
A Comparative Analysis of Difficulty Between Log
and Graph-Based Detection Rule Creation

Matt Jansen
Oregon State University

matt.jansen7@pm.me

Rakesh Bobba
Oregon State University

rakesh.bobba@oregonstate.edu

Dave Nevin
Oregon State University

dave.nevin@oregonstate.edu

Abstract—Provenance-based Intrusion Detection Systems
(PIDS) are threat detection methods which utilize system prove-
nance graphs as a medium for performing detection, as opposed
to conventional log analysis and correlation techniques. Prior
works have explored the creation of system provenance graphs
from audit data, graph summarization and indexing techniques,
as well as methods for utilizing graphs to perform attack detection
and investigation. However, insufficient focus has been placed on
the practical usage of PIDS for detection, from the perspective
of end-user security analysts and detection engineers within a
Security Operations Center (SOC). Specifically, for rule-based
PIDS which depend on an underlying signature database of
system provenance graphs representing attack behavior, prior
work has not explored the creation process of these graph-based
signatures or rules. In this work, we perform a user study
to compare the difficulty associated with creating graph-based
detection, as opposed to conventional log-based detection rules.
Participants in the user study create both log and graph-based
detection rules for attack scenarios of varying difficulty, and
provide feedback of their usage experience after the scenarios
have concluded. Through qualitative analysis we identify and
explain various trends in both rule length and rule creation
time. We additionally run the produced detection rules against
the attacks described in the scenarios using open source tooling
to compare the accuracy of the rules produced by the study
participants. We observed that while the graph-based creation
exercises required more effort to complete, they resulted in higher
interpretability and lower false positives as compared to log-based
methods.

I. INTRODUCTION

With the increasing prevalence of technology and net-
worked devices in our daily lives, there is also an increased
rate of cybercrime and computer hacking operations. In just
this past year, global cyberattacks have increased by 38%,
and there has been a 112% increase in demand for access
brokerage services on darknet marketplaces [1, 2]. Included in
this trend is activity from Advanced Persistent Threat (APT)
groups, well-funded and sophisticated hacking groups engaged
in prolonged network intrusion, data exfiltration, and cyber
espionage [3]. Detecting intrusions performed by APT groups
can be difficult since, oftentimes, their goal is to lay low and
evade detection. However, it is also clear that organizations
have learned to protect themselves by utilizing real-time cyber

threat detection. This is evident from the constant increase in
intrusions detected internally and the global median dwell time
decreasing over the past year [4].

Detecting APT group activity can be difficult for a va-
riety of reasons. For one, they are well-funded adversaries
who may be able to execute previously unseen techniques to
evade detection. For example, in just this past year, Mandiant
reported that over 50% of the initial infection vectors they
were able to identify belonged to either usage of a software
exploit (37%) or through supply chain compromise (17%)
[4]. Given how much money cybercrime costs organizations
annually, accurately detecting APT activity has become an
important focus in industry and academia. Although this is
the case, research has shown how modern Endpoint Detection
and Response (EDR) software still fails to detect a majority of
emulated APT attacks. For instance, Karantzas et al. utilized
DLL-sideloading, a technique known since 2017, to bypass
9 out of 11 modern EDR solutions and run a malicious
payload [5, 6]. It is clear that conventional EDR solutions are
not sufficient for detecting sophisticated adversaries and, in
some cases, not even for detecting well-known and understood
threats.

To further increase visibility into networked systems to
facilitate improved detection and forensic analysis, recent
works have proposed tracking the execution flow of a computer
system as a provenance graph [7, 8]. Constructing a view of
the system’s execution in the form of a directed acyclic graph
allows for the tracking of causal dependencies between system
entities and enables enhanced correlation of system behaviors.
Additionally, when investigating cyber attacks, converting sys-
tem logs into a provenance graph may aid in the analyst’s
interpretation of the attack, resulting in better incident response
capabilities. With the benefits that system provenance graphs
can provide to threat detection and investigation, integrating
system provenance graphs into cybersecurity has demonstrated
to be a very promising research direction. So much so that
dozens of proposals have been made in academia for cy-
ber threat detection software that utilizes system provenance
graphs over the past 10 years [9, 10].

However, if Provenance-based Intrusion Detection Systems
(PIDS) have been explored in academia for several years
now with primarily successful results, then why aren’t they
being seen breaking into industry more? This issue has been
emphasized given the analysis performed by Feng et al.,
where they had found that most industry representatives agree
that PIDS has the potential to outperform EDR; however the
additional computational and analyst workload overhead is

Workshop on SOC Operations and Construction (WOSOC) 2024
1 March 2024, San Diego, CA, USA
ISBN 979-8-9894372-3-8
https://dx.doi.org/10.14722/wosoc.2024.23004
www.ndss-symposium.org



too great [11]. Understanding the overheads associated with
PIDS deployments, in addition to the extent of benefits it
can provide, can help facilitate the integration of PIDS into
enterprise networks. That being said, most recent literature
surrounding the reduction of overheads associated with PIDS
focus on the detection and investigation algorithms, rather than
PIDS usage from the perspective of an organization’s SOC
analyst or detection engineer.

In this paper, we focus on the gap in academic literature
surrounding the comparison of graph-based intrusion detection
systems (specifically PIDS) to conventional log-based detec-
tion techniques. Specifically, this work compares the difficulty
associated with creating accurate detection rules for graph-
based detection methods with those of log-based detection
methods. This was accomplished through a user study where
participants built intrusion detection rules for a variety of attack
scenarios, and provided feedback based on various aspects of
the rule-creation exercises. From the results of the user study,
we define metrics for rule creation difficulty and accuracy, and
aggregate scores to synthesize observations supported through
feedback provided by the participants. To the best of our
knowledge, this is the first work addressing PIDS usage from
the perspective of its end users through a user study, where
the study participants actively builds rules for a rule-based
PIDS. This work is also the first to address the comparison of
graph-based and log-based endpoint detection through a user
study, where the study participants build detection rules for
both types of rule-based detection.

Through this research, this paper makes the following
contributions:

• We define and justify a set of metrics for the purpose
of assessing the difficulty of creating intrusion detec-
tion rules for a rule-based IDS.

• We perform a qualitative analysis using the previously
discussed metrics to assess the comparative difficulty
of creating accurate graph and conventional log-based
IDS rules for endpoints.

• We outline numerous areas for potential future re-
search efforts related to the integration of PIDS into
enterprise networks.

The remainder of this paper is organized as follows. Sec-
tion II discusses critical background details related to system
provenance graphs and PIDS. Section III details works related
to this research effort. Section IV outlines the user study
performed as part of this research, and section V goes over
the subsequent analysis of the user study results. Finally,
section VI discusses takeaways from our research and future
work.

II. BACKGROUND

This Section will review the information necessary to fol-
low the remaining sections of this document, including system
provenance graphs, PIDS components, and PIDS detection
methods.

A. System Provenance Graphs

PIDS software depends on system audit data first being
converted into a graph format, which are referred to as system

Fig. 1: Example System Provenance Graph

provenance graphs. These graphs depict the data provenance
of endpoint audit records capturing the the origin of a data
point, and all interactions made with that data point to de-
termine how it arrived at its current state [12]. Applying
data provenance to system audit records in a graph format
results in an understanding of the full history of execution of
a given endpoint. Specifically, graph nodes represent system
entities (e.g., processes, files, network sockets, and memory
segments), while the edges represent events connecting the
two entities (e.g., system calls). Converting audit records into
system provenance graphs strengthens downstream analysis
tasks such as correlation between system events and casual
analysis. An example of a system provenance graph is shown
in Figure 1.

Due to the advanced capabilities associated with system
provenance graphs, dozens of threat detection and attack in-
vestigation approaches have been proposed in the literature that
utilize system provenance graphs as a medium for detection
[9, 10]. These systems which perform provenance-based attack
detection are called Provenance-based Intrusion Detection
Systems, or PIDS for short.

B. PIDS Components

PIDS are typically composed of 3 components - prove-
nance graph collection, data management, and threat detection
[9]. The first module, the provenance graph collection module,
is responsible for acquiring endpoint logs and translating them
into a system provenance graph. Once a provenance graph
is generated, the data management module is responsible for
storing and interfacing with the graph — this includes choosing
how to store the graph to disk, how to query the graph,
and how to prune the graph over time. Once the graph has
been processed into its final form, the threat detection module
performs analyses on the system provenance graph to detect
malicious behavior.

The three main classes of threat detection used by PIDS
include signature-based, anomaly-based, and tag-based detec-
tion [13, 14]. Signature-based detection entails discovering
malicious system behavior by matching signatures of malicious
behaviour to the system provenance graph. Typically this is im-
plemented as sub-graph pattern matching, where the signature
database is a set of provenance sub-graphs representing mali-
cious behaviors. Additionally, anomaly-based detection utilizes
the system provenance graph’s structure and the attributes of
each entity to create a baseline behavioral model. An anomaly-
based PIDS would then monitor for moments when the system

2



provenance graph deviates far enough from the baseline model
to be flagged as anomalous, and raises an alert. Finally, tag-
based detection assign tags to nodes and edges according to
a policy, and perform tag propagation algorithms to identify
malicious behaviors and trace attack paths. Signature and
anomaly-based detection are similar to what is seen in con-
ventional endpoint detection software except for they act on
graphs, rather than log files.

III. RELATED WORKS

In this section we discuss past work relevant to the
proposed work organized into two themes. We first discuss
the issue of alert fatigue plaguing internal security operations
teams, and prior works which utilize PIDS to enable improved
alert triage and overall workload reduction. We also review
prior work where user studies are performed to gain a better
understanding of security operations from various points of
view.

A. PIDS Analyst Workload Reduction

In Forrester’s 2020 State of Security Operations report [15],
it was found that internal security operations teams receive
an average of over 11,000 alerts per day. From this extreme
workload placed on the shoulders of security analysts, alert
fatigue can plague internal security teams by driving attention
and effort away from true positive alerts. Alert fatigue is a
phenomenon in which an environment is created where, due
to the large amount of false positive alerts generated by con-
ventional tooling, true and false positive alerts become difficult
to distinguish [16]. In an effort to mitigate alert fatigue, several
works have been proposed which aid in the investigation and
triage of alerts generated by both conventional security tooling
and PIDS. The need for these tools has been demonstrated
through user studies performed by Dong et al. [11], where it
was found that alarm triage and alarm interpretation cost were
one of several deciding factors for implementing PIDS into
organizations’ networks.

Attack investigation often follows the action of reconstruct-
ing attack behaviors found within the system provenance graph
after a detection has taken place, or anomalous behavior has
been identified. For instance, in Zeng et al. [17], the authors
aggregate the semantics of system events to define high-level
behavioral patterns which can be clustered to identify anoma-
lous behaviors. Additionally, Hossain et al. [18] presented
SLEUTH – a real-time method for detecting and reconstructing
attack scenarios through the application and propagation of
tags onto system entities. By framing the analysis of multi-
stage attacks as a community discovery problem, Pei et al. [19]
were also able to perform attack reconstruction by extracting
behaviors into communities, identifying communities associ-
ated with malicious behaviors, and visualizing the resulting
multi-step attack chain.

Alarm triage is another critical downstream analysis task
which can aid in mitigating the alarm fatigue problem by
deciding which alarms are most likely to be true positives.
An example of alarm triage applied to system provenance
graphs includes work by Hassan et al. [20], where the authors
utilize anomaly detection to assign anomaly scores to system
entities and diffuse the scores throughout the graph, ultimately

resulting in scores which can be used for triaging. Additional
work by Hassan et al. [21] utilizes alerts generated by con-
ventional security tooling to build an alert dependency graph,
which is then summarized into several sequences of techniques
which map back to MITRE’s ATT&CK framework1, where
each sequence is given an alert triage score. Furthermore, prior
work by Liu et al. [22] analyzes the rareness of system event
occurrences through backwards and forwards tracking within
the system provenance graph to prioritize events for further
analysis.

The work presented in this paper focuses specifically on
rule-based PIDS, and the difficulty of interfacing with such
technologies in comparison to conventional security tooling.
Specifically, we focus on the difficulty associated with creating
detection rules so that detection may take place in the future,
in a comparative manner between conventional log-based and
graph-based detection software.

B. User Studies of Cybersecurity Operations

In recent literature, there’s been an increased focus on
improving the effectiveness and efficiency of security operation
centers within organizations. This emphasis is the result of
the realization of the critical importance of an organization’s
Security Operations Center (SOC) in the prevention and de-
tection of cyber attacks. To accomplish this, these works
run user studies with members of real organizations’ security
teams as participants. These studies tend to take one of two
approaches: (1) passive studies, which ask questions without
requiring a technical task to be completed, often in the form
of interviews or questionnaires; and (2) active studies, which
have the participants completing a security-related technical
task, such as rule creation or alarm investigation.

With regard to passive SOC studies, in Kokulu et al. [23],
the authors conducted several in-depth interviews to try to
further understand the identify issues that occur within SOCs.
From these 1-on-1 interviews, several factors - including low
network/infrastructure visibility, ineffective phishing training,
lackluster SOC performance metrics, and lack of impact from
false positives - were identified as the most frequently seen.
Alahmadi et al. [24] conducted both quantitative online surveys
and qualitative investigations to understand the prevalence of
false positives returned from conventional security tooling and
how SOC analysts perceive the quality of an alarm. The
authors identified several factors critical to the process of
alarm validation, and claimed that integrating these factors into
security tooling will enable analysts to make more informed
decisions when validating an alarm, and will expedite analyst
reactions to alarms. Furthermore, Agyepong et al. [25] con-
ducted several semi-structured interviews of SOC managers
from a variety of industries to gain a better understanding of a
SOC analyst’s core functionalities. The argument provided by
the authors is that without a joint agreement on the definition
of the SOC analyst’s role, it will remain difficult to define the
metrics necessary for assessing an analyst’s performance.

Active SOC studies go beyond asking questions and addi-
tionally ask the participant to perform a cybersecurity-related
technical task. For example, in Rosso et al. [26], the authors

1https://attack.mitre.org/

3



constructed a SOC evaluation platform and tested its effective-
ness by having students play the role of SOC analysts poten-
tially investigating one of two attack scenarios. The purpose
of their platform, SAIBERSOC, is to measure the detection
accuracy of various SOC configurations with regard to attack
identification and investigation, and attempt to find the best
SOC configuration which best facilitated higher detection rates.
Additionally, Kersten et al. [27] conducted experiments with a
group of tier-1 analysts from an organization’s SOC and had a
subset of the analysts investigate attacks using their proposed
process of alert investigation. The alerts presented were a set of
real alerts generated from within their organization’s network,
and the authors determined that their proposed process resulted
in analysts being 2.5 times more likely to build an accurate
assessment of the alert.

The user study conducted within this paper is considered an
active SOC study, as the participants are actively investigating
and analyzing cyber attack scenarios. This work is unique in
that we seek to determine the comparative difficulty of using
conventional and state-of-the-art methods for performing threat
detection.

IV. USER STUDY

This section will detail the structure and execution of a
user study performed as part of this research effort2.

A. Study Overview

This study involved 13 participants, with a background
in cybersecurity, completing a sequence of intrusion detec-
tion rule creation exercises for attack scenarios of increasing
complexity. These participants were recruited through study
advertisements made in our institution’s cybersecurity club and
security-related courses held on campus, where participants
who completed the study in full had the chance to win one
of five $25 Amazon gift cards. The resulting participant pool
contained young adults with a career interest in cybersecurity,
who are either university students, recently graduated from
university, or have a few years of industry experience post-
graduation. The study was performed with participants in a
1-on-1 setting remotely using Zoom, and Qualtrics as the
medium for presenting the participants with questions, as well
as for collecting results.

This study does not seek to compare and contrast the
effectiveness of system provenance graph-based detection and
log-based detection methods in general. Instead, this analysis
shines a light on the process of attack detection rule creation,
and specifically how that process differs between graph-based
detection and log-based detection. To accomplish this, given
a cyber attack scenario description and the resulting audit
logs/graph, we measure the effort involved in creating a
detection rule for the given attack scenario. We also measure
the success of these rules by running them against attack
scenarios emulated in a lab environment. To measure the effort
of creating detection rules, participants were timed during their
exercises, and the length of the resulting detection rules was
also be measured. In addition to these metrics, after each

2This user study was approved by Oregon State University’s Human
Research Protection Program and Institutional Review Board under study
application HE-2023-340

of the exercises have been completed, the participants were
also asked questions seeking to compare and contrast their
experience when constructing log and graph-based rules.

B. Study Workflow

Aside from the study description and consent agreement,
the study is broken into the following four sections: pre-survey
questionnaire, tutorial videos, rule creation exercises, and post-
survey questionnaire.

1) Pre-Survey Questionnaire: During the pre-survey ques-
tionnaire, participants were asked to state their experience
levels for a variety of subject areas. Having an understanding of
these concepts would be beneficial when conceptualizing the
attack scenario and building detection rules. These concepts
include:

• The Linux operating system (e.g., processes, files,
common commands)

• Analyzing operating system or application logs (e.g.,
audit logs, ssh logs, web server logs)

• Regular expressions
• Basics of graph terminology (e.g., nodes, edges, di-

rected graphs)
• Host-based intrusion detection systems (HIDS; e.g.,

Wazuh)
• Graph databases (e.g., Neo4j)
• Creating cyber threat detection rules (e.g., YARA,

SIGMA, Wazuh, Suricata)

For each of these concepts, the participants were asked to
rate their experience level on a scale from 1 to 5, where each
number represented the following experience levels:

1) No experience/knowledge of this topic
2) Some knowledge of, but no experience with this topic
3) Some knowledge and experience with this topic
4) Extensive knowledge of, but only some experience

with this topic
5) Extensive knowledge and experience with this topic

2) Tutorial Videos: The participants were then asked to
watch two tutorial videos, both hosted on YouTube and
totalling 17 minutes long, which described the process of
completing the rule creation exercises provided later in the
study. The videos gave participants a crash course on intrusion
detection systems, Linux audit logging using Auditd, and how
those audit logs can be interpreted as graphs. Next, the videos
described how detection rules can be made for detecting audit
logs with specific field values, and also how detection rules
can be made for audit logs which have been converted into
a provenance graph. Finally, the videos described what the
upcoming rule creation exercises will look like, what they
will include, and how they should be completed. This process
was solidifed by going over an example rule creation exercise,
including what a correct log and graph-based rule might look
like. Also included in the Qualtrics page containing hyperlinks
to the tutorial videos is a cheat sheet, which states the expected
syntax of the log and graph-based rules, and summarizes
the main points of the tutorial videos. The participants were
reminded that this cheat sheet would be available on each page
which requires them to build a log or graph-based detection
rule.

4



3) Rule Creation Exercises: Each participant was given
three rule creation exericses to complete, where each exer-
cise consisted of three separate consecutive pages within the
Qualtrics study. The rule creation exercises were given in
order of increasing difficulty, where each exercise is defined
as being either easy, moderate, or hard. The first page of the
exercise contained the attack scenario description, giving the
participant an opportunity to understand the attack prior to
making the detection rule. The attack scenario description was
still available on the second and third pages of each exercise,
however these two pages also prompted the participant to
construct their detection rule. Whether the participant was
prompted to construct a log-based or graph-based detection
rule at first was randomized. The participants were also asked
to pause prior to submitting their detection rule to Qualtrics,
so that the syntax of their detection rule could be checked. If
the detection rule contained incorrect syntax, the participants
would be asked to correct their mistake. However, when the
rule was syntactically correct but was clearly not going to
detect the given attack, they were not alerted to the issue or
asked to make any changes.

4) Post-Survey Questionnaire: Finally, the participants
were asked to answer a series of questions which detailed
their experience making detection rules using log and graph-
based methods. Participants were also asked to provide insight
into their answer as to better understand why they made their
choice. Specifically, they were asked the following questions:

1) Between log-based and graph-based rule creation,
which do you feel was more difficult?

2) Between log-based and graph-based rule creation,
which do you feel you spent more time working on?
In other words, which was more time consuming?

3) Between log-based and graph-based rule creation,
which do you feel best captured the rules that you
were trying to produce?

4) How often did you need to refer to the cheat sheet in
order to answer the exercises?

5) Regarding the log-based rule syntax: how confident
were you with writing the final exercise’s rule, com-
pared to the first exercise’s rule?

6) Regarding the graph-based rule syntax: how confi-
dent were you with writing the final exercise’s rule,
compared to the first exercise’s rule?

C. Rule Creation Exercises

This section will detail the log and graph-based rule syntax
for the user study, the attack selection process, defining diffi-
culty between exercises, and the layout of each rule creation
exercise.

1) Exercise Layout: Each rule creation exercise contained
within the user study consisted of a sequence of three pages.
The first page contained a description, ranging from two to
three paragraphs, of a specific attack being performed on a
computer. After reading through the attack description on the
first page and navigating to the next page, this page and the
next page (i.e., the final two pages) of the rule creation exercise
entail constructing either a log-based rule, or a graph-based
rule, to detect the attack. The order in which the user is
presented these final two pages is determined at random. The

purpose of creating separate pages is to separate the collection
of metrics related to log-based rule creation, and graph-based
rule creation. In the page corresponding with the log-based
rule, the participant is additionally provided with a section
from a Linux Auditd log which correlates with the attack
described earlier. For the graph-based rule creation page, this is
replaced with a typed and attributed graph, containing details
derived from the Linux Auditd logs within the log-based rule
creation page, which describes the attack.

2) Difficulty: After the tutorial videos, participants were
given a sequence of three rule creation exercises in the
following order of difficulty: easy, moderate, then hard. Within
each category of difficulty we had three rule creation exercises
that were randomly assigned. Qualtrics was configured to
ensure that each exercise within the difficulty group got equal
exposure to participants. Variance in difficulty was integrated
to track how much more/less time and effort it takes the partic-
ipant to complete exercises as attacks grew in complexity. This
insight is important because it identifies how scalable certain
detection methodologies are as attack complexity grows. A
total of nine rule creation exercises were developed for the
user study, with three different exercises for each difficulty
category.

Easy rule creation exercises resembled single events per-
formed by a single process and entailed exact field/value
matching, where the log-based exercises contained two audit
events and the graph-based exercises were described by two
nodes connected by a single edge. Moderate rule creation
exercises increased the number of processes and system calls
involved and utilized simple usage of regular expressions,
where log-based exercises had three audit events and the graph-
based exercises contained four nodes and three edges. Finally
for the hard exercises, additional processes and system events
were used along with additional regular expressions of higher
complexity. The hard exercises used five audit events for log-
based exercises, and graph-based exercises used four nodes
and five edges.

3) Detection Rule Syntax: A custom syntax was used when
creating detection rules within the exercises — this was done
to reduce complexity enough to allow for relatively-quick rule
creation, while still making the process similar to what is
commonly seen in industry. The goal was to be able to give
the participants enough time to complete all three rule creation
exercises within one hour, while still completing the tutorial
videos and questionnaires. The log-based syntax was based
on Wazuh’s XML rule formatting converted into CSV format,
while the graph rules are primarily based on Neo4j’s Cypher
graph query langauge.

The log-based syntax utilized during the user study entails
comma-separated pairs of fields and values, where each field
and value correspond to data observed in the system audit logs.
Each log-based rule can contain one or more lines, where each
line within the rule targets a particular set of fields and values
from a single audit log. For example, Figure 2 depicts a snippet
of an audit log file, in addition to a sample log-based threat
detection rule. The graph-based syntax used for the user study
is closer to Neo4j’s Cypher query syntax, compared to the
custom log-based syntax’s resemblence to Wazuh’s XML rule
syntax. Cypher is a query language which enables its users to
craft typed graphs by defining representations of nodes, edges,

5



Fig. 2: Example of the Custom Log-Based Detection Rule
Syntax

Fig. 3: Example of the Custom Graph-Based Detection Rule
Syntax

and their associated attributes, which are then queried against
a larger graph to perform exact graph matching. In the custom
graph-based syntax, Cypher clauses (such as MATCH, RETURN,
and WHERE) were removed so that nodes, edges, and their
attributes remained the primary focus to the participants —
this is depicted in Figure 3.

4) Attack Selection: There were several factors in play
when deciding which attacks to choose for each rule creation
exercise. First, the attacks chosen need to fit into one of the
three previously-defined difficulty categories. Specifically, each
exercise contained within a given difficulty group needed to be
similar enough in structure (with regard to the scenario’s audit
log snippet and attack graph) to justify their placements within
each group. The total set of nine attack scenarios also needs
to vary in tactics utilized to account for there being several
distinct steps which ultimately create an attack killchain. Each
difficulty class contains three attack scenarios, and the total
set of exercises spans five adversarial tactics described by
MITRE’s ATT&CK matrix3. With regard to relevancy of
the attacks, a majority of the attack scenarios selected are
mentioned in Mandiant’s 2022 APT Trends report[4]. The
attacks which were ultimately chosen for the user study are
shown in Table I.

3https://attack.mitre.org/

TABLE I: User Study Attack Scenario Descriptions

Scenario
Difficulty

Scenario
ID

Scenario
Description

MITRE
Tactic

Easy
1.1 Editing

.ssh/authorized keys Persistence

1.2 Deleting .bash history Defense evasion
1.3 Netcat usage Execution

Moderate
2.1 Awk privilege esc. Privilege esc.
2.2 .bashrc reverse shell Persistence
2.3 Vim defense evasion Defense evasion

Hard
3.1 PHP webshell Persistence

3.2 Download/Execute
Python script Execution

3.3 Download/Install
systemd module/exe Persistence

V. ANALYSIS OF RESULTS

This section analyzes the results of the user study from two
perspectives, rule creation difficulty and the resulting rule’s
efficacy in detecting threats.

A. Comparative Analysis of Difficulty

This analysis seeks to compare the time and effort involved
with creating log and graph-based rules, while also integrating
context from both the pre and post-survey questionnaires.

1) Pre-Survey Questionnaire: To gain a better understand-
ing of the participants prior experience using the the pre-survey
questionnaire, scores were assigned to each of the possible
answers within each subject area. Below is a list of pre-survey
questionnaire responses, followed by their score.

• ”No knowledge or experience” = 0
• ”Some knowledge but not experience” = 1
• ”Some knowledge and some experience” = 2
• ”Extensive knowledge and some experience” = 3
• ”Extensive knowledge and experience” = 4

The average summed experience per participant was 16.4,
and dividing the average experience by the seven subject
areas gives us a general experience score (across all subjects)
of roughly 2.35. So on average, participants were between
somewhat knowledgeable and experienced in each subject,
and being extensively knowledgeable but only having some
experience in the area. Participants seemed to be most familiar
with the Linux OS and analyzing OS/application log files
(average score of 2.9 and 3 respectively), while being the least
comfortable with graph databases (average score of 1.2). This
data indicates that the participants were more comfortable with
subject areas relating to general computer science topics —
regular expressions and graph terminology — as opposed to
cybersecurity-focused topics such as detection rule creation
and HIDS. These results associated with the pre-survey ques-
tionnaire can be found in Table II.

2) Rule Creation Time: We notice distinct trends which
separate the learning curves associated with log and graph-
based rule creation, the details of which are found in Table III.
First, the average and median log-based rule creation times
decrease as difficulty moves from easy to moderate, and
increase as difficulty goes from moderate to hard. However, the
opposite is observed for average and median graph-based rule

6



TABLE II: Pre-Survey Questionnaire Statistics

Pre-Survey Questionnaire Topic Min Max Mean Median
Linux OS 1 4 2.9 3.5
OS/Application log analysis 1 4 3 5
Regular expressions 1 4 2.2 2
Graph basics 1 4 2.7 3
HIDS 1 4 2.1 2
Graph databases 0 3 1.2 1
Detection rule creation 1 4 2.1 2

TABLE III: Log and Graph-Based Rule Creation Time
Statistics (Time Given in Seconds)

Scenario
Category Min Max Mean Median

Log-
Based

Easy 202.21 566.12 308.14 273.39
Moderate 137.82 468.89 257.86 230.76

Hard 136.37 403.45 274.16 285.19

Graph-
Based

Easy 160.37 661.34 384.84 364.22
Moderate 299.21 791.4 458.96 435.89

Hard 293.51 569.79 422.63 426.40

creation times. We hypothesize that this is due to participants
needing to implement additional graph-specific rule creation
concepts (such as node and edge aliasing, and multi-edge
connections) as difficulty increases. Although as the partici-
pants gain experience in creating log and graph-based rules,
they require less time to implement previously-seen concepts.
We additionally observe that, on average, graph-based rule
creation takes noticeably longer than log-based rule creation.
During the easy exercises, the difference in log and graph-
based rule creation time is only about 80 seconds, although
this difference expands to over 140 seconds when completing
hard exercises. Within the context of these exercises, it appears
that participants will require an increasing amount of time to
build graph-based rules as attack scenario complexity rises,
compared to log-based rules.

3) Rule Length: Regarding rule length, during easy rule-
creation exercises, the participants wrote shorter graph-based
rules (126 characters) on average, than log-based rules (152
characters). However, this changes when moving to moderate
difficulty exercises, where participants wrote graph-based rules
which were 280 characters long on average, compared to 215
characters for log-based. The same trend is seen with hard rule
creation exercises, where although the gap between the two
is shorter, graph-based detection rules are still 339 characters
long on average, compared to 324 for log-based rules. This
indicates that within the context of these exercises, although
graph-based rules take less characters to write at first, for more
complex scenarios, they do require more characters to write
than log-based rules. The details surrounding log and graph-
based rule length can be found in Table IV.

4) Post-Survey Questionnaire: The questions from the
post-survey questionnaire can be found in subsection IV-B4,
while the results of this questionnaire can be found in Table V.
From the first two questions, although most believed that
the log and graph-based exercises were equal in difficulty, a
majority of participants felt that they spent more time on graph-
based rule creation. Participants stated that the information
needed to complete each task is present, and that the remaining

TABLE IV: Log and Graph-Based Rule Length Statistics
(Length Given by Number of Characters)

Scenario
Category Min Max Mean Median

Log-
Based

Easy 117 174 152.61 154.5
Moderate 185 231 215.92 219

Hard 274 348 324.46 333

Graph-
Based

Easy 105 143 126.15 126.5
Moderate 253 299 280.69 283

Hard 293 368 339.15 343

TABLE V: Post-Survey Questionnaire Statistics

Post-Survey
Question # Response # Answers

1
(Difficulty)

Graph-based slightly more difficult 3
Equally difficult 7

Log-based slightly more difficult 3

2
(Time Spent)

More time spent on log-based 1
Time spent equally 2

More time spent on graph-based 10

3
(Usability)

Log-based rules captured better 1
Both equally captured the rule 2
Graph-based captured better 10

4
(Cheat Sheet)

Only a few times 10
Frequently 2

1 or more times per exercise 1

5
(Graph Confidence)

Somewhat less confident 2
Equally confident 3

Somewhat more confident 3
Much more confident 5

6
(Log Confidence)

Much less confident 1
Somewhat less confident 1

Equally confident 5
Somewhat more confident 1

Much more confident 5

task is simply to transpose the data into the required form.
One participant noted that the graph-based rules ”makes more
sense,” however that the syntax was much more ”painful.”
A majority of participants noted that graph-based rules better
captured what they were writing, with one participant noting
that it’s ”... easier to visualize what you’re producing, instead
of just looking at the log itself.” Regarding cheat sheet usage,
participants felt that once they began producing both types of
rules, they only needed to look back when they needed to
implement a new concept they hadn’t done previously (such
as node aliases). For the final two questions regarding rule
creation confidence, it appears that a roughly even amount
of participants felt more or less confident by the time they
finished their final graph-based exercise, while a majority of
participants noted an equivalent or increase in confidence for
log-based exercises.

B. Comparative Analysis of Efficacy

The goal of this analysis is to qualitatively evaluate the
performance of the detection rules created by the participants
in the user study.

1) Overview: To evaluate these rules, system data was
generated which represents the attacks shown in each scenario.
For log-based data, this came in the form of audit logs, while
SPADE [28] was utilized to generate audit graph data within

7



TABLE VI: Detection Accuracy of Log and Graph-based
Participant Rules

Participant Rules
(Divided by Rule Creation Exercise)

Easy Moderate Hard
1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3

Attacks Detected Using
Log-based Rules 4 5 3 6 3 3 6 4 3

Attacks Detected Using
Graph-based Rules 4 5 4 6 3 3 4 4 3

Total Number of
Exercises 4 5 4 6 4 3 6 4 3

a Neo4j graph database. Next, each of the rules created by
the participants was transformed into a Wazuh (log-based) and
Neo4j Cypher (graph-based) rules. The process of transforming
the participant rules into rules that could be utilized by Wazuh
and Neo4j is detailed in Appendix A, while the difficulties
associated with this process are described in Appendix B.
Finally, each of the rules was ran against their associated
underlying dataset to determine whether or not the rules raised
an alert.

2) Synthetic Dataset Generation: To evaluate the rules pro-
duced by the participants, each attack scenario was emulated
and the resulting logs were collected. This was accomplished
by running each attack on an isolated endpoint within our
lab environment while running Linux Auditd. High granularity
Auditd configurations were utilized, including file and network
I/O syscall tracking, in an effort to collect as much details
as possible during the attack emulation. The dataset collected
included the attack behavior being emulated, in addition to
benign background system activity that took place as the attack
scenario was emulated.

3) Detection Accuracy: To infer detection accuracy, we
find the ratio of participants (per attack scenario) who were
able to make a detection rule which produced a true positive
alert for the malicious behavior within the log/graph. The
missed detections in this portion of the analysis will be
considered false negatives in the subsequent subsection. The
results of this analysis exist in Table VI.

In a majority of cases the participants were able to create
accurate rules to detect the attack behavior for both log
and graph-based scenarios. When participants’ rules fail to
detect a given attack, it’s often due to simple typing mistakes.
Common occurrences that were found include using incorrect
filepaths, and incorrectly defining a regular expression. In total,
log-based detection was able to achieve one more detection
than graph-based — out of the 39 total exercises among
participants, it’s clear that both methods were both capable
of detecting the attacks thrown at them.

4) False Positives and False Negatives: The number of
false positives identified are shown in Table VII, while the
false negative count can be derived from the missed detections
seen in Table VI.

We observe that graph-based rules are a clear winner in
terms of false positives when compared with log-based rules.
This is partially due to the Wazuh’s design which does not
natively support rule correlation, similar to what aliasing in
Neo4j’s Cypher language accomplishes. However we also hy-
pothesize that this is due to graph queries containing all entities

TABLE VII: Average False Positive Count of Log and
Graph-based Participant Rules

Participant Rules
(Divided by Rule Creation Exercise)

Easy Moderate Hard
1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3

Log-based Rules 80 5.8 0.75 4 44 2298.3 369 34 1479
Graph-based Rules 0 0 0 0 59 0 0 0 0

and events being mentioned in the query, as opposed to log-
based rules which independently alert on specific occurrences
of entities and events. That being said, it’s clear that there’s
still the potential to create graph-based rules which are specific
enough but end up producing false positives (see the 59 for
2.2 in Table VII) Additionally, we observe that false positives
increase for log-based rule creation as difficulty increases
— this is due to more sub-rules being involved within the
parent rules as difficulty increases, which creates additional
independent Wazuh rules and increases the potential for false
alerts. Regarding false negatives, comparing the results derived
from this evaluation gives us that both log and graph-based
detection produces low numbers of false negatives, with log-
based only having a total of two false negatives and graph-
based with three.

VI. CONCLUSIONS & FUTURE WORK

This work analyzed results from a user study that measured
the variation of difficulty faced by security analysts when
creating graph-based and log-based threat detection rules. The
subsequent analysis consisted of qualitatively assessing the
effort involved in the rule creation process and evaluating
rules derived from the user study. Through this analysis, we
observed that the creation process for graph-based rules has
additional overhead but provides higher levels of insight and
interpretability. Additionally, the resulting rulesets in a rule-
based PIDS deployment produce equivalently accurate detec-
tion results, but naturally provide more contextual information
in addition to much fewer false positives.

Due to the scale and setting of this research effort, there
are a few notable limitations which define areas for future
work. First, this study analyzed the comparative difficulty
between log-based and graph-based detection rule creation, so
the results collected will not make generalized assumptions
regarding performance or efficiency between log and graph-
based detection methods. Larger-scale studies analyzing the
difficulty from both qualitative and quantiative points of view
are left to future work. Additionally, to keep the user study
concise in nature, the attacks chosen are noticeably more com-
pact than other scenarios that could have been chosen, and this
study did not strenuously evaluate the participants’ ability to
perform analysis and correlation on larger sets of logs/graphs.
We additionally leave longitudinal studies involving the wider
selection of conventional security tooling to compare against
graph-based methods for future work.

ACKNOWLEDGMENT

The authors would like to thank Rebecca Joshua of Oregon
State University for her support of this research effort.

8



REFERENCES

[1] Checkpoint, Check Point Research Reports a 38% In-
crease in 2022 Global Cyberattacks, 2023. [Online].
Available: https://blog.checkpoint.com/2023/01/05/38-
increase-in-2022-global-cyberattacks/.

[2] CrowdStrike, “2023 Global Threat Report,” Tech. Rep.,
2023. [Online]. Available: https : / / www. crowdstrike .
com/global-threat-report/.

[3] C
bibinitperiodISA (CISA), Advanced Persistent Threats
and Nation-State Actors. [Online]. Available: https : / /
www. cisa . gov / topics / cyber - threats - and - advisories /
advanced-persistent-threats-and-nation-state-actors.

[4] Mandiant, “Mandiant M-Trends 2022 Special Report,”
Mandiant, Tech. Rep., 2022. [Online]. Available: https:
//www.mandiant.com/media/15671.

[5] G Karantzas and C Patsakis, “An empirical assessment
of endpoint detection and response systems against
advanced persistent threats attack vectors,” Journal of
Cybersecurity and Privacy, vol. 1, no. 3, pp. 387–421,
2021, Publisher: MDPI. DOI: 10.3390/jcp1030021.

[6] TM Corporation, DLL Side-Loading, 2020. [Online].
Available: https : / /attack.mitre .org/ techniques/T1574/
002/.

[7] X Han, Using Provenance for Security and In-
terpretability, 2018. [Online]. Available: https : / /
conferences . inf . ed . ac . uk / EuroDW2018 / papers /
eurodw18-Han.pdf.

[8] A Bates and WU Hassan, “Can Data Provenance Put
an End to the Data Breach?” IEEE Security & Privacy,
vol. 17, no. 4, pp. 88–93, 2019. DOI: 10.1109/MSEC.
2019.2913693.

[9] Z Li, QA Chen, R Yang, Y Chen, and W Ruan,
“Threat detection and investigation with system-level
provenance graphs: A survey,” Computers & Security,
vol. 106, p. 102 282, 2021, ISSN: 0167-4048. DOI: 10.
1016/j.cose.2021.102282.

[10] M Zipperle, F Gottwalt, E Chang, and T Dillon,
“Provenance-Based Intrusion Detection Systems: A Sur-
vey,” ACM Comput. Surv., vol. 55, no. 7, pp. 0360–0300,
2022, Place: New York, NY, USA Publisher: Associa-
tion for Computing Machinery, ISSN: 0360-0300. DOI:
10.1145/3539605.

[11] F Dong, S Li, P Jiang, D Li, H Wang, L Huang, X Xiao,
J Chen, X Luo, Y Guo, and X Chen, “Are we there yet?
An Industrial Viewpoint on Provenance-based Endpoint
Detection and Response Tools,” in Proceedings of the
2023 ACM SIGSAC Conference on Computer and Com-
munications Security, eprint: 2307.08349, Association
for Computing Machinery, 2023, pp. 2396–2410. DOI:
10.1145/3576915.3616580.

[12] A Gupta, “Data Provenance,” in Encyclopedia of
Database Systems, L LIU and MT ÖZSU, Eds., Springer
US, 2009, pp. 608–608, ISBN: 978-0-387-39940-9. DOI:
10.1007/978-0-387-39940-9 1305. [Online]. Available:
https://doi.org/10.1007/978-0-387-39940-9 1305.

[13] K Scarfone and P Mell, “NIST SP 800-94: Guide to
Intrusion Detection and Prevention Systems (IDPS),”
National Institute of Standards and Technology (NIST),
NIST Special Publication, 2007, p. 127. [Online]. Avail-
able: https://doi.org/10.6028/NIST.SP.800-94.

[14] M Liu, Z Xue, X Xu, C Zhong, and J Chen, “Host-Based
Intrusion Detection System with System Calls: Review
and Future Trends,” ACM Comput. Surv., vol. 51, no. 5,
2018, Place: New York, NY, USA Publisher: Associa-
tion for Computing Machinery, ISSN: 0360-0300. DOI:
10.1145/3214304. [Online]. Available: https://doi.org/
10.1145/3214304.

[15] F Research, “The 2020 state of security operations,”
Tech. Rep., 2020. [Online]. Available: https : / / www.
paloguard.com/datasheets/forrester- the-2020-state-of-
security.pdf.

[16] A Wolf, Cybersecurity alert fatigue. [Online]. Available:
https://arcticwolf.com/cybersecurity-alert-fatigue/.

[17] J Zeng, ZL Chua, Y Chen, K Ji, Z Liang, and J Mao,
“WATSON: Abstracting Behaviors from Audit Logs via
Aggregation of Contextual Semantics,” in Network and
Distributed Systems Security (NDSS) Symposium 2021,
NDSS, 2021. [Online]. Available: https : / /www.ndss-
symposium.org/wp- content/uploads/2021- 549- paper.
pdf.

[18] MN Hossain, SM Milajerdi, J Wang, B Eshete, R
Gjomemo, R Sekar, S Stoller, and V Venkatakrish-
nan, “SLEUTH: Real-time attack scenario reconstruc-
tion from COTS audit data,” in 26th USENIX Security
Symposium (USENIX Security 17), USENIX Associ-
ation, 2017, pp. 487–504, ISBN: 978-1-931971-40-9.
[Online]. Available: https://www.usenix.org/conference/
usenixsecurity17 / technical - sessions / presentation /
hossain.

[19] K Pei, Z Gu, B Saltaformaggio, S Ma, F Wang, Z
Zhang, L Si, X Zhang, and D Xu, “HERCULE: At-
tack Story Reconstruction via Community Discovery
on Correlated Log Graph,” in Proceedings of the 32nd
Annual Conference on Computer Security Applications,
ser. ACSAC ’16, Association for Computing Machinery,
2016, pp. 583–595, ISBN: 978-1-4503-4771-6. DOI: 10.
1145/2991079.2991122.

[20] WU Hassan, S Guo, D Li, Z Chen, K Jee, Z Li, and
A Bates, “NoDoze: Combatting Threat Alert Fatigue
with Automated Provenance Triage,” in Network and
Distributed Systems Security Symposium, NDSS, 2019.
[Online]. Available: https://par.nsf.gov/biblio/10085663.

[21] WU Hassan, A Bates, and D Marino, “Tactical Prove-
nance Analysis for Endpoint Detection and Response
Systems,” in 2020 IEEE Symposium on Security and
Privacy (SP), ISSN: 2375-1207, IEEE, 2020, pp. 1172–
1189. DOI: 10.1109/SP40000.2020.00096.

[22] Y Liu, M Zhang, D Li, K Jee, Z Li, Z Wu, J Rhee,
and P Mittal, “Towards a Timely Causality Analysis
for Enterprise Security.,” in Network and Distributed
Systems Security Symposium, NDSS, 2018. [Online].
Available: https : / / www . ndss - symposium . org / wp -
content/uploads/2018/02/ndss2018 07B- 3 Liu paper.
pdf.

[23] FB Kokulu, A Soneji, T Bao, Y Shoshitaishvili, Z Zhao,
A Doupé, and GJ Ahn, “Matched and Mismatched
SOCs: A Qualitative Study on Security Operations Cen-
ter Issues,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security,
ser. CCS ’19, Association for Computing Machinery,
2019, pp. 1955–1970, ISBN: 978-1-4503-6747-9. DOI:
10.1145/3319535.3354239.

9

https://blog.checkpoint.com/2023/01/05/38-increase-in-2022-global-cyberattacks/
https://blog.checkpoint.com/2023/01/05/38-increase-in-2022-global-cyberattacks/
https://www.crowdstrike.com/global-threat-report/
https://www.crowdstrike.com/global-threat-report/
https://www.cisa.gov/topics/cyber-threats-and-advisories/advanced-persistent-threats-and-nation-state-actors
https://www.cisa.gov/topics/cyber-threats-and-advisories/advanced-persistent-threats-and-nation-state-actors
https://www.cisa.gov/topics/cyber-threats-and-advisories/advanced-persistent-threats-and-nation-state-actors
https://www.mandiant.com/media/15671
https://www.mandiant.com/media/15671
https://doi.org/10.3390/jcp1030021
https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1574/002/
https://conferences.inf.ed.ac.uk/EuroDW2018/papers/eurodw18-Han.pdf
https://conferences.inf.ed.ac.uk/EuroDW2018/papers/eurodw18-Han.pdf
https://conferences.inf.ed.ac.uk/EuroDW2018/papers/eurodw18-Han.pdf
https://doi.org/10.1109/MSEC.2019.2913693
https://doi.org/10.1109/MSEC.2019.2913693
https://doi.org/10.1016/j.cose.2021.102282
https://doi.org/10.1016/j.cose.2021.102282
https://doi.org/10.1145/3539605
https://doi.org/10.1145/3576915.3616580
https://doi.org/10.1007/978-0-387-39940-9_1305
https://doi.org/10.1007/978-0-387-39940-9_1305
https://doi.org/10.6028/NIST.SP.800-94
https://doi.org/10.1145/3214304
https://doi.org/10.1145/3214304
https://doi.org/10.1145/3214304
https://www.paloguard.com/datasheets/forrester-the-2020-state-of-security.pdf
https://www.paloguard.com/datasheets/forrester-the-2020-state-of-security.pdf
https://www.paloguard.com/datasheets/forrester-the-2020-state-of-security.pdf
https://arcticwolf.com/cybersecurity-alert-fatigue/
https://www.ndss-symposium.org/wp-content/uploads/2021-549-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2021-549-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2021-549-paper.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
https://doi.org/10.1145/2991079.2991122
https://doi.org/10.1145/2991079.2991122
https://par.nsf.gov/biblio/10085663
https://doi.org/10.1109/SP40000.2020.00096
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07B-3_Liu_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07B-3_Liu_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07B-3_Liu_paper.pdf
https://doi.org/10.1145/3319535.3354239


[24] BA Alahmadi, L Axon, and I Martinovic, “99% False
Positives: A Qualitative Study of SOC Analysts’ Per-
spectives on Security Alarms,” in 31st USENIX Security
Symposium (USENIX Security 22), USENIX Associa-
tion, 2022, pp. 2783–2800, ISBN: 978-1-939133-31-1.
[Online]. Available: https : / /www.usenix .org / system/
files/sec22-alahmadi.pdf.

[25] E Agyepong, Y Cherdantseva, P Reinecke, and P Bur-
nap, “Towards a Framework for Measuring the Per-
formance of a Security Operations Center Analyst,” in
2020 International Conference on Cyber Security and
Protection of Digital Services (Cyber Security), IEEE,
2020, pp. 1–8. DOI: 10.1109/CyberSecurity49315.2020.
9138872.

[26] M Rosso, M Campobasso, G Gankhuyag, and L Al-
lodi, “SAIBERSOC: A Methodology and Tool for Ex-
perimenting with Security Operation Centers,” Digital
Threats, vol. 3, no. 2, 2022, Place: New York, NY, USA
Publisher: Association for Computing Machinery. DOI:
10.1145/3491266.

[27] L Kersten, T Mulders, E Zambon, C Snijders, and L
Allodi, “’Give Me Structure’: Synthesis and Evaluation
of a (Network) Threat Analysis Process Supporting
Tier 1 Investigations in a Security Operation Cen-
ter,” in Nineteenth Symposium on Usable Privacy and
Security (SOUPS 2023), USENIX Association, 2023,
pp. 97–111, ISBN: 978-1-939133-36-6. [Online]. Avail-
able: https : / /www.usenix .org /conference /soups2023/
presentation/kersten.

[28] A Gehani and D Tariq, “SPADE: Support for Prove-
nance Auditing in Distributed Environments,” in Mid-
dleware 2012, P Narasimhan and P Triantafillou, Eds.,
Springer Berlin Heidelberg, 2012, pp. 101–120, ISBN:
978-3-642-35170-9. DOI: 10.1007/978-3-642-35170-
9 6.

APPENDIX A
EVALUATION METHODS

To compare the performance of the log and graph-based
rules against the synthetic dataset, the participant-made rules
must be translated into a standard rule format to be com-
pared against the audit logs and system provenance graphs,
respectively. To accomplish this, custom scripts were written to
translate each of the log-based rules into an XML format which
can be utilized by Wazuh to perform rule-based detection.
Additionally, each graph-based rules had slight modifications
made to it in order for them to work as Neo4j Cypher queries.

To evaluate log-based rules against an audit log, Wazuh’s
wazuh-logtest tool was used to compare each entry in the
attack scenario’s audit log to the participant-made rules. Each
line within a participant’s log-based rule would be converted
into a single XML-based Wazuh rule. These individual rules
would be appended together and evaluated against the target
attack scenario’s audit log using wazuh-logtest, which
raises alerts to the user when audit log activity matches a rule.
For graph-based evaluations, the attack scenario’s audit logs
were converted into a system provenance graph using SPADE,
which were then subsequently fed into a Neo4j database. Once
the graphs were indexed into the database, the queries derived
from the participant-made rules from the user study were ran
against the database; results returned from these queries were
considered alerts.

APPENDIX B
TRANSLATING FROM CUSTOM SYNTAX TO

WAZUH/CYPHER

Translating from the custom log-based syntax to Wazuh
syntax was straightforward, however several ad-hoc changes
were required to be made when translating the custom graph
query syntax from the rule creation exercises, to Neo4j Cypher
queries. This was due to issues encountered with SPADE
when creating the system provenance graph, including reversed
edges and discrepancies between expected behavior and ob-
served behavior. When translating between the rule creation
exercise graph queries and Neo4j Cypher queries, we permitted
using bidirectional edges as many edges defined by SPADE
were reversed when compared to the actual system behavior.
In other cases, there were mistakes made during the synthesis
of the dataset which complicated downstream analysis tasks.
For instance, in log and graph-based exercises 1.2 and 2.2,
the target file related to the attack scenario did not match the
full path shown in the rule creation exercises — as a result,
the target file path in the query needed to be adjusted when
applicable. Additionally in exercise 2.1, new versions of the
sudo executable break the attack graph pattern provided to the
participants, so the target of the forking operation was instead
moved to the gawk executable. Finally, in the hard exercises,
the source of the disk file writes needed to be switched from
the socket to the parent process for graph-based rules.

10

https://www.usenix.org/system/files/sec22-alahmadi.pdf
https://www.usenix.org/system/files/sec22-alahmadi.pdf
https://doi.org/10.1109/CyberSecurity49315.2020.9138872
https://doi.org/10.1109/CyberSecurity49315.2020.9138872
https://doi.org/10.1145/3491266
https://www.usenix.org/conference/soups2023/presentation/kersten
https://www.usenix.org/conference/soups2023/presentation/kersten
https://doi.org/10.1007/978-3-642-35170-9_6
https://doi.org/10.1007/978-3-642-35170-9_6

	Introduction
	Background
	System Provenance Graphs
	PIDS Components

	Related Works
	PIDS Analyst Workload Reduction
	User Studies of Cybersecurity Operations

	User Study
	Study Overview
	Study Workflow
	Pre-Survey Questionnaire
	Tutorial Videos
	Rule Creation Exercises
	Post-Survey Questionnaire

	Rule Creation Exercises
	Exercise Layout
	Difficulty
	Detection Rule Syntax
	Attack Selection


	Analysis of Results
	Comparative Analysis of Difficulty
	Pre-Survey Questionnaire
	Rule Creation Time
	Rule Length
	Post-Survey Questionnaire

	Comparative Analysis of Efficacy
	Overview
	Synthetic Dataset Generation
	Detection Accuracy
	False Positives and False Negatives


	Conclusions & Future Work
	Appendix A: Evaluation Methods
	Appendix B: Translating From Custom Syntax to Wazuh/Cypher

