration
27 Failed to Complete MFA User
30 Limit on MFA Calls User
34 Blocked for Malicious IP Hacker
45 Uncategorized Single Factor Error Unknown
46 Uncategorized Multi-Factor Error Unknown

row codes for non-pass rows. The “Failure reason” attribute
contains a description of the error code result when an error is
present, and detailed descriptions of errors and remediation are
available from Microsoft on their website [8]. There are three
MFA-related fields: “MFA result” provides a text description
of the authentication result; “MFA auth method” contains the
type of MFA used when applicable, and “MFA auth detail”,
which may contain a phone number associated with the MFA
with the last two digits revealed. The last field is a Boolean
“Flagged for review”, which is only true when an admin flags
a user account.

C. Row Coding

Adding a row code enables us to distill the 44 attributes
included in raw log instances to a minimal expression. Thus, a
set of 46 row codes were created to capture critical information
about an authentication attempt’s result. There are two broad
results that a single entry can indicate: Pass (Success), or
Fail, indicated by the attempt concluding in an entry marked
“Failure” or “Interrupted” in the “Result” field of raw sign-in
logs. A selection of row codes can be seen in Table II and
Table III below.

Nine categories of logs were identified that indicate authen-
tication has passed as seen in Table II. These 9 categories are
variations of 3 basic results: Token Successes, Remembered
Device Successes, and MFA Successes. Token Successes are
split between single and multi-factor authentications, and all
multi-factor authentications that are not token-related are either
a primary form of MFA such as Text message, OATH, etc. or

fulfilled through remembered device. Six row codes capture
the various forms of MFA Successes, and two capture the
remaining single factor successes.

The remaining row codes are used for entries that do not
indicate an authentication pass, and we group these 36 row
codes into 3 primary categories of errors: Interrupts, User
Errors, and Configuration Errors.

Interrupts occur when the “Failure” (or Interruption) re-
ported is not a true failure, it is a redirect or part of the
intended authentication flow. In our user-centric paradigm,
this means the user is not met with an error message, they
do not experience a failure. One example is Row Code #9:
Token Failure: it is not an error in the sense that the user
or application had an issue; rather, it is an expected part of
a token’s life-cycle. When this Token Failure error occurs, a
user has entered their password and asserts a token that would
otherwise satisfy the second factor requirement, but that token
is invalid for one of many reasons. The user experiences this as
being directed to their MFA prompt screen after inputting their
password. This is a typical use case and not experienced as
failure or extra delay. “Interrupts” do not detract from typical
user experience.

The key difference between user and configuration errors is
the agency of the user to resolve the error. Any error that was
either directly caused by the user, or is within the user’s power
to resolve, is considered a user error. 8 row codes are used for
the user errors. For example, row code #27 indicates a user
initiated a multi-factor sign in but never provided the second
factor, and row code #26 indicates a user input an incorrect
password.

An additional 8 row codes are used for configuration errors,
which includes transient errors. Row Code #18 is a good
example, wherein a user tries to authenticate to an application,
but is denied because their account has no associated role in
the application. The error message presented indicates that
an administrator must give the user access, it can not be
dynamically requested, making this an error outside direct
control of the user. Finally, we have codes that capture behav-
ior identified by Azure AD as malicious, and a catchall for
uncategorized errors. We now describe the process of creating
these row codes, beginning with non-pass entries. Three of the
co-authors, two with high domain knowledge and one with
low domain knowledge, independently inspected log samples
encompassing each unique “Sign-in Error Code” present in
the dataset. Co-authors labeled each error code with one of
four categories: Interrupt, User Error, Configuration Error,
or Hacking Error. Each error was considered alongside all
available documentation and examples of the error appearing
in the data. Krippendorff’s alpha was 0.73 considering all
three raters, and 0.86 for the two raters with high domain
knowledge. Majority opinion was sufficient for all but one
of 127 unique error codes labeled, and each labeling was
reviewed and confirmed by the authors. Labeled errors were
then grouped into row codes by similar themes within each
category of error. These processes yielded the final set of 36
error groupings, which were then given integer representations
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TABLE IV
EVENT LOG ATTRIBUTES.

Attribute Category Comments

Direct ID User Participant ID
Device OS String
Device Browser String

Connection IP Address Alpha-numeric
Session Info Event# Int
Session Info Application String
Session Info Service String
Session Info ClientApp String
Session Info Start DateTime
Session Info End DateTime

Auth Info MFA Type String
Auth Info AuthReq. Single/Multi-Factor

Result Info Result Success/Failure
Result Info Detail Result Details
Result Info Password Entries Int
Result Info Elapsed Elapsed Time in Seconds
Result Info TA Time Away in Minutes
Result Info UEs User Errors Count
Result Info IEs Int. Errors Count
Result Info CEs Config Errors Count
Result Info Error Codes Int List of Errors

beginning after the 10 “Pass” row codes. In total, 127 distinct
sign-in error codes from the logs were mapped to 36 row
codes. This is best explained using examples.

1) Row Code 11: There are 2 error codes that indicate
MFA Completion is required. They redirect the user to
use their second factor for the authentication, “Sign-in
Error Code” 50074 and 50076.

2) Row Code 18: error codes 50105 and 50177 both
describe a user who has not been granted specific access
to an application, and is classified as a configuration
error. This is distinct from a user who is dynamically
requesting access to an application, which is classified as
an interrupt, as it is an intended step in the authentication
cycle, not the result of incorrect permissions or any
failure.

D. Reduction

There are four steps taken to reduce the authentication
logs after row coding. Here, we note that the focus of this
paper and the authors’ related research has been on measur-
ing and characterizing legitimate use. As such, we discard
known and suspected malicious authentication attempts when
constructing events. First, we discard logs from non-standard
user agents including POP and IMAP, and logs categorized
as “Hacking Errors”, such as those with row code #34:
“Blocked for Malicious IP”, as these attempts are unlikely
to be from legitimate users interacting with our applications.
Second, we discard logs from authentication attempts made
to “API” resources, which are not indicative of interactive
user authentication, as these are authentications performed by
some user-side application to access a third party resource.
Third, we discard duplicate logs, defined as logs with identical
attributes occurring within one second of each other. Finally,
we also discard any logs whose row codes are not labeled as
interactive, which is a sub-attribute of our row codes. These
reductions ensure we have non-redundant data that focuses on
legitimate, interactive user behaviors and experiences.

E. Collapse into Events

Returning to our definition, we define an event as:
The occurrences reflected in log data that are directly
experienced by a user, beginning when an authen-
tication to a particular application is initiated, and
terminated upon the eventual success, or abandon-
ment of the authentication attempt.

Each event captures the number of errors encountered before
eventual success or failure, as well as the type of errors
involved, time spent on an attempted authentication, and the
type of authentication used. Since these characteristics are
reflected in the row codes outlined above, tracking their
occurrence in events is straightforward.

Events are constructed by aggregating rows with the same
“Event Number”. This number is created by first sorting entries
by user and datetime, and setting a boolean “New Event” to
TRUE if the gap between the current entry and prior entry
exceeds 90 seconds. A cumulative sum is run on the “New
Event” attribute to assign an event number to each log. In an
enterprise environment without SSO implementation, a second
condition is introduced: the successful completion of an au-
thentication. In our SSO environment, once an authentication
succeeds, any subsequent authentications to related sites will
be non-interactive and fulfilled by the token presented by the
user, resulting in no authentication interaction.

By defining events in this manner, we are flexible enough
to accommodate situations where the user initiates multiple
applications simultaneously. For example, a user might first
be prompted for MFA on their desktop Outlook client. If that
fails, a user could authenticate using a web-based interface
instead. For our purposes, this is treated as a single event when
occurring in close temporal proximity, which is effective for
our enterprise environment in which there are many different
applications which can be satisfied by completing authentica-
tion in any one service. The resulting “event” provides a clear
indication of overall success, the application used, MFA Type,
time spent, count and classification of errors, and provides
the error codes associated with the errors to enable user and
population metrics.

F. Event Examples

“Events” are comprised of the 21 attributes listed in Ta-
ble IV. The first attributes tell us who authenticated, the system
they used to do so, and total time elapsed. We also retain
authentication information (MFA type and whether one or two
factors were required). The final 9 attributes capture relevant
details about the authentication experience by aggregating
the observed row codes for log entries in the event. Note
that a user can experience one or more errors, from mis-
configurations to failed passwords or MFA prompts, before
ultimately succeeding in the authentication. Such impediments
are reflected in the other fields, such as the “Password Entries”
attribute that tracks the number of times the user input their
password during the authentication event. The “Elapsed” at-
tribute is calculated by the difference between the first and
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TABLE V
SAMPLE AUTHENTICATION EVENTS.

Ev Result MFA PW Time TTR OS Application UE CE
# Type # (s) (min) # #

3 Failure 0 2 4 Windows Office 365 0 1
4 Success App 2 16 NA Windows 10 Azure Portal 1 0
6 Success App 1 0 NA Windows 10 Azure Portal 0 0

12 Failure 1 2 4 Windows Office 365 0 1
13 Success App 1 0 NA Windows 10 Teams 0 0

last rows in a sequence that collapses into an event. Because
there is no indicator in the raw sign-in logs when a Multi-
factor prompt is initiated, this measure captures the extra time
spent due to errors and interruptions in the authentication
process. Time Away (TA) measures the gap in time between
a failed authentication event and the next attempted login2.
The final attributes tally the number of User, Interrupt, and
Configuration Errors experienced during the authentication
event.

Table V illustrates the “event” log with example events.
Event #3 shows a simple failure with a single “Configura-
tion Error” (CE). A “Time Away” of 4 minutes is listed,
indicating that 4 minutes elapsed before the next successful
authentication, event #4. Event #4: App-based MFA was used
to successfully sign into the Azure Portal on a Windows device
after a single “User Error” (UE), an invalid password entry.
The authentication process took 16 seconds after initiation,
significantly longer than that observed by [10], which is likely
a consequence of the failed password entry. Event #6 offers
another example of a simple success with no errors that takes
0 seconds after initiation to complete. This zero second time
reflects the complete lack of friction in the event, as we
do not know when the user started to input their password,
use MFA, etc; we only know when the user hit ENTER
or otherwise imitated the authentication. By breaking down
authentication logs into discrete user-centric events, we can
provided meaningful insight into the user experience and
application health, as we demonstrate next.

IV. LEVERAGING EVENT DATA

For this section of the paper, we utilize a subset of collected
data that centers around three semesters: Spring and Fall of
2022 and Spring of 2023. These slices include one week
prior to the first day of class and end one week after the
semester concludes; January 8th through May 17th for the
spring semesters, and August 13th to December 19th for the
Fall. After filtering for users that had at least one successful
authentication, we are left with 1.7m events across 7,419 users,
an average of 77 authentication events per user, per semester.

A. Basic Outcome Measures

The examples discussed in this section demonstrate the
utility of user-focused event aggregates and their derivatives. A
proactive SOC may directly utilize some of these capabilities
beyond the standard authentication log use cases of alert

2TA is similar to “recovery time” reported by [12], which captures the time
between a failure and the next success.

diagnosis and incident response. For example, the detection
of lapsed applications discussed in section IV-C could be
used to reduce threat surfaces by retiring unused applications.
As we consider the utility of an event-based approach to
authentication logs in a SOC, we begin by examining the
basic unit of analysis, the event, before moving on to derivative
measures. As we see in Table V, each event reports success or
failure, the time elapsed, the form of MFA used, types of errors
encountered, and application being authenticated to. The most
straightforward measure then, is failure rate, the complement
of success rate.

An intuitive way to examine failure rates is by error content:
does error type impact the user experience differently? We
anticipate that errors caused by users are both more common
and more easily resolved; passwords can be re-entered, MFA
can be properly completed, etc. We find that over 80% of
users who encounter a configuration error will never succeed
when they experience a configuration error, and 94% of events
containing a configuration error end in failure. Conversely, we
find that only 7% of users who encounter user errors will never
succeed when they experience a user error, and only 56% of
events with user errors conclude in failure. While configuration
errors are clearly more difficult to resolve, they are also less
common. 93% of users experience user errors, while only 27%
of users experience configuration errors. This confirms our
expectation that user errors are both more common and more
easily resolved.

Examining the cumulative distribution function (CDF) plots
in Figure 2, the majority of our 7,305 valid users experience
a very low failure rate. Mean failure rate is 8%, with the
10% worst users failing over 20% of authentications, and
the 10% best users fail only 0.4%. The failure rate increases
substantially for our worst users when we examine those
who ever experience configuration errors, plotted here in red.
The 10% best users fail only 1.5% of authentication events,
whereas the 10% worst fail over 30% of authentications. The
bottom 5% fail an astounding 47% of authentication attempts.

We can take away a few lessons from these distributions
for utilizing event data in a SOC. First, configuration errors
may be worth investigating, as they reliably trigger failures
through no fault of the user. Second, relatively few users fail
frequently, and it may be beneficial to target efforts at assisting
these struggling users.

B. Identification of Locked-Out Users

Creating derivative metrics lends greater utility, such as the
ability to identify locked-out users. An alert prompted by
a lockout metric might trigger automated assistance, which
in turn could forestall help tickets and issue early alerts for
developer issues that cause service interruptions.

To construct this measure, we first add helper variables to
our event dataset: we add a “consecutive failures” and “hours
away” attribute to each event. Next, we set a variable “lockout”
to true when consecutive failures is greater than one and time
away exceeds twelve hours. Each week is summarized by the
longest lockout experienced for each user.
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Fig. 2. Failure rate per user, considering errors.

Figure 3 shows the number of users locked out for each
week of the semesters. The average number of users locked
out for more than 12 hours, each week in the semester, was
approximately 2.5% (152 of 6017) of the total. If we filter this
for lockouts over 24 hours in duration, it shifts to 105 users
per week, or 1.7% of our users.

Next we plot another set of CDFs, this time examining the
duration of lockouts. As configuration errors affect failure rates
more than user errors, we plot Figure 4 with a series of mixed
errors in black, and a series with only configuration errors
in red. Across three semester, we observe 8350 lockouts for
2656 unique users, which is 36% of our total user base. We
note that nearly 93% of lockouts were associated with both
user and configuration errors, and the mean ratio of CEs to
UEs for those lockouts was 3.7. Over 6% of lockouts only had
configuration errors, and less than 1% only had user errors.
Lockouts commonly persist beyond 12 hours, with a median
lockout duration of 43 hours, and the 90th percentile being
locked out for over 193 hours, or 8 days. Lockout times begin
to diverge based on error composition after the 24 hour mark
and are longer when caused by configuration errors.

Lockouts happen often enough to benefit from proactive
investigation and resolution, but they are uncommon enough to
not overwhelm analysts. Moreover, since lockouts can persist
for a long time, steps to eliminate them sooner would bring
substantial value.

C. Identification of Lapsed and Struggling Applications

Maintaining the security and performance of enterprise
applications is a key function of a SOC. Applications that
are unused and/or not associated with any successful authen-
tications present a security risk; these applications are more
likely to lapse into unsafe states, and misuse may be harder
to detect. In our data, we observe 689 unique applications
across three semesters, 348 of which never show a successful
authentication. In our organization, over 50% of applications
can be easily identified and classified as lapsed, and may be de-
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commissioned to increase security.3 These lapsed applications
may otherwise persist for long periods of time, as we observe
in the bar chart 6, which shows the number of valid and invalid
applications per semester.

The next utility is early identification of struggling ap-
plications. Using the most recent semester, SP23, we first
filter out the lapsed applications with no record of successful
authentications. This results in a median success rate of 95%
percent, closely matching our median user success rate for
that semester of 94%. The mean success rate per application
is somewhat lower, at 76%, indicating that some of our highly
used applications have lower success rates. Examining the 20
most used applications, which in our data incur an average of
140 unique users per week, we plot the per application success
rate over time to observe struggling applications. We define a
struggling application as an application experiencing a success
rate 50% below its mean success rate across the semester. In
Figure 5 we report the lagging top 20 applications per week
in the SP22 semester.

As one might expect, the top applications usually perform
well, but it is not uncommon for one or a few to be lag-

3We do not currently posses a master list of applications for our organiza-
tion, and can only detect applications with at least one authentication attempt
made. In a SOC setting, this is easily remedied to be exhaustive and complete.
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ging. Taking a specific application as an example, Microsoft
Teams had a fairly low mean success rate of 53% in the
SP23 semester, compared to 78% in the SP22 semester. Our
“Lagging” metric flags a per-day success rate of under 10%
on the last day of week 9, pointing to acute issues with
the application. The graph in Figure 7 shows the downward
trend of weekly success rate and its impact on the success
rate across all applications in the following weeks. Early
identification of such issues is key in reducing the impact of
lagging applications on an organization.

V. CONCLUDING REMARKS

In this paper we described a process to distill raw au-
thentication logs into more meaningful events, then applied
that methodology to real-world data. The process utilized
was designed to incorporate a level of domain knowledge
to improve the utility of raw logs, but be broad enough
to generalize to other sources of authentication logs. These
examples are simple demonstrations of the type of utility the
events provide, such as identifying struggling users and lapsed
applications.

We contend that the event view developed for the analysis
has the potential to improve SOC analysts’ performance by
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providing a human readable summary of a user’s experience
that collapses numerous otherwise difficult to read log entries.
This enables cybersecurity teams to quickly assess the state
of a user’s authentication and note changes in usage and
performance patterns when investigating alerts. Finally, this
new unit of analysis allows for the creation of event-based
metrics that can better capture subtleties of authentication
usage and performance. Future work is planned to develop and
deploy an event-based dashboard in the university SOC. This
will help to evaluate the measures and incorporate feedback
from real-world usage.

This paper’s primary goal was to describe and demonstrate
a methodology for constructing user-focused authentication
event logs. We attempt to filter out entries that do not reflect
user interaction, but some events are inevitably missed. There
is ongoing work by co-authors to utilize this event data in
a diary study tracking users’ authentication experiences. This
should provide a valuable opportunity to validate the approach
and examine if the events as constructed match the users’
perceived experience.

In future research, we could apply event-based authentica-
tion logs to user clustering in a system that detects malicious
activity. It is possible that our event-based log method would
remove noise that may have contributed the lack of cluster
consistency found by [13] in their 2023 study, and “tune”
our tools to the input we’re most interested in. Our approach
also introduced derivative measures that embed a baseline of
domain knowledge, such as distinctions between user errors
and configuration errors, which can help differentiate two
behaviors or experiences that might otherwise appear similar.
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